

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	75264
Total RAM Bits	516096
Number of I/O	341
Number of Gates	300000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	484-BGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m1agle3000v5-fgg484

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

IGLOOe Low Power Flash FPGAs

I/Os Per Package¹

IGLOOe Devices	AGLE600		AGLE3000	
ARM-Enabled IGLOOe Devices			M1AGI	LE3000
	I/O Types			
Package	Single-Ended I/O ¹	Differential I/O Pairs	Single-Ended I/O ¹	Differential I/O Pairs
FG256	165	79	-	-
FG484	270	135	341	168
FG896	-	_	620	310

Notes:

1. When considering migrating your design to a lower- or higher-density device, refer to the IGLOOe FPGA Fabric User's Guide to ensure compliance with design and board migration requirements.

- 2. Each used differential I/O pair reduces the number of single-ended I/Os available by two.
- 3. For AGLE3000 devices, the usage of certain I/O standards is limited as follows:
 - SSTL3(I) and (II): up to 40 I/Os per north or south bank
 - LVPECL / GTL + 3.3 V / GTL 3.3 V: up to 48 I/Os per north or south bank
 - SSTL2(I) and (II) / GTL+ 2.5 V/ GTL 2.5 V: up to 72 I/Os per north or south bank
- 4. FG256 and FG484 are footprint-compatible packages.
- 5. When using voltage-referenced I/O standards, one I/O pin should be assigned as a voltage-referenced pin (VREF) per minibank (group of I/Os).
- 6. When the Flash*Freeze pin is used to directly enable Flash*Freeze mode and not as a regular I/O, the number of single-ended user I/Os available is reduced by one.
- 7. "G" indicates RoHS-compliant packages. Refer to "IGLOOe Ordering Information" on page III for the location of the "G" in the part number.

IGLOOe FPGAs Package Sizes Dimensions

Package	FG256	FG484	FG896
Length × Width (mm × mm)	17 × 17	23 × 23	31 × 31
Nominal Area (mm2)	289	529	961
Pitch (mm)	1	1	1
Height (mm)	1.6	2.23	2.23

IGLOOe Device Status

IGLOOe Devices	Status	M1 IGLOOe Devices	Status
AGLE600	Production		
AGLE3000	Production	M1AGLE3000	Production

VersaTiles

The IGLOOe core consists of VersaTiles, which have been enhanced beyond the $ProASIC^{\underline{PLUS}}$ core tiles. The IGLOOe VersaTile supports the following:

- All 3-input logic functions—LUT-3 equivalent
- Latch with clear or set
- D-flip-flop with clear or set
- Enable D-flip-flop with clear or set

Refer to Figure 1-3 for VersaTile configurations.

Figure 1-3 • VersaTile Configurations

User Nonvolatile FlashROM

IGLOOe devices have 1 kbit of on-chip, user-accessible, nonvolatile FlashROM. The FlashROM can be used in diverse system applications:

- Internet protocol addressing (wireless or fixed)
- System calibration settings
- Device serialization and/or inventory control
- Subscription-based business models (for example, set-top boxes)
- · Secure key storage for secure communications algorithms
- Asset management/tracking
- Date stamping
- · Version management

The FlashROM is written using the standard IGLOOe IEEE 1532 JTAG programming interface. The core can be individually programmed (erased and written), and on-chip AES decryption can be used selectively to securely load data over public networks, as in security keys stored in the FlashROM for a user design.

The FlashROM can be programmed via the JTAG programming interface, and its contents can be read back either through the JTAG programming interface or via direct FPGA core addressing. Note that the FlashROM can only be programmed from the JTAG interface and cannot be programmed from the internal logic array.

The FlashROM is programmed as 8 banks of 128 bits; however, reading is performed on a byte-by-byte basis using a synchronous interface. A 7-bit address from the FPGA core defines which of the 8 banks and which of the 16 bytes within that bank are being read. The three most significant bits (MSBs) of the FlashROM address determine the bank, and the four least significant bits (LSBs) of the FlashROM address define the byte.

