

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	75264
Total RAM Bits	516096
Number of I/O	341
Number of Gates	300000
Voltage - Supply	1.14V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	484-BGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m1agle3000v2-fg484i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pro I/Os with Advanced I/O Standards

The IGLOOe family of FPGAs features a flexible I/O structure, supporting a range of voltages (1.2 V, 1.5 V, 1.8 V, 2.5 V, 3.0 V wide range, and 3.3 V). IGLOOe FPGAs support 19 different I/O standards, including single-ended, differential, and voltage-referenced. The I/Os are organized into banks, with eight banks per device (two per side). The configuration of these banks determines the I/O standards supported. Each I/O bank is subdivided into VREF minibanks, which are used by voltage-referenced I/Os. VREF minibanks contain 8 to 18 I/Os. All the I/Os in a given minibank share a common VREF line. Therefore, if any I/O in a given VREF minibank is configured as a VREF pin, the remaining I/Os in that minibank will be able to use that reference voltage.

Each I/O module contains several input, output, and enable registers. These registers allow the implementation of the following:

- Single-Data-Rate applications (e.g., PCI 66 MHz, bidirectional SSTL 2 and 3, Class I and II)
- Double-Data-Rate applications (e.g., DDR LVDS, B-LVDS, and M-LVDS I/Os for point-to-point communications, and DDR 200 MHz SRAM using bidirectional HSTL Class II).

IGLOOe banks support M-LVDS with 20 multi-drop points.

Hot-swap (also called hot-plug, or hot-insertion) is the operation of hot-insertion or hot-removal of a card in a powered-up system.

Cold-sparing (also called cold-swap) refers to the ability of a device to leave system data undisturbed when the system is powered up, while the component itself is powered down, or when power supplies are floating.

Wide Range I/O Support

IGLOOe devices support JEDEC-defined wide range I/O operation. IGLOOe devices support both the JESD8-B specification, covering 3.0 V and 3.3 V supplies, for an effective operating range of 2.7 V to 3.6 V, and JESD8-12 with its 1.2 V nominal, supporting an effective operating range of 1.14 V to 1.575 V.

Wider I/O range means designers can eliminate power supplies or power conditioning components from the board or move to less costly components with greater tolerances. Wide range eases I/O bank management and provides enhanced protection from system voltage spikes, while providing the flexibility to easily run custom voltage applications.

Specifying I/O States During Programming

You can modify the I/O states during programming in FlashPro. In FlashPro, this feature is supported for PDB files generated from Designer v8.5 or greater. See the *FlashPro User's Guide* for more information.

- Note: PDB files generated from Designer v8.1 to Designer v8.4 (including all service packs) have limited display of Pin Numbers only.
 - 1. Load a PDB from the FlashPro GUI. You must have a PDB loaded to modify the I/O states during programming.
 - From the FlashPro GUI, click PDB Configuration. A FlashPoint Programming File Generator window appears.
 - 3. Click the **Specify I/O States During Programming** button to display the Specify I/O States During Programming dialog box.
 - 4. Sort the pins as desired by clicking any of the column headers to sort the entries by that header. Select the I/Os you wish to modify (Figure 1-4 on page 1-8).
 - Set the I/O Output State. You can set Basic I/O settings if you want to use the default I/O settings for your pins, or use Custom I/O settings to customize the settings for each pin. Basic I/O state settings:
 - 1 I/O is set to drive out logic High
 - 0 I/O is set to drive out logic Low

Last Known State – I/O is set to the last value that was driven out prior to entering the programming mode, and then held at that value during programming

Z -Tri-State: I/O is tristated

IGLOOe Device Family Overview

m file Save to file	<u></u>		Show BSR [
Port Name	Macro Cell	Pin Number	1/O State (Output Only)
BIST	ADLIB:INBUF	T2	1
SYPASS_IO	ADLIB:INBUF	K1	1
CLK	ADLIB:INBUF	B1	1
ENOUT	ADLIB:INBUF	J16	1
_ED	ADLIB:OUTBUF	M3	0
MONITOR[0]	ADLIB:OUTBUF	B5	0
MONITOR[1]	ADLIB:OUTBUF	C7	Z
MONITOR[2]	ADLIB:OUTBUF	D9	Z
MONITOR[3]	ADLIB:OUTBUF	D7	Z
MONITOR[4]	ADLIB:OUTBUF	A11	Z
DEa	ADLIB:INBUF	E4	Z
ЭЕЬ	ADLIB:INBUF	F1	Z
DSC_EN	ADLIB:INBUF	К3	Z
PAD[10]	ADLIB:BIBUF_LVCMOS33U	M8	Z
PAD[11]	ADLIB:BIBUF_LVCMOS33D	R7	Z
PAD[12]	ADLIB:BIBUF_LVCMOS33U	D11	Z
PAD[13]	ADLIB:BIBUF_LVCMOS33D	C12	Z
PAD[14]	ADLIB:BIBUF_LVCMOS33U	R6	Z

