

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	13824
Total RAM Bits	110592
Number of I/O	165
Number of Gates	600000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	256-LBGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/agle600v5-fgg256i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 – IGLOOe Device Family Overview

General Description

The IGLOOe family of flash FPGAs, based on a 130-nm flash process, offers the lowest power FPGA, a single-chip solution, small footprint packages, reprogrammability, and an abundance of advanced features.

The Flash*Freeze technology used in IGLOOe devices enables entering and exiting an ultra-low power mode while retaining SRAM and register data. Flash*Freeze technology simplifies power management through I/O and clock management with rapid recovery to operation mode.

The Low Power Active capability (static idle) allows for ultra-low power consumption while the IGLOOe device is completely functional in the system. This allows the IGLOOe device to control system power management based on external inputs (e.g., scanning for keyboard stimulus) while consuming minimal power.

Nonvolatile flash technology gives IGLOOe devices the advantage of being a secure, low power, singlechip solution that is Instant On. IGLOOe is reprogrammable and offers time-to-market benefits at an ASIC-level unit cost.

These features enable designers to create high-density systems using existing ASIC or FPGA design flows and tools.

IGLOOe devices offer 1 kbit of on-chip, programmable, nonvolatile FlashROM storage as well as clock conditioning circuitry based on 6 integrated phase-locked loops (PLLs). IGLOOe devices have up to 3 million system gates, supported with up to 504 kbits of true dual-port SRAM and up to 620 user I/Os.

M1 IGLOOe devices support the high-performance, 32-bit Cortex-M1 processor developed by ARM for implementation in FPGAs. Cortex-M1 is a soft processor that is fully implemented in the FPGA fabric. It has a three-stage pipeline that offers a good balance between low power consumption and speed when implemented in an M1 IGLOOe device. The processor runs the ARMv6-M instruction set, has a configurable nested interrupt controller, and can be implemented with or without the debug block. Cortex-M1 is available for free from Microsemi for use in M1 IGLOOe FPGAs.

The ARM-enabled devices have Microsemi ordering numbers that begin with M1AGLE and do not support AES decryption.

Flash*Freeze Technology

The IGLOOe device offers unique Flash*Freeze technology, allowing the device to enter and exit ultralow power Flash*Freeze mode. IGLOOe devices do not need additional components to turn off I/Os or clocks while retaining the design information, SRAM content, and registers. Flash*Freeze technology is combined with in-system programmability, which enables users to quickly and easily upgrade and update their designs in the final stages of manufacturing or in the field. The ability of IGLOOe V2 devices to support a wide range of core voltage (1.2 V to 1.5 V) allows further reduction in power consumption, thus achieving the lowest total system power.

When the IGLOOe device enters Flash*Freeze mode, the device automatically shuts off the clocks and inputs to the FPGA core; when the device exits Flash*Freeze mode, all activity resumes and data is retained.

The availability of low power modes, combined with reprogrammability, a single-chip and single-voltage solution, and availability of small-footprint, high pin-count packages, make IGLOOe devices the best fit for portable electronics.

IGLOOe Device Family Overview

SRAM and FIFO

IGLOOe devices have embedded SRAM blocks along their north and south sides. Each variable-aspectratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18, 512×9, 1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can be configured with different bit widths on each port. For example, data can be sent through a 4-bit port and read as a single bitstream. The embedded SRAM blocks can be initialized via the device JTAG port (ROM emulation mode) using the UJTAG macro.

In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM block to be configured as a synchronous FIFO without using additional core VersaTiles. The FIFO width and depth are programmable. The FIFO also features programmable Almost Empty (AEMPTY) and Almost Full (AFULL) flags in addition to the normal Empty and Full flags. The embedded FIFO control unit contains the counters necessary for generation of the read and write address pointers. The embedded SRAM/FIFO blocks can be cascaded to create larger configurations.

PLL and CCC

IGLOOe devices provide designers with very flexible clock conditioning capabilities. Each member of the IGLOOe family contains six CCCs, each with an integrated PLL.

The six CCC blocks are located at the four corners and the centers of the east and west sides. One CCC (center west side) has a PLL.

The inputs of the six CCC blocks are accessible from the FPGA core or from one of several inputs located near the CCC that have dedicated connections to the CCC block.