The IGLOOe development software solutions, Libero[®] System-on-Chip (SoC) and Designer, have extensive support for the FlashROM. One such feature is auto-generation of sequential programming files for applications requiring a unique serial number in each part. Another feature allows the inclusion of static data for system version control. Data for the FlashROM can be generated quickly and easily using Libero SoC and Designer software tools. Comprehensive programming file support is also included to allow for easy programming of large numbers of parts with differing FlashROM contents.

2 – IGLOOe DC and Switching Characteristics

General Specifications

Operating Conditions

Stresses beyond those listed in Table 2-1 may cause permanent damage to the device.

Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Absolute Maximum Ratings are stress ratings only; functional operation of the device at these or any other conditions beyond those listed under the Recommended Operating Conditions specified in Table 2-2 on page 2-2 is not implied.

Table 2-1 •	Absolute Maximum Ratings
-------------	--------------------------

Symbol	Parameter	Limits	Units
VCC	DC core supply voltage	–0.3 to 1.65	V
VJTAG	JTAG DC voltage	–0.3 to 3.75	V
VPUMP	Programming voltage	–0.3 to 3.75	V
VCCPLL	Analog power supply (PLL)	–0.3 to 1.65	V
VCCI and VMV ³	DC I/O buffer supply voltage	-0.3 to 3.75	V
VI	I/O input voltage	-0.3 V to 3.6 V (when I/O hot insertion mode is enabled) -0.3 V to (VCCI + 1 V) or 3.6 V, whichever voltage is lower (when I/O hot-insertion mode is disabled)	V
T _{STG} ²	Storage temperature	–65 to +150	°C
T _J ²	Junction temperature	+125	°C

Notes:

1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may undershoot or overshoot according to the limits shown in Table 2-4 on page 2-3.

2. For flash programming and retention maximum limits, refer to Table 2-3 on page 2-3, and for recommended operating limits, refer to Table 2-2 on page 2-2.

3. VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" section on page 3-1 for further information.

Product Grade	Programming Cycles	Program Retention (biased/unbiased)	Maximum Storage Temperature T _{STG} (°C) ²	Maximum Operating Junction Temperature T _J (°C) ²
Commercial	500	20 years	110	100
Industrial	500	20 years	110	100

Table 2-3 •	Flash Programming Limits – Retention, Storage, and Operating Temperature ¹
	riden regranning Ennite Retenden, eterage, and eperating remperature

Notes:

1. This is a stress rating only; functional operation at any condition other than those indicated is not implied.

2. These limits apply for program/data retention only. Refer to Table 2-1 on page 2-1 and Table 2-2 for device operating conditions and absolute limits.

Table 2-4 •	Overshoot and Undershoot Limits ^{1, 3}	
-------------	---	--

VCCI	Average VCCI–GND Overshoot or Undershoot Duration as a Percentage of Clock Cycle ²	Maximum Overshoot/ Undershoot ²
2.7 V or less	10%	1.4 V
	5%	1.49 V
3 V	10%	1.1 V
	5%	1.19 V
3.3 V	10%	0.79 V
	5%	0.88 V
3.6 V	10%	0.45 V
	5%	0.54 V

Notes:

1. Based on reliability requirements at junction temperature at 85°C.

2. The duration is allowed at one out of six clock cycles. If the overshoot/undershoot occurs at one out of two cycles, the maximum overshoot/undershoot has to be reduced by 0.15 V.

3. This table does not provide PCI overshoot/undershoot limits.

I/O Power-Up and Supply Voltage Thresholds for Power-On Reset (Commercial and Industrial)

Sophisticated power-up management circuitry is designed into every IGLOOe device. These circuits ensure easy transition from the powered-off state to the powered-up state of the device. The many different supplies can power up in any sequence with minimized current spikes or surges. In addition, the I/O will be in a known state through the power-up sequence. The basic principle is shown in Figure 2-1 on page 2-4 and Figure 2-2 on page 2-5.

There are five regions to consider during power-up.