Figure 1-4 • I/O States During Programming Window

- 6. Click OK to return to the FlashPoint Programming File Generator window.
- Note: I/O States During programming are saved to the ADB and resulting programming files after completing programming file generation.

Kana Microsemi

IGLOOe DC and Switching Characteristics

Table 2-12 • Quiescent Supply Current (IDD) Characteristics, No Flash*Freeze Mode¹

	Core Voltage	AGLE600	AGLE3000	Units
ICCA Current ²			I I	
Typical (25°C)	1.2 V	28	89	μA
	1.5 V	82	320	μA
ICCI or IJTAG Current ³				
VCCI/VJTAG = 1.2 V (per bank) Typical (25°C)	1.2 V	1.7	1.7	μΑ
VCCI/VJTAG = 1.5 V (per bank) Typical (25°C)	1.2 V / 1.5 V	1.8	1.8	μΑ
VCCI/VJTAG = 1.8 V (per bank) Typical (25°C)	1.2 V / 1.5 V	1.9	1.9	μΑ
VCCI/VJTAG = 2.5 V (per bank) Typical (25°C)	1.2 V / 1.5 V	2.2	2.2	μΑ
VCCI/VJTAG= 3.3 V (per bank) Typical (25°C)	1.2 V / 1.5 V	2.5	2.5	μΑ

Notes:

IDD = N_{BANKS} × ICCI + ICCA. JTAG counts as one bank when powered.
 Includes VCC and VPUMP and VCCPLL currents.

3. Values do not include I/O static contribution (PDC6 and PDC7).

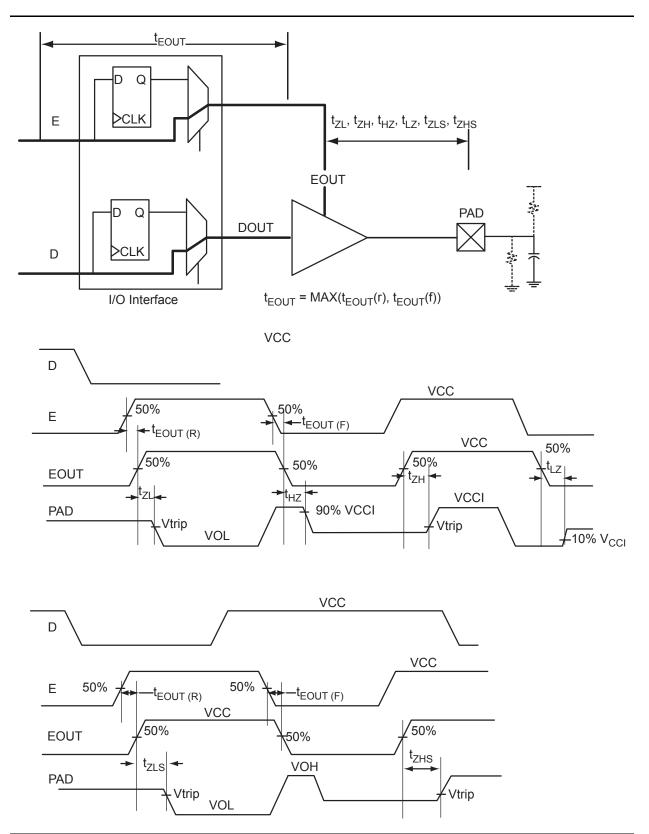


Figure 2-6 • Tristate Output Buffer Timing Model and Delays (example)

🌜 Microsemi.