The CCC block has these key features:

- Wide input frequency range ($f_{IN CCC}$) = 1.5 MHz up to 250 MHz
- Output frequency range (f_{OUT CCC}) = 0.75 MHz up to 250 MHz
- 2 programmable delay types for clock skew minimization
- Clock frequency synthesis

Additional CCC specifications:

- Internal phase shift = 0°, 90°, 180°, and 270°. Output phase shift depends on the output divider configuration.
- Output duty cycle = 50% ± 1.5% or better
- Low output jitter: worst case < 2.5% × clock period peak-to-peak period jitter when single global network used
- Maximum acquisition time is 300 µs
- Exceptional tolerance to input period jitter—allowable input jitter is up to 1.5 ns
- Four precise phases; maximum misalignment between adjacent phases of 40 ps × 250 MHz / fout_ccc

Global Clocking

IGLOOe devices have extensive support for multiple clocking domains. In addition to the CCC and PLL support described above, there is a comprehensive global clock distribution network.

Each VersaTile input and output port has access to nine VersaNets: six chip (main) and three quadrant global networks. The VersaNets can be driven by the CCC or directly accessed from the core via multiplexers (MUXes). The VersaNets can be used to distribute low-skew clock signals or for rapid distribution of high-fanout nets.

2 – IGLOOe DC and Switching Characteristics

General Specifications

Operating Conditions

Stresses beyond those listed in Table 2-1 may cause permanent damage to the device.

Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Absolute Maximum Ratings are stress ratings only; functional operation of the device at these or any other conditions beyond those listed under the Recommended Operating Conditions specified in Table 2-2 on page 2-2 is not implied.

Table 2-1 •	Absolute Maximum Ratings
-------------	--------------------------

Symbol	Parameter	Limits	Units					
VCC	DC core supply voltage	–0.3 to 1.65	V					
VJTAG	JTAG DC voltage	–0.3 to 3.75	V					
VPUMP	Programming voltage	–0.3 to 3.75	V					
VCCPLL	Analog power supply (PLL)	–0.3 to 1.65						
VCCI and VMV ³	DC I/O buffer supply voltage	-0.3 to 3.75	V					
VI	I/O input voltage	-0.3 V to 3.6 V (when I/O hot insertion mode is enabled) -0.3 V to (VCCI + 1 V) or 3.6 V, whichever voltage is lower (when I/O hot-insertion mode is disabled)	V					
T _{STG} ²	Storage temperature	–65 to +150	°C					
T _J ²	Junction temperature	+125	°C					

Notes:

1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may undershoot or overshoot according to the limits shown in Table 2-4 on page 2-3.

2. For flash programming and retention maximum limits, refer to Table 2-3 on page 2-3, and for recommended operating limits, refer to Table 2-2 on page 2-2.

3. VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" section on page 3-1 for further information.

٠

JTAG supply, PLL power supplies, and charge pump VPUMP supply have no influence on I/O behavior.

PLL Behavior at Brownout Condition

Microsemi recommends using monotonic power supplies or voltage regulators to ensure proper powerup behavior. Power ramp-up should be monotonic at least until VCC and VCCPLX exceed brownout activation levels. The VCC activation level is specified as 1.1 V worst-case (see Figure 2-1 and Figure 2-2 on page 2-5 for more details).

When PLL power supply voltage and/or VCC levels drop below the VCC brownout levels (0.75 V \pm 0.25 V), the PLL output lock signal goes low and/or the output clock is lost. Refer to the "Power-Up/-Down Behavior of Low Power Flash Devices" chapter of the *IGLOOe FPGA Fabric User's Guide* for information on clock and lock recovery.

Internal Power-Up Activation Sequence

- 1. Core
- 2. Input buffers

Output buffers, after 200 ns delay from input buffer activation.

Figure 2-1 • V5 – I/O State as a Function of VCCI and VCC Voltage Levels

Figure 2-6 • Tristate Output Buffer Timing Model and Delays (example)

		Equivalent			VIL	VIH		VOL	VOH	IOL ¹	IOH ¹
I/O Standard	Drive Strength	Default Drive Strength ²	Slew Rate	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA
HSTL (II)	15 mA ⁵	15 mA ⁵	High	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.4	VCCI – 0.4	15	15
SSTL2 (I)	15 mA	15 mA	High	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.54	VCCI - 0.62	15	15
SSTL2 (II)	18 mA	18 mA	High	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.35	VCCI - 0.43	18	18
SSTL3 (I)	14 mA	14 mA	High	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.7	VCCI – 1.1	14	14
SSTL3 (II)	21 mA	21 mA	High	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.5	VCCI – 0.9	21	21

Table 2-21 • Summary of Maximum and Minimum DC Input and Output Levels (continued) Applicable to Commercial and Industrial Conditions

Notes:

1. Currents are measured at 85°C junction temperature.

 The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-12 specification.

4. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification.

5. Output drive strength is below JEDEC specification.

6. Output Slew Rates can be extracted from IBIS Models, http://www.microsemi.com/soc/download/ibis/default.aspx.

Summary of I/O Timing Characteristics – Default I/O Software Settings

Standard	Input Reference Voltage (VREF_TYP)	Board Termination Voltage (VTT_REF)	Measuring Trip Point (Vtrip)
3.3 V LVTTL / 3.3 V LVCMOS	-	-	1.4 V
3.3 V LVCMOS Wide Range	-	-	1.4 V
2.5 V LVCMOS	-	-	1.2 V
1.8 V LVCMOS	-	-	0.90 V
1.5 V LVCMOS	-	-	0.75 V
1.2 V LVCMOS*	-	-	0.6 V
1.2 V LVCMOS – Wide Range*	-	-	0.6 V
3.3 V PCI	-	-	0.285 * VCCI (RR)
	-	-	0.615 * VCCI (FF))
3.3 V PCI-X	-	-	0.285 * VCCI (RR)
	-	-	0.615 * VCCI (FF)
3.3 V GTL	0.8 V	1.2 V	VREF
2.5 V GTL	0.8 V	1.2 V	VREF
3.3 V GTL+	1.0 V	1.5 V	VREF
2.5 V GTL+	1.0 V	1.5 V	VREF
HSTL (I)	0.75 V	0.75 V	VREF
HSTL (II)	0.75 V	0.75 V	VREF
SSTL2 (I)	1.25 V	1.25 V	VREF
SSTL2 (II)	1.25 V	1.25 V	VREF
SSTL3 (I)	1.5 V	1.485 V	VREF
SSTL3 (II)	1.5 V	1.485 V	VREF
LVDS	-	-	Cross point
LVPECL	-	-	Cross point

Table 2-23 • Summary of AC Measuring Points

Note: *Applicable to V2 devices ONLY operating in the 1.2 V core range.

The length of time an I/O can withstand IOSH/IOSL events depends on the junction temperature. The reliability data below is based on a 3.3 V, 36 mA I/O setting, which is the worst case for this type of analysis.

For example, at 100°C, the short current condition would have to be sustained for more than six months to cause a reliability concern. The I/O design does not contain any short circuit protection, but such protection would only be needed in extremely prolonged stress conditions.

 Table 2-31 • Duration of Short Circuit Event before Failure

Temperature	Time before Failure
-40°C	> 20 years
0°C	> 20 years
25°C	> 20 years
70°C	5 years
85°C	2 years
100°C	6 months

Table 2-32 • Schmitt Trigger Input Hysteresis Hysteresis Voltage Value (Typ.) for

lysteresis	Voltag	e Valu	e (Typ.) for Schmitt Mode Input Buffers	5

Input Buffer Configuration	Hysteresis Value (typ.)					
3.3 V LVTTL/LVCMOS/PCI/PCI-X (Schmitt trigger mode)	240 mV					
2.5 V LVCMOS (Schmitt trigger mode)	140 mV					
1.8 V LVCMOS (Schmitt trigger mode)	80 mV					
1.5 V LVCMOS (Schmitt trigger mode)	60 mV					
1.2 V LVCMOS (Schmitt trigger mode)	40 mV					

Table 2-33 • I/O Input Rise Time, Fall Time, and Related I/O Reliability*

Input Buffer	Input Rise/Fall Time (min.)	Input Rise/Fall Time (max.)	Reliability
LVTTL/LVCMOS (Schmitt trigger disabled)	No requirement	10 ns*	20 years (100°C)
LVTTL/LVCMOS (Schmitt trigger enabled)	No requirement	No requirement, but input noise voltage cannot exceed Schmitt hysteresis.	20 years (100°C)
HSTL/SSTL/GTL	No requirement	10 ns*	10 years (100°C)
LVDS/B-LVDS/M-LVDS/LVPECL	No requirement	10 ns*	10 years (100°C)