IGLOOe I/Os are activated only if ALL of the following three conditions are met:

- 1. VCC and VCCI are above the minimum specified trip points (Figure 2-1 on page 2-4 and Figure 2-2 on page 2-5).
- 2. VCCI > VCC 0.75 V (typical)
- 3. Chip is in the operating mode.

VCCI Trip Point:

Ramping up: 0.6 V < trip_point_up < 1.2 V Ramping down: 0.5 V < trip_point_down < 1.1 V

VCC Trip Point:

Ramping up: 0.6 V < trip_point_up < 1.1 V Ramping down: 0.5 V < trip_point_down < 1 V

VCC and VCCI ramp-up trip points are about 100 mV higher than ramp-down trip points. This specifically built-in hysteresis prevents undesirable power-up oscillations and current surges. Note the following:

• During programming, I/Os become tristated and weakly pulled up to VCCI.

Power per I/O Pin

Table 2-13 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings

	VCCI	Static Power	Dynamic Power
Single Ended	(V)		
	0.0		40.04
	3.3	-	16.34
3.3 V LVTTL/LVCMOS – Schmitt trigger	3.3	-	24.49
3.3 V LVCMOS Wide Range 3	3.3	-	16.34
3.3 V LVCMOS Wide Range – Schmitt trigger ³	3.3	-	24.49
2.5 V LVCMOS	2.5	-	4.71
2.5 V LVCMOS	2.5	_	6.13
1.8 V LVCMOS	1.8	-	1.66
1.8 V LVCMOS – Schmitt trigger	1.8	-	1.78
1.5 V LVCMOS (JESD8-11)	1.5	-	1.01
1.5 V LVCMOS (JESD8-11) – Schmitt trigger	1.5	-	0.97
1.2 V LVCMOS ⁴	1.2	-	0.60
1.2 V LVCMOS – Schmitt trigger ⁴	1.2	-	0.53
1.2 V LVCMOS Wide Range ⁴	1.2	-	0.60
1.2 V LVCMOS Wide Range – Schmitt trigger ⁴	1.2	-	0.53
3.3 V PCI	3.3	-	17.76
3.3 V PCI – Schmitt trigger	3.3	-	19.10
3.3 V PCI-X	3.3	-	17.76
3.3 V PCI-X – Schmitt trigger	3.3	-	19.10
Voltage-Referenced		•	
3.3 V GTL	3.3	2.90	7.14
2.5 V GTL	2.5	2.13	3.54
3.3 V GTL+	3.3	2.81	2.91
2.5 V GTL+	2.5	2.57	2.61
HSTL (I)	1.5	0.17	0.79
HSTL (II)	1.5	0.17	.079
SSTL2 (I)	2.5	1.38	3.26
SSTL2 (II)	2.5	1.38	3.26
SSTL3 (I)	3.3	3.21	7.97
SSTL3 (II)	3.3	3.21	7.97
Differential	•	•	•
LVDS	2.5	2.26	0.89
LVPECL	3.3	5.71	1.94

Notes:

1. PDC6 is the static power (where applicable) measured on VCCI.

2. PAC9 is the total dynamic power measured on VCCI.

3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8b specification.

4. Applicable for IGLOOe V2 devices only.

Microsemi.

IGLOOe DC and Switching Characteristics

Table 2-14 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings¹

	C _{LOAD} (pF)	VCCI (V)	Static Power PDC7 (mW) ²	Dynamic Power PAC10 (µW/MHz) ³
Single-Ended			•	
3.3 V LVTTL/LVCMOS	5	3.3	-	148.00
3.3 V LVCMOS Wide Range ⁴	5	3.3	-	148.00
2.5 V LVCMOS	5	2.5	-	83.23
1.8 V LVCMOS	5	1.8	-	54.58
1.5 V LVCMOS (JESD8-11)	5	1.5	-	37.05
1.2 V LVCMOS (JESD8-11)	5	1.2	-	17.94
1.2 V LVCMOS (JESD8-11) – Wide Range				17.94
3.3 V PCI	10	3.3	-	204.61
3.3 V PCI-X	10	3.3	-	204.61
Voltage-Referenced			•	
3.3 V GTL	10	3.3	-	24.08
2.5 V GTL	10	2.5	-	13.52
3.3 V GTL+	10	3.3	-	24.10
2.5 V GTL+	10	2.5	-	13.54
HSTL (I)	20	1.5	7.08	26.22
HSTL (II)	20	1.5	13.88	27.18
SSTL2 (I)	30	2.5	16.69	105.56
SSTL2 (II)	30	2.5	25.91	116.60
SSTL3 (I)	30	3.3	26.02	114.67
SSTL3 (II)	30	3.3	42.21	131.69
Differential			•	
LVDS	_	2.5	7.70	89.62
LVPECL	_	3.3	19.42	167.86