IGLOOe DC and Switching Characteristics

1.2 V DC Core Voltage

Table 2-50 • 2.5 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V

	Speed													
Drive Strength	Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
4 mA	Std.	1.55	6.25	0.26	1.55	1.77	1.10	6.36	5.34	2.81	2.63	12.14	11.13	ns
8 mA	Std.	1.55	5.18	0.26	1.55	1.77	1.10	5.26	4.61	3.13	3.32	11.05	10.39	ns
12 mA	Std.	1.55	4.42	0.26	1.55	1.77	1.10	4.49	4.08	3.36	3.76	10.28	9.86	ns
16 mA	Std.	1.55	4.19	0.26	1.55	1.77	1.10	4.25	3.96	3.40	3.89	10.04	9.75	ns
24 mA	Std.	1.55	4.09	0.26	1.55	1.76	1.10	4.15	3.97	3.47	4.32	9.94	9.76	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

Table 2-51 • 2.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
4 mA	Std.	1.55	3.38	0.26	1.55	1.77	1.10	3.42	3.11	2.81	2.72	9.21	8.89	ns
8 mA	Std.	1.55	2.83	0.26	1.55	1.77	1.10	2.87	2.51	3.13	3.42	8.66	8.30	ns
12 mA	Std.	1.55	2.51	0.26	1.55	1.77	1.10	2.54	2.22	3.36	3.85	8.33	8.00	ns
16 mA	Std.	1.55	2.45	0.26	1.55	1.77	1.10	2.48	2.16	3.40	3.97	8.27	7.95	ns
24 mA	Std.	1.55	2.46	0.26	1.55	1.77	1.10	2.49	2.09	3.47	4.44	8.28	7.88	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

1.2 V LVCMOS (JESD8-12A)

Low-Voltage CMOS for 1.2 V complies with the LVCMOS standard JESD8-12A for general purpose 1.2 V applications. It uses a 1.2 V input buffer and a push-pull output buffer.

Table 2-64 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks

1.2 V LVCMOS ¹		VIL	VIH	VIH		VOH	IOL	ЮН	IOSH	IOSL	IIL ²	IIH ³
Drive Strength	Min. V	Max. V	Min. Max. V V		Max. V	Min. V	mA	mA	Max. mA ⁴	Max. mA ⁴	µA⁵	μA ⁵
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	2	2	20	26	10	10

Notes:

- 1. Applicable to V2 devices ONLY.
- 2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
- 3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.
- 4. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
- 5. Currents are measured at 85°C junction temperature.
- 6. Software default selection highlighted in gray.

Test Point
Datapath
$$\downarrow$$
 5 pF $R = 1 k$
Enable Path \downarrow $R = 1 k$
 $Test Point$
Enable Path \downarrow $Test Point$
 $F = 1 k$
 $R to VCCI for tLZ / tZL / tZLS $R to GND for tHZ / tZH / tZHS / tZL / tZLS$
 $5 pF for tZH / tZHS / tZL / tZLS$$

Figure 2-11 • AC Loading

Table 2-65 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	C _{LOAD} (pF)
0	1.2	0.6	-	5

Note: **Measuring point = Vtrip* See Table 2-23 on page 2-23 for a complete table of trip points.

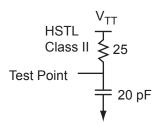
HSTL Class II

High-Speed Transceiver Logic is a general-purpose high-speed 1.5 V bus standard (EIA/JESD8-6). IGLOOe devices support Class II. This provides a differential amplifier input buffer and a push-pull output buffer.

HSTL Class II		VIL	VIH	VIH				юн	IOSH	IOSL	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
15 mA ⁵	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.4	VCCI – 0.4	15	15	66	55	10	10

Table 2-93 • Minimum and Maximum DC Input and Output Levels

Notes:


1. IIL is the input leakage current per I/O pin over recommended operating conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Output drive strength is below JEDEC specification.

Figure 2-18 • AC Loading

Table 2-94 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.1	VREF + 0.1	0.75	0.75	0.75	20

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-23 for a complete table of trip points.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-95 •HSTL Class II – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 1.4 V VREF = 0.75 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
Std.	0.98	2.62	0.19	1.77	0.67	2.66	2.40			6.29	6.03	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-96 • HSTL Class II – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V,
Worst-Case VCCI = 1.4 V VREF = 0.75 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	1.55	2.93	0.26	1.94	1.10	2.98	2.75			8.79	8.55	ns

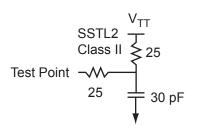
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

SSTL2 Class II

Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). IGLOOe devices support Class II. This provides a differential amplifier input buffer and a push-pull output buffer.