Note: *The maximum input rise/fall time is related to the noise induced into the input buffer trace. If the noise is low, then the rise time and fall time of input buffers can be increased beyond the maximum value. The longer the rise/fall times, the more susceptible the input signal is to the board noise. Microsemi recommends signal integrity evaluation/characterization of the system to ensure that there is no excessive noise coupling into input signals.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-48 • 2.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V

	Speed													Unit
Drive Strength	Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	S
4 mA	Std.	0.97	5.55	0.18	1.31	1.41	0.66	5.66	4.75	2.28	1.96	9.26	8.34	ns
8 mA	Std.	0.97	4.58	0.18	1.31	1.41	0.66	4.67	4.07	2.58	2.53	8.27	7.66	ns
12 mA	Std.	0.97	3.89	0.18	1.31	1.41	0.66	3.97	3.58	2.78	2.91	7.56	7.17	ns
16 mA	Std.	0.97	3.68	0.18	1.31	1.41	0.66	3.75	3.47	2.82	3.01	7.35	7.06	ns
24 mA	Std.	0.97	3.59	0.18	1.31	1.41	0.66	3.66	3.48	2.88	3.37	7.26	7.08	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-49 • 2.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Unit s
4 mA	Std.	0.97	2.94	0.18	1.31	1.41	0.66	3.00	2.68	2.28	2.03	6.60	6.27	ns
8 mA	Std.	0.97	2.45	0.18	1.31	1.41	0.66	2.50	2.12	2.58	2.62	6.10	5.72	ns
12 mA	Std.	0.97	2.15	0.18	1.31	1.41	0.66	2.20	1.85	2.78	2.98	5.80	5.45	ns
16 mA	Std.	0.97	2.10	0.18	1.31	1.41	0.66	2.15	1.80	2.82	3.08	5.75	5.40	ns
24 mA	Std.	0.97	2.11	0.18	1.31	1.41	0.66	2.16	1.74	2.88	3.47	5.75	5.33	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

🌜 Microsemi.

IGLOOe DC and Switching Characteristics

Timing Characteristics

1.5 V DC Core Voltage

Table 2-54 • 1.8 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V

	Speed													
Drive Strength	Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.97	7.33	0.18	1.27	1.59	0.66	7.47	6.18	2.34	1.18	11.07	9.77	ns
4 mA	Std.	0.97	6.07	0.18	1.27	1.59	0.66	6.20	5.25	2.69	2.42	9.79	8.84	ns
6 mA	Std.	0.97	5.18	0.18	1.27	1.59	0.66	5.29	4.61	2.93	2.88	8.88	8.21	ns
8 mA	Std.	0.97	4.88	0.18	1.27	1.59	0.66	4.98	4.48	2.99	3.01	8.58	8.08	ns
12 mA	Std.	0.97	4.80	0.18	1.27	1.59	0.66	4.89	4.49	3.07	3.47	8.49	8.09	ns
16 mA	Std.	0.97	4.80	0.18	1.27	1.59	0.66	4.89	4.49	3.07	3.47	8.49	8.09	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-55 • 1.8 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V

	Speed													
Drive Strength	Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	0.97	3.43	0.18	1.27	1.59	0.66	3.51	3.39	2.33	1.19	7.10	6.98	ns
4 mA	Std.	0.97	2.83	0.18	1.27	1.59	0.66	2.89	2.59	2.69	2.49	6.48	6.18	ns
6 mA	Std.	0.97	2.45	0.18	1.27	1.59	0.66	2.51	2.19	2.93	2.95	6.10	5.79	ns
8 mA	Std.	0.97	2.38	0.18	1.27	1.59	0.66	2.43	2.12	2.98	3.08	6.03	5.71	ns
12 mA	Std.	0.97	2.37	0.18	1.27	1.59	0.66	2.42	2.03	3.07	3.57	6.02	5.62	ns
16 mA	Std.	0.97	2.37	0.18	1.27	1.59	0.66	2.42	2.03	3.07	3.57	6.02	5.62	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

SSTL3 Class II

Stub-Speed Terminated Logic for 3.3 V memory bus standard (JESD8-8). IGLOOe devices support Class II. This provides a differential amplifier input buffer and a push-pull output buffer.