Notes:

1. Dynamic power consumption is given for standard load and software default drive strength and output slew.

2. PDC7 is the static power (where applicable) measured on VCCI.

3. PAC10 is the total dynamic power measured on VCCI.

4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8b specification.

3.3 V LVCMOS Wide Range

3.3 V LVC	MOS Wide Range	V	L	١	/IH	VOL	VOH	IOL	IOH	IOSH	IOSL	IIL ¹	IIH ²
Drive Strength	Equivalent Software Default Drive Strength Option ³	Min. (V)	Max. (V)	Min. (V)	Max (V)	Max. (V)	Min. (V)	μA	μA	Max. (mA) ⁴	Max. (mA) ⁴	μA⁵	μA ⁵
100 µA	2 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	25	27	10	10
100 µA	4 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	25	27	10	10
100 µA	6 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	51	54	10	10
100 µA	8 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	51	54	10	10
100 µA	12 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	103	109	10	10
100 µA	16 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	132	127	10	10
100 µA	24 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	268	181	10	10

Table 2-40 • Minimum and Maximum DC Input and Output Levels

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

 The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

4. Currents are measured at 85°C junction temperature.

5. All LVCMOS 3.3 V software macros supports LVCMOS 3.3 V wide range as specified in the JDEC8a specification.

6. Software default selection highlighted in gray.

Table 2-41 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	C _{LOAD} (pF)
0	3.3	1.4	_	5

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-23 for a complete table of trip points.

licrosen

IGLOOe DC and Switching Characteristics

SSTL3 Class I

Stub-Speed Terminated Logic for 3.3 V memory bus standard (JESD8-8). IGLOOe devices support Class I. This provides a differential amplifier input buffer and a push-pull output buffer.

Table 2-105 • Minimum	n and Maximum	DC Input and	I Output Levels
-----------------------	---------------	--------------	-----------------

SSTL3 Class I	I VIL		VIH		VOL	VOH		IOH	IOSH	IOSL	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
14 mA	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.7	VCCI – 1.1	14	14	51	54	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operating conditions where -0.3 V < VIN < VIL.

- 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.
- 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.

Figure 2-21 • AC Loading

Table 2-106 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.2	VREF + 0.2	1.5	1.5	1.485	30

*Measuring point = Vtrip. See Table 2-23 on page 2-23 for a complete table of trip points. Note:

Timing Characteristics

1.5 V DC Core Voltage

Table 2-107 • SSTL 3 Class I – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, ۷

Vorst-Case VCCI = 3.0 \	/ VREF = 1.5 V
-------------------------	----------------

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.98	2.05	0.19	1.09	0.67	2.09	1.71			5.72	5.34	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-108 • SSTL 3 Class I – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V,

Worst-Case VCCI = 3.0 V VREF = 1.5 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
Std.	1.55	2.32	0.26	1.32	1.10	2.37	2.02			8.17	7.83	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

SSTL3 Class II

Stub-Speed Terminated Logic for 3.3 V memory bus standard (JESD8-8). IGLOOe devices support Class II. This provides a differential amplifier input buffer and a push-pull output buffer.