SSTL2 Class II		VIL	VIH	VIH		VOH	IOL	юн	IOSH	IOSL	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA⁴
18 mA	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.35	VCCI - 0.43	18	18	169	124	10	10

Table 2-101 • Minimum and Maximum DC Input and Output Levels


Notes:

1. IIL is the input leakage current per I/O pin over recommended operating conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

Figure 2-20 • AC Loading

Table 2-102 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input HIGH (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.2	VREF + 0.2	1.25	1.25	1.25	30

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-23 for a complete table of trip points.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-103 • SSTL 2 Class II – Applies to 1.5 V DC Core Voltage

```
Commercial-Case Conditions: T_J = 70^{\circ}C, Worst-Case VCC = 1.425 V,
```

Worst-Case VCCI = 2.3 V VREF = 1.25 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
Std.	0.98	1.94	0.19	1.15	0.67	1.97	1.66			5.60	5.29	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-104 • SSTL 2 Class II – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V VREF = 1.25 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	1.55	2.20	0.26	1.39	1.10	2.24	1.97			8.05	7.78	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

Differential I/O Characteristics

Physical Implementation

Configuration of the I/O modules as a differential pair is handled by the Microsemi Designer software when the user instantiates a differential I/O macro in the design.

Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output Register (OutReg), Enable Register (EnReg), and DDR. However, there is no support for bidirectional I/Os or tristates with the LVPECL standards.

LVDS

Low-Voltage Differential Signaling (ANSI/TIA/EIA-644) is a high-speed, differential I/O standard. It requires that one data bit be carried through two signal lines, so two pins are needed. It also requires external resistor termination.

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-23. The building blocks of the LVDS transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVPECL implementation because the output standard specifications are different.

Along with LVDS I/O, IGLOOe also supports Bus LVDS structure and Multipoint LVDS (M-LVDS) configuration (up to 40 nodes).

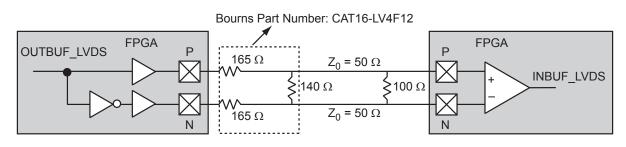


Figure 2-23 • LVDS Circuit Diagram and Board-Level Implementation

DC Parameter	Description	Min.	Тур.	Max.	Units
VCCI	Supply Voltage	2.375	2.5	2.625	V
VOL	Output Low Voltage	0.9	1.075	1.25	V
VOH	Output High Voltage	1.25	1.425	1.6	V
IOL ¹	Output Lower Current	0.65	0.91	1.16	mA
IOH ¹	Output High Current	0.65	0.91	1.16	mA
VI	Input Voltage	0		2.925	V
IIH ^{2,3}	Input High Leakage Current			10	μA
$IIL^{2,4}$	Input Low Leakage Current			10	μA
VODIFF	Differential Output Voltage	250	350	450	mV
VOCM	Output Common Mode Voltage	1.125	1.25	1.375	V
VICM	Input Common Mode Voltage	0.05	1.25	2.35	V
VIDIFF	Input Differential Voltage	100	350		mV

Table 2-113 • Minimum and Maximum DC Input and Output Levels

Notes:

1. IOL/IOH is defined by VODIFF/(resistor network).

2. Currents are measured at 85°C junction temperature.

3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

4. IIL is the input leakage current per I/O pin over recommended operating conditions where -0.3 V < VIN < VIL.

Table 2-114 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)
1.075	1.325	Cross point	_

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-23 for a complete table of trip points.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-115 • LVDS – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	Units
Std.	0.98	1.77	0.19	1.62	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-116 • LVDS – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: T₁ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	Units
Std.	1.55	2.19	0.26	1.88	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

VersaTile Specifications as a Sequential Module

The IGLOOe library offers a wide variety of sequential cells, including flip-flops and latches. Each has a data input and optional enable, clear, or preset. In this section, timing characteristics are presented for a representative sample from the library. For more details, refer to the *IGLOO*, *Fusion*, *and ProASIC3 Macro Library Guide*.