Table 2-109 • Minimun	n and Maximum	DC Input and	Output Levels
-----------------------	---------------	---------------------	----------------------

SSTL3 Class II		VIL	VIH		VOL	VOH	IOL	IOH	IOSH	IOSL	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
21 mA	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.5	VCCI – 0.9	21	21	103	109	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operating conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

Figure 2-22 • AC Loading

Table 2-110 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.2	VREF + 0.2	1.5	1.5	1.485	30

Note: Measuring point = Vtrip. See Table 2-23 on page 2-23 for a complete table of trip points.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-111 • SSTL 3 Class II – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,

Worst-Case VCCI = 3.0 V VREF = 1.5 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.98	1.86	0.19	1.09	0.67	1.89	1.58			5.52	5.21	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-112 • SSTL 3 Class II – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V,

Worst-Case VCCI = 3.0 V VREF = 1.5 V	
--------------------------------------	--

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
Std.	1.55	2.12	0.26	1.32	1.10	2.16	1.89			7.97	7.70	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

Timing Characteristics 1.5 V DC Core Voltage

Table 2-137 • Register Delays

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{CLKQ}	Clock-to-Q of the Core Register	0.89	ns
t _{SUD}	Data Setup Time for the Core Register	0.81	ns
t _{HD}	Data Hold Time for the Core Register	0.00	ns
t _{SUE}	Enable Setup Time for the Core Register	0.73	ns
t _{HE}	Enable Hold Time for the Core Register	0.00	ns
t _{CLR2Q}	Asynchronous Clear-to-Q of the Core Register	0.60	ns
t _{PRE2Q}	Asynchronous Preset-to-Q of the Core Register	0.62	ns
t _{REMCLR}	Asynchronous Clear Removal Time for the Core Register	0.00	ns
t _{RECCLR}	Asynchronous Clear Recovery Time for the Core Register	0.24	ns
t _{REMPRE}	Asynchronous Preset Removal Time for the Core Register	0.00	ns
t _{RECPRE}	Asynchronous Preset Recovery Time for the Core Register	0.23	ns
t _{WCLR}	Asynchronous Clear Minimum Pulse Width for the Core Register	0.30	ns
t _{WPRE}	Asynchronous Preset Minimum Pulse Width for the Core Register	0.30	ns
t _{CKMPWH}	Clock Minimum Pulse Width HIGH for the Core Register	0.56	ns
t _{CKMPWL}	Clock Minimum Pulse Width LOW for the Core Register	0.56	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-138 • Register Delays

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{CLKQ}	Clock-to-Q of the Core Register	1.61	ns
t _{SUD}	Data Setup Time for the Core Register	1.17	ns
t _{HD}	Data Hold Time for the Core Register	0.00	ns
t _{SUE}	Enable Setup Time for the Core Register	1.29	ns
t _{HE}	Enable Hold Time for the Core Register	0.00	ns
t _{CLR2Q}	Asynchronous Clear-to-Q of the Core Register	0.87	ns
t _{PRE2Q}	Asynchronous Preset-to-Q of the Core Register	0.89	ns
t _{REMCLR}	Asynchronous Clear Removal Time for the Core Register	0.00	ns
t _{RECCLR}	Asynchronous Clear Recovery Time for the Core Register	0.24	ns
t _{REMPRE}	Asynchronous Preset Removal Time for the Core Register	0.00	ns
t _{RECPRE}	Asynchronous Preset Recovery Time for the Core Register	0.24	ns
t _{WCLR}	Asynchronous Clear Minimum Pulse Width for the Core Register	0.46	ns
t _{WPRE}	Asynchronous Preset Minimum Pulse Width for the Core Register	0.46	ns
t _{CKMPWH}	Clock Minimum Pulse Width HIGH for the Core Register	0.95	ns
t _{CKMPWL}	Clock Minimum Pulse Width LOW for the Core Register	0.95	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