Table 2-109 • Minimum	and Maximum	DC Input and	Output Levels
-----------------------	-------------	---------------------	----------------------

SSTL3 Class II	VIL		VIH	VIH		VOH	IOL	IOH	IOSH	IOSL	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
21 mA	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.5	VCCI – 0.9	21	21	103	109	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operating conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

Figure 2-22 • AC Loading

Table 2-110 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.2	VREF + 0.2	1.5	1.5	1.485	30

Note: Measuring point = Vtrip. See Table 2-23 on page 2-23 for a complete table of trip points.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-111 • SSTL 3 Class II – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,

Worst-Case VCCI = 3.0 V VREF = 1.5 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.98	1.86	0.19	1.09	0.67	1.89	1.58			5.52	5.21	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-112 • SSTL 3 Class II – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V,

Worst-Case VCCI = 3.0 V VREF = 1.5 V	

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
Std.	1.55	2.12	0.26	1.32	1.10	2.16	1.89			7.97	7.70	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-126 • Output Data Register Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{OCLKQ}	Clock-to-Q of the Output Data Register	1.52	ns
t _{OSUD}	Data Setup Time for the Output Data Register	1.15	ns
t _{OHD}	Data Hold Time for the Output Data Register	0.00	ns
t _{OSUE}	Enable Setup Time for the Output Data Register	1.11	ns
t _{OHE}	Enable Hold Time for the Output Data Register	0.00	ns
t _{OCLR2Q}	Asynchronous Clear-to-Q of the Output Data Register	1.96	ns
t _{OPRE2Q}	Asynchronous Preset-to-Q of the Output Data Register	1.96	ns
t _{OREMCLR}	Asynchronous Clear Removal Time for the Output Data Register	0.00	ns
t _{ORECCLR}	Asynchronous Clear Recovery Time for the Output Data Register	0.24	ns
t _{OREMPRE}	Asynchronous Preset Removal Time for the Output Data Register	0.00	ns
t _{ORECPRE}	Asynchronous Preset Recovery Time for the Output Data Register	0.24	ns
t _{OWCLR}	Asynchronous Clear Minimum Pulse Width for the Output Data Register	0.19	ns
t _{OWPRE}	Asynchronous Preset Minimum Pulse Width for the Output Data Register	0.19	ns
t _{OCKMPWH}	Clock Minimum Pulse Width HIGH for the Output Data Register	0.31	ns
t _{OCKMPWL}	Clock Minimum Pulse Width LOW for the Output Data Register	0.28	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

static Microsemi.

IGLOOe DC and Switching Characteristics

Timing Characteristics

Applies to 1.5 V DC Core Voltage

Table 2-145 • RAM4K9

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{AS}	Address Setup Time	0.83	ns
t _{AH}	Address Hold Time	0.16	ns
t _{ENS}	REN, WEN Setup Time	0.81	ns
t _{ENH}	REN, WEN Hold Time	0.16	ns
t _{BKS}	BLK Setup Time	1.65	ns
t _{BKH}	BLK Hold Time	0.16	ns
t _{DS}	Input Data (DIN) Setup Time	0.71	ns
t _{DH}	Input Data (DIN) Hold Time	0.36	ns
t _{CKQ1}	Clock HIGH to New Data Valid on DOUT (output retained, WMODE = 0)	3.53	ns
	Clock HIGH to New Data Valid on DOUT (flow-through, WMODE = 1)	3.06	ns
t _{CKQ2}	Clock HIGH to New Data Valid on DOUT (pipelined)	1.81	ns
t _{C2CWWL} 1	Address collision clk-to-clk delay for reliable write after write on same address; applicable to closing edge	0.23	ns
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address; applicable to opening edge	0.35	ns
^t C2CWRH ¹	Address collision clk-to-clk delay for reliable write access after read on same address; applicable to opening edge	0.41	ns
t _{RSTBQ}	RESET Low to Data Out Low on DOUT (flow-through)	2.06	ns
	RESET Low to Data Out Low on DOUT (pipelined)	2.06	ns
t _{REMRSTB}	RESET Removal	0.61	ns
t _{RECRSTB}	RESET Recovery	3.21	ns
t _{MPWRSTB}	RESET Minimum Pulse Width	0.68	ns
t _{CYC}	Clock Cycle Time	6.24	ns
F _{MAX}	Maximum Frequency	160	MHz