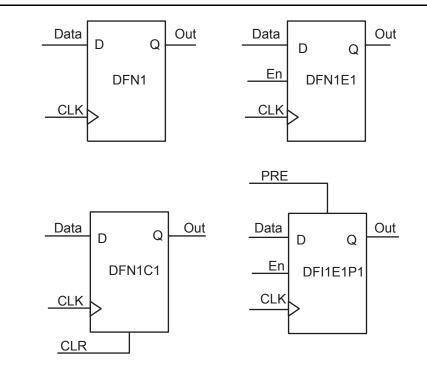


Figure 2-37 • Sample of Sequential Cells

static Microsemi.

IGLOOe DC and Switching Characteristics

Timing Characteristics

Applies to 1.5 V DC Core Voltage

Table 2-145 • RAM4K9

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{AS}	Address Setup Time	0.83	ns
t _{AH}	Address Hold Time	0.16	ns
t _{ENS}	REN, WEN Setup Time	0.81	ns
t _{ENH}	REN, WEN Hold Time	0.16	ns
t _{BKS}	BLK Setup Time	1.65	ns
t _{вкн}	BLK Hold Time	0.16	ns
t _{DS}	Input Data (DIN) Setup Time	0.71	ns
t _{DH}	Input Data (DIN) Hold Time	0.36	ns
t _{CKQ1}	Clock HIGH to New Data Valid on DOUT (output retained, WMODE = 0)	3.53	ns
	Clock HIGH to New Data Valid on DOUT (flow-through, WMODE = 1)	3.06	ns
t _{CKQ2}	Clock HIGH to New Data Valid on DOUT (pipelined)	1.81	ns
t _{C2CWWL} 1	Address collision clk-to-clk delay for reliable write after write on same address; applicable to closing edge	0.23	ns
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address; applicable to opening edge	0.35	ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address; applicable to opening edge	0.41	ns
t _{RSTBQ}	RESET Low to Data Out Low on DOUT (flow-through)	2.06	ns
	RESET Low to Data Out Low on DOUT (pipelined)	2.06	ns
t _{REMRSTB}	RESET Removal	0.61	ns
t _{RECRSTB}	RESET Recovery	3.21	ns
t _{MPWRSTB}	RESET Minimum Pulse Width	0.68	ns
t _{CYC}	Clock Cycle Time	6.24	ns
F _{MAX}	Maximum Frequency	160	MHz

Notes:

1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Timing Waveforms

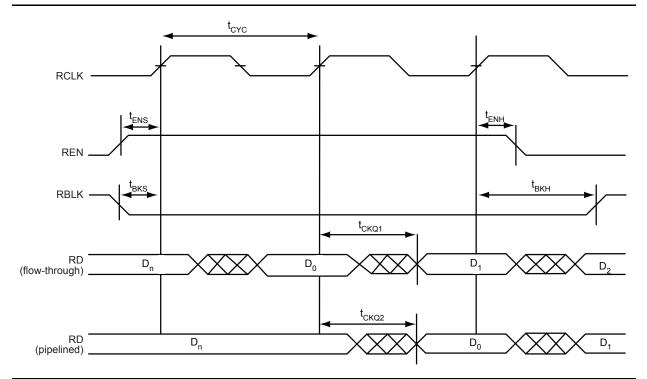


Figure 2-48 • FIFO Read

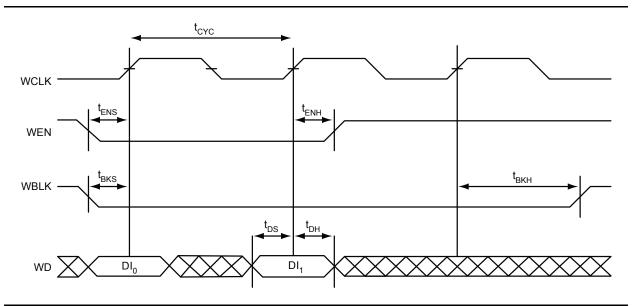


Figure 2-49 • FIFO Write

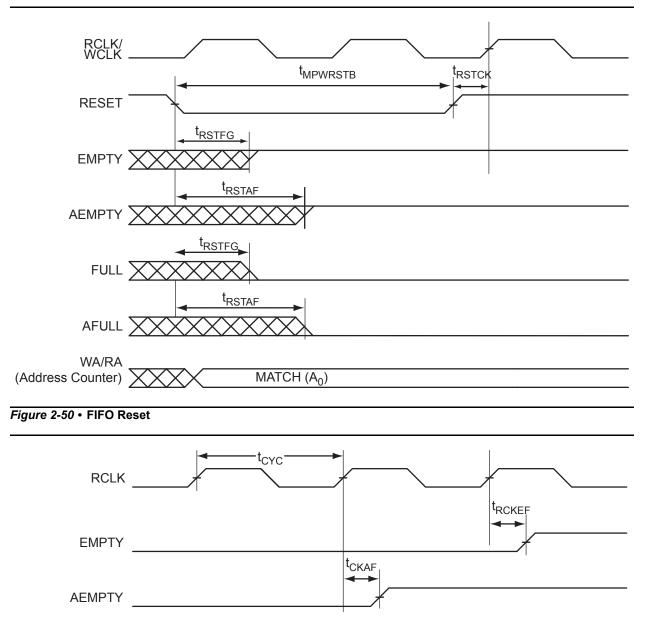


Figure 2-51 • FIFO EMPTY Flag and AEMPTY Flag Assertion

🌜 Microsemi.

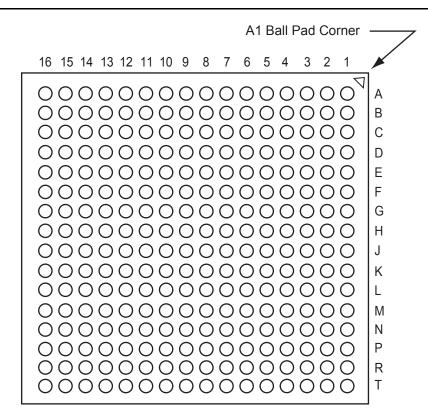
IGLOOe DC and Switching Characteristics

Timing Characteristics

Applies to 1.5 V DC Core Voltage

Table 2-149 • FIFO

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V


Parameter	Description	Std.	Units
t _{ENS}	REN, WEN Setup Time	1.99	ns
t _{ENH}	REN, WEN Hold Time	0.16	ns
t _{BKS}	BLK Setup Time	0.30	ns
t _{BKH}	BLK Hold Time	0.00	ns
t _{DS}	Input Data (WD) Setup Time	0.76	ns
t _{DH}	Input Data (WD) Hold Time	0.25	ns
t _{CKQ1}	Clock HIGH to New Data Valid on RD (pass-through)	3.33	ns
t _{CKQ2}	Clock HIGH to New Data Valid on RD (pipelined)	1.80	ns
t _{RCKEF}	RCLK HIGH to Empty Flag Valid	3.53	ns
t _{WCKFF}	WCLK HIGH to Full Flag Valid	3.35	ns
t _{CKAF}	Clock HIGH to Almost Empty/Full Flag Valid	12.85	ns
t _{RSTFG}	RESET LOW to Empty/Full Flag Valid	3.48	ns
t _{RSTAF}	RESET LOW to Almost Empty/Full Flag Valid	12.72	ns
t _{RSTBQ}	RESET LOW to Data Out LOW on RD (pass-through)	2.02	ns
	RESET LOW to Data Out LOW on RD (pipelined)	2.02	ns
t _{REMRSTB}	RESET Removal	0.61	ns
t _{RECRSTB}	RESET Recovery	3.21	ns
t _{MPWRSTB}	RESET Minimum Pulse Width	0.68	ns
t _{CYC}	Clock Cycle Time	6.24	ns
F _{MAX}	Maximum Frequency	160	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

4 – Package Pin Assignments

FG256

Note: This is the bottom view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx.

Package Pin Assignments

	FG256						
Pin Number	AGLE600 Function						
P9	IO82PDB5V0						
P10	IO76NDB4V1						
P11	IO76PDB4V1						
P12	VMV4						
P13	ТСК						
P14	VPUMP						
P15	TRST						
P16	GDA0/IO67NDB3V1						
R1	GEA1/IO102PDB6V0						
R2	GEA0/IO102NDB6V0						
R3	GNDQ						
R4	GEC2/IO99PDB5V2						
R5	IO95NPB5V1						
R6	IO91NDB5V1						
R7	IO91PDB5V1						
R8	IO83NDB5V0						
R9	IO83PDB5V0						
R10	IO77NDB4V1						
R11	IO77PDB4V1						
R12	IO69NDB4V0						
R13	GDB2/IO69PDB4V0						
R14	TDI						
R15	GNDQ						
R16	TDO						
T1	GND						
T2	IO100NDB5V2						
Т3	FF/GEB2/IO100PDB5 V2						
T4	IO99NDB5V2						
Τ5	IO88NDB5V0						
Т6	IO88PDB5V0						
T7	IO89NSB5V0						
Т8	IO80NSB4V1						
Т9	IO81NDB4V1						
T10	IO81PDB4V1						
T11	IO70NDB4V0						