Table 2-148 • RAM512X18	
Commercial-Case Conditions: T	_J = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{AS}	Address Setup Time	1.53	ns
t _{AH}	Address Hold Time	0.29	ns
t _{ENS}	REN, WEN Setup Time	1.36	ns
t _{ENH}	REN, WEN Hold Time	0.15	ns
t _{DS}	Input Data (WD) Setup Time	1.33	ns
t _{DH}	Input Data (WD) Hold Time	0.66	ns
t _{CKQ1}	Clock High to New Data Valid on RD (output retained)	7.88	ns
t _{CKQ2}	Clock High to New Data Valid on RD (pipelined)	3.20	ns
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address; applicable to opening edge	0.87	ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address; applicable to opening edge	1.04	ns
t _{RSTBQ}	RESET Low to Data Out Low on RD (flow-through)	3.86	ns
	RESET Low to Data Out Low on RD (pipelined)	3.86	ns
t _{REMRSTB}	RESET Removal	1.12	ns
t _{RECRSTB}	RESET Recovery	5.93	ns
t _{MPWRSTB}	RESET Minimum Pulse Width	1.18	ns
t _{CYC}	Clock Cycle Time	10.90	ns
F _{MAX}	Maximum Frequency	92	MHz

Notes:

1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Embedded FlashROM Characteristics

Figure 2-55 • Timing Diagram

Timing Characteristics Applies to 1.5 V DC Core Voltage

Table 2-151 • Embedded FlashROM Access Time Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

Parameter	Description	Std.	Units
t _{SU}	Address Setup Time	0.58	ns
t _{HOLD}	Address Hold Time	0.00	ns
t _{CK2Q}	Clock-to-Out	34.14	ns
F _{MAX}	Maximum Clock Frequency	15	MHz

Applies to 1.2 V DC Core Voltage

Table 2-152 • Embedded FlashROM Access Time Commercial-Case Conditions: T_J = 70°C, VCC = 1.14 V

Parameter	Description	Std.	Units
t _{SU}	Address Setup Time	0.59	ns
t _{HOLD}	Address Hold Time	0.00	ns
t _{CK2Q}	Clock-to-Out	52.90	ns
F _{MAX}	Maximum Clock Frequency	10	MHz

Table 3-3 • TRST and TCK Pull-Down Recommendations

VJTAG	Tie-Off Resistance*
VJTAG at 3.3 V	200 Ω to 1 k Ω
VJTAG at 2.5 V	200 Ω to 1 k Ω
VJTAG at 1.8 V	500 Ω to 1 kΩ
VJTAG at 1.5 V	500 Ω to 1 k Ω

Note: Equivalent parallel resistance if more than one device is on the JTAG chain

TDI

Test Data Input

Serial input for JTAG boundary scan, ISP, and UJTAG usage. There is an internal weak pull-up resistor on the TDI pin.

TDO Test Data Output

Serial output for JTAG boundary scan, ISP, and UJTAG usage.

TMS Test Mode Select

The TMS pin controls the use of the IEEE 1532 boundary scan pins (TCK, TDI, TDO, TRST). There is an internal weak pull-up resistor on the TMS pin.

TRST Boundary Scan Reset Pin

The TRST pin functions as an active-low input to asynchronously initialize (or reset) the boundary scan circuitry. There is an internal weak pull-up resistor on the TRST pin. If JTAG is not used, an external pull-down resistor could be included to ensure the test access port (TAP) is held in reset mode. The resistor values must be chosen from Table 3-2 and must satisfy the parallel resistance value requirement. The values in Table 3-2 correspond to the resistor recommended when a single device is used, and the equivalent parallel resistor when multiple devices are connected via a JTAG chain.

In critical applications, an upset in the JTAG circuit could allow entrance to an undesired JTAG state. In such cases, Microsemi recommends tying off TRST to GND through a resistor placed close to the FPGA pin.

Note that to operate at all VJTAG voltages, 500 Ω to 1 k Ω will satisfy the requirements.

Special Function Pins

NC

No Connect

This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be left floating with no effect on the operation of the device.

DC

Do Not Connect

This pin should not be connected to any signals on the PCB. These pins should be left unconnected.

Packaging

Semiconductor technology is constantly shrinking in size while growing in capability and functional integration. To enable next-generation silicon technologies, semiconductor packages have also evolved to provide improved performance and flexibility.

Microsemi consistently delivers packages that provide the necessary mechanical and environmental protection to ensure consistent reliability and performance. Microsemi IC packaging technology efficiently supports high-density FPGAs with large-pin-count Ball Grid Arrays (BGAs), but is also flexible enough to accommodate stringent form factor requirements for Chip Scale Packaging (CSP). In addition, Microsemi offers a variety of packages designed to meet your most demanding application and economic requirements for today's embedded and mobile systems.

Related Documents

User's Guides

IGLOOe FPGA Fabric User's Guide http://www.microsemi.com/soc/documents/IGLOOe UG.pdf

Packaging Documents

The following documents provide packaging information and device selection for low power flash devices.