Notes:

1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-146 • RAM512X18	
Commercial-Case Conditions: T _J = 70°C, Worst-Case VCC	= 1.425 V

Parameter	Description	Std.	Units
t _{AS}	Address Setup Time	0.83	ns
t _{AH}	Address Hold Time	0.16	ns
t _{ENS}	REN, WEN Setup Time	0.73	ns
t _{ENH}	REN, WEN Hold Time	0.08	ns
t _{DS}	Input Data (WD) Setup Time	0.71	ns
t _{DH}	Input Data (WD) Hold Time	0.36	ns
t _{СКQ1}	Clock HIGH to New Data Valid on RD (output retained, WMODE = 0)	4.21	ns
t _{СКQ2}	Clock HIGH to New Data Valid on RD (pipelined)	1.71	ns
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address; applicable to opening edge	0.35	ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address; applicable to opening edge	0.42	ns
t _{RSTBQ}	RESET Low to Data Out Low on RD (flow-through)	2.06	ns
	RESET Low to Data Out Low on RD (pipelined)	2.06	ns
t _{REMRSTB}	RESET Removal	0.61	ns
t _{RECRSTB}	RESET Recovery	3.21	ns
t _{MPWRSTB}	RESET Minimum Pulse Width	0.68	ns
t _{CYC}	Clock Cycle Time	6.24	ns
F _{MAX}	Maximum Frequency	160	MHz

Notes:

1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

static Microsemi. 💊

IGLOOe DC and Switching Characteristics

Timing Characteristics

Applies to 1.5 V DC Core Voltage

Table 2-149 • FIFO

Commercial-Case Conditions: $T_J = 70^{\circ}C$, VCC = 1.425 V

Parameter	Description	Std.	Units
t _{ENS}	REN, WEN Setup Time	1.99	ns
t _{ENH}	REN, WEN Hold Time	0.16	ns
t _{BKS}	BLK Setup Time	0.30	ns
t _{BKH}	BLK Hold Time	0.00	ns
t _{DS}	Input Data (WD) Setup Time	0.76	ns
t _{DH}	Input Data (WD) Hold Time	0.25	ns
t _{CKQ1}	Clock HIGH to New Data Valid on RD (pass-through)	3.33	ns
t _{CKQ2}	Clock HIGH to New Data Valid on RD (pipelined)	1.80	ns
t _{RCKEF}	RCLK HIGH to Empty Flag Valid	3.53	ns
t _{WCKFF}	WCLK HIGH to Full Flag Valid	3.35	ns
t _{CKAF}	Clock HIGH to Almost Empty/Full Flag Valid	12.85	ns
t _{RSTFG}	RESET LOW to Empty/Full Flag Valid	3.48	ns
t _{RSTAF}	RESET LOW to Almost Empty/Full Flag Valid	12.72	ns
t _{RSTBQ}	RESET LOW to Data Out LOW on RD (pass-through)	2.02	ns
	RESET LOW to Data Out LOW on RD (pipelined)	2.02	ns
t _{REMRSTB}	RESET Removal	0.61	ns
t _{RECRSTB}	RESET Recovery	3.21	ns
t _{MPWRSTB}	RESET Minimum Pulse Width	0.68	ns
t _{CYC}	Clock Cycle Time	6.24	ns
F _{MAX}	Maximum Frequency	160	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Related Documents

User's Guides

IGLOOe FPGA Fabric User's Guide http://www.microsemi.com/soc/documents/IGLOOe UG.pdf

Packaging Documents

The following documents provide packaging information and device selection for low power flash devices.

Product Catalog

http://www.microsemi.com/soc/documents/ProdCat_PIB.pdf

Lists devices currently recommended for new designs and the packages available for each member of the family. Use this document or the datasheet tables to determine the best package for your design, and which package drawing to use.

Package Mechanical Drawings

http://www.microsemi.com/soc/documents/