FG256							
Pin Number	AGLE600 Function						
T12	GDC2/IO70PDB4V0						
T13	IO68NDB4V0						
T14	GDA2/IO68PDB4V0						
T15	TMS						
T16	GND						

Microsemi. IGLOOe Low Power Flash FPGAs

	FG484		FG484		FG484
Pin Number	AGLE600 Function	Pin Number	AGLE600 Function	Pin Number	AGLE600 Function
C18	GND	E9	IO10NDB0V1	F22	NC
C19	NC	E10	IO12NDB0V2	G1	IO127NDB7V1
C20	NC	E11	IO16PDB0V2	G2	IO127PDB7V1
C21	NC	E12	IO20NDB1V0	G3	NC
C22	VCCIB2	E13	IO24NDB1V0	G4	IO128PDB7V1
D1	NC	E14	IO24PDB1V0	G5	IO129PDB7V1
D2	NC	E15	GBC1/IO33PDB1V1	G6	GAC2/IO132PDB7V1
D3	NC	E16	GBB0/IO34NDB1V1	G7	VCOMPLA
D4	GND	E17	GNDQ	G8	GNDQ
D5	GAA0/IO00NDB0V0	E18	GBA2/IO36PDB2V0	G9	IO09NDB0V1
D6	GAA1/IO00PDB0V0	E19	IO42NDB2V0	G10	IO09PDB0V1
D7	GAB0/IO01NDB0V0	E20	GND	G11	IO13PDB0V2
D8	IO05PDB0V0	E21	NC	G12	IO21PDB1V0
D9	IO10PDB0V1	E22	NC	G13	IO25PDB1V0
D10	IO12PDB0V2	F1	NC	G14	IO27NDB1V0
D11	IO16NDB0V2	F2	IO131NDB7V1	G15	GNDQ
D12	IO23NDB1V0	F3	IO131PDB7V1	G16	VCOMPLB
D13	IO23PDB1V0	F4	IO133NDB7V1	G17	GBB2/IO37PDB2V0
D14	IO28NDB1V1	F5	IO134NDB7V1	G18	IO39PDB2V0
D15	IO28PDB1V1	F6	VMV7	G19	IO39NDB2V0
D16	GBB1/IO34PDB1V1	F7	VCCPLA	G20	IO43PDB2V0
D17	GBA0/IO35NDB1V1	F8	GAC0/IO02NDB0V0	G21	IO43NDB2V0
D18	GBA1/IO35PDB1V1	F9	GAC1/IO02PDB0V0	G22	NC
D19	GND	F10	IO15NDB0V2	H1	NC
D20	NC	F11	IO15PDB0V2	H2	NC
D21	NC	F12	IO20PDB1V0	H3	VCC
D22	NC	F13	IO25NDB1V0	H4	IO128NDB7V1
E1	NC	F14	IO27PDB1V0	H5	IO129NDB7V1
E2	NC	F15	GBC0/IO33NDB1V1	H6	IO132NDB7V1
E3	GND	F16	VCCPLB	H7	IO130PDB7V1
E4	GAB2/IO133PDB7V1	F17	VMV2	H8	VMV0
E5	GAA2/IO134PDB7V1	F18	IO36NDB2V0	H9	VCCIB0
E6	GNDQ	F19	IO42PDB2V0	H10	VCCIB0
E7	GAB1/IO01PDB0V0	F20	NC	H11	IO13NDB0V2
E8	IO05NDB0V0	F21	NC	H12	IO21NDB1V0