Product Catalog

http://www.microsemi.com/soc/documents/ProdCat_PIB.pdf

Lists devices currently recommended for new designs and the packages available for each member of the family. Use this document or the datasheet tables to determine the best package for your design, and which package drawing to use.

Package Mechanical Drawings

http://www.microsemi.com/soc/documents/PckgMechDrwngs.pdf

This document contains the package mechanical drawings for all packages currently or previously supplied by Microsemi. Use the bookmarks to navigate to the package mechanical drawings.

Additional packaging materials: http://www.microsemi.com/soc/products/solutions/package/docs.aspx.

Package Pin Assignments

FG256				
Pin Number AGLE600 Function				
P9	IO82PDB5V0			
P10	IO76NDB4V1			
P11	IO76PDB4V1			
P12	VMV4			
P13	TCK			
P14	VPUMP			
P15	TRST			
P16	GDA0/IO67NDB3V1			
R1	GEA1/IO102PDB6V0			
R2	GEA0/IO102NDB6V0			
R3	GNDQ			
R4	GEC2/IO99PDB5V2			
R5	IO95NPB5V1			
R6	IO91NDB5V1			
R7	IO91PDB5V1			
R8	IO83NDB5V0			
R9	IO83PDB5V0			
R10	IO77NDB4V1			
R11	IO77PDB4V1			
R12	IO69NDB4V0			
R13	GDB2/IO69PDB4V0			
R14	TDI			
R15	GNDQ			
R16	TDO			
T1	GND			
T2	IO100NDB5V2			
Т3	FF/GEB2/IO100PDB5 V2			
T4	IO99NDB5V2			
T5	IO88NDB5V0			
Т6	IO88PDB5V0			
T7	IO89NSB5V0			
Т8	IO80NSB4V1			
Т9	IO81NDB4V1			
T10	IO81PDB4V1			
T11 IO70NDB4V0				

FG256			
Pin Number	AGLE600 Function		
T12	GDC2/IO70PDB4V0		
T13	IO68NDB4V0		
T14	GDA2/IO68PDB4V0		
T15	TMS		
T16	GND		

Microsemi. IGLOOe Low Power Flash FPGAs

FG484		FG484		FG484	
Pin Number	AGLE600 Function	Pin Number	AGLE600 Function	Pin Number	AGLE600 Function
C18	GND	E9	IO10NDB0V1	F22	NC
C19	NC	E10	IO12NDB0V2	G1	IO127NDB7V1
C20	NC	E11	IO16PDB0V2	G2	IO127PDB7V1
C21	NC	E12	IO20NDB1V0	G3	NC
C22	VCCIB2	E13	IO24NDB1V0	G4	IO128PDB7V1
D1	NC	E14	IO24PDB1V0	G5	IO129PDB7V1
D2	NC	E15	GBC1/IO33PDB1V1	G6	GAC2/IO132PDB7V1
D3	NC	E16	GBB0/IO34NDB1V1	G7	VCOMPLA
D4	GND	E17	GNDQ	G8	GNDQ
D5	GAA0/IO00NDB0V0	E18	GBA2/IO36PDB2V0	G9	IO09NDB0V1
D6	GAA1/IO00PDB0V0	E19	IO42NDB2V0	G10	IO09PDB0V1
D7	GAB0/IO01NDB0V0	E20	GND	G11	IO13PDB0V2
D8	IO05PDB0V0	E21	NC	G12	IO21PDB1V0
D9	IO10PDB0V1	E22	NC	G13	IO25PDB1V0
D10	IO12PDB0V2	F1	NC	G14	IO27NDB1V0
D11	IO16NDB0V2	F2	IO131NDB7V1	G15	GNDQ
D12	IO23NDB1V0	F3	IO131PDB7V1	G16	VCOMPLB
D13	IO23PDB1V0	F4	IO133NDB7V1	G17	GBB2/IO37PDB2V0
D14	IO28NDB1V1	F5	IO134NDB7V1	G18	IO39PDB2V0
D15	IO28PDB1V1	F6	VMV7	G19	IO39NDB2V0
D16	GBB1/IO34PDB1V1	F7	VCCPLA	G20	IO43PDB2V0
D17	GBA0/IO35NDB1V1	F8	GAC0/IO02NDB0V0	G21	IO43NDB2V0
D18	GBA1/IO35PDB1V1	F9	GAC1/IO02PDB0V0	G22	NC
D19	GND	F10	IO15NDB0V2	H1	NC
D20	NC	F11	IO15PDB0V2	H2	NC
D21	NC	F12	IO20PDB1V0	H3	VCC
D22	NC	F13	IO25NDB1V0	H4	IO128NDB7V1
E1	NC	F14	IO27PDB1V0	H5	IO129NDB7V1
E2	NC	F15	GBC0/IO33NDB1V1	H6	IO132NDB7V1
E3	GND	F16	VCCPLB	H7	IO130PDB7V1
E4	GAB2/IO133PDB7V1	F17	VMV2	H8	VMV0
E5	GAA2/IO134PDB7V1	F18	IO36NDB2V0	H9	VCCIB0
E6	GNDQ	F19	IO42PDB2V0	H10	VCCIB0
E7	GAB1/IO01PDB0V0	F20	NC	H11	IO13NDB0V2
E8	IO05NDB0V0	F21	NC	H12	IO21NDB1V0