Package Pin Assignments

FG484		FG484	
Pin Number	AGLE600 Function	Pin Number	AGLE600 Function
V3	GND	W16	IO68NDB4V0
V4	GEA1/IO102PDB6V0	W17	GDA2/IO68PDB4V0
V5	GEA0/IO102NDB6V0	W18	TMS
V6	GNDQ	W19	GND
V7	GEC2/IO99PDB5V2	W20	NC
V8	IO95NPB5V1	W21	NC
V9	IO91NDB5V1	W22	NC
V10	IO91PDB5V1	Y1	VCCIB6
V11	IO83NDB5V0	Y2	NC
V12	IO83PDB5V0	Y3	NC
V13	IO77NDB4V1	Y4	IO98NDB5V2
V14	IO77PDB4V1	Y5	GND
V15	IO69NDB4V0	Y6	IO94NDB5V1
V16	GDB2/IO69PDB4V0	¥7	IO94PDB5V1
V17	TDI	Y8	VCC
V18	GNDQ	Y9	VCC
V19	TDO	Y10	IO89PDB5V0
V20	GND	Y11	IO80PDB4V1
V21	NC	Y12	IO78NPB4V1
V22	IO63NDB3V1	Y13	NC
W1	NC	Y14	VCC
W2	NC	Y15	VCC
W3	NC	Y16	NC
W4	GND	Y17	NC
W5	IO100NDB5V2	Y18	GND
W6	FF/GEB2/IO100PDB5V2	Y19	NC
W7	IO99NDB5V2	Y20	NC
W8	IO88NDB5V0	Y21	NC
W9	IO88PDB5V0	Y22	VCCIB3
W10	IO89NDB5V0	L	
W11	IO80NDB4V1		
W12	IO81NDB4V1		
W13	IO81PDB4V1		
W14	IO70NDB4V0		

W15

GDC2/IO70PDB4V0

5 – Datasheet Information

List of Changes

The following table lists critical changes that were made in each revision of the IGLOOe datasheet.

Revision	Changes	Page
Revision 13 (December 2012)	The "IGLOOe Ordering Information" section has been updated to mention "Y" as "Blank" mentioning "Device Does Not Include License to Implement IP Based on the Cryptography Research, Inc. (CRI) Patent Portfolio" (SAR 43176).	
	Also added the missing heading 'Supply Voltage' under V2.	
	The note in Table 2-143 • IGLOOe CCC/PLL Specification and Table 2-144 • IGLOOe CCC/PLL Specification referring the reader to SmartGen was revised to refer instead to the online help associated with the core (SAR 42568).	
	Live at Power-Up (LAPU) has been replaced with 'Instant On'.	NA
Revision 12 (September 2012)	The "Security" section was modified to clarify that Microsemi does not support read-back of programmed data.	1-2
	Libero Integrated Design Environment (IDE) was changed to Libero System-on-Chip (SoC) throughout the document (SAR 40272).	N/A
Revision 11 (August 2012)	The drive strength, IOL, and IOH value for 3.3 V GTL and 2.5 V GTL was changed from 25 mA to 20 mA in the following tables (SAR 37180):	
	Table 2-21 • Summary of Maximum and Minimum DC Input and Output Levels,	2-20
	Table 2-25 • Summary of I/O Timing Characteristics—Software Default Settings	2-25
	Table 2-26 • Summary of I/O Timing Characteristics—Software Default Settings	2-26
	Table 2-28 • I/O Output Buffer Maximum Resistances1	2-28
	Table 2-73 • Minimum and Maximum DC Input and Output Levels	2-51
	Table 2-77 • Minimum and Maximum DC Input and Output Levels	2-53
	Also added note stating " <i>Output drive strength is below JEDEC specification</i> ." for Tables 2-25, 2-26, and 2-28.	
	Additionally, the IOL and IOH values for 3.3 V GTL+ and 2.5 V GTL+ were corrected from 51 to 35 (for 3.3 V GTL+) and from 40 to 33 (for 2.5 V GTL+) in table Table 2-21 (SAR 39713).	
	In Table 2-117 • Minimum and Maximum DC Input and Output Levels, VIL and VIH were revised so that the maximum is 3.6 V for all listed values of VCCI (SAR 37183).	
	The following sentence was removed from the "VMVx I/O Supply Voltage (quiet)" section in the "Pin Descriptions and Packaging" section: "Within the package, the VMV plane is decoupled from the simultaneous switching noise originating from the output buffer VCCI domain" and replaced with "Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks" (SAR 38318). The datasheet mentions that "VMV pins must be connected to the corresponding VCCI pins" for an ESD enhancement.	