FG896		FG896		FG896		
Pin Number	AGLE3000 Function	Pin Number	AGLE3000 Function	Pin Number	AGLE3000 Function	
AF29	GNDQ	AH4	FF/GEB2/IO232PPB5	AJ8	IO213NDB5V2	
AF30	GND		V4	AJ9	IO213PDB5V2	
AG1	IO238NPB6V0	AH5	VCCIB5	AJ10	IO209NDB5V1	
AG2	VCC	AH6	IO219NDB5V3	AJ11	IO209PDB5V1	
AG3	IO232NPB5V4	AH7	IO219PDB5V3	AJ12	IO203NDB5V1	
AG4	GND	AH8	IO227NDB5V4	AJ13	IO203PDB5V1	
AG5	IO220PPB5V3	AH9	IO227PDB5V4	AJ14	IO197NDB5V0	
AG6	IO228PDB5V4	AH10	IO225PPB5V3	AJ15	IO195PDB5V0	
AG7	IO231NDB5V4	AH11	IO223PPB5V3	AJ16	IO183NDB4V3	
AG8	GEC2/IO231PDB5V4	AH12	IO211NDB5V2	AJ17	IO183PDB4V3	
AG9	IO225NPB5V3	AH13	IO211PDB5V2	AJ18	IO179NPB4V3	
AG10	IO223NPB5V3	AH14	IO205PPB5V1	AJ19	IO177PDB4V2	
AG11	IO221PDB5V3	AH15	IO195NDB5V0	AJ20	IO173NDB4V2	
AG12	IO221NDB5V3	AH16	IO185NDB4V3	AJ21	IO173PDB4V2	
AG13	IO205NPB5V1	AH17	IO185PDB4V3	AJ22	IO163NDB4V1	
AG14	IO199NDB5V0	AH18	IO181PDB4V3	AJ23	IO163PDB4V1	
AG15	IO199PDB5V0	AH19	IO177NDB4V2	AJ24	IO167NPB4V1	
AG16	IO187NDB4V4	AH20	IO171NPB4V2	AJ25	VCC	
AG17	IO187PDB4V4	AH21	IO165PPB4V1	AJ26	IO156NPB4V0	
AG18	IO181NDB4V3	AH22	IO161PPB4V0	AJ27	VCC	
AG19	IO171PPB4V2	AH23	IO157NDB4V0	A.128	TMS	
AG20	IO165NPB4V1	AH24	IO157PDB4V0	A.129	GND	
AG21	IO161NPB4V0	AH25	IO155NDB4V0	A.130	GND	
AG22		AH26	VCCIB4	AK2	GND	
AG23		AH27	TDI		GND	
AG24		AH28	VCC	ΔΚ4	IO217PPB5\/2	
AG25		AH29	VPUMP		GND	
AG25		AH30	GND			
AG20	GDA2/IO 134F F B4 VU	AJ1	GND		GND	
AG27		AJ2	GND			
AG20	VJIAO	AJ3	GEA2/IO233PPB5V4			
AG29		AJ4	VCC			
AGSU		AJ5	IO217NPB5V2			
		AJ6	VCC	AK11 AK10		
AH2	10233NPB5V4	AJ7	IO215NPB5V2	AK12		
AH3	VCC			AK13	10193PDB4V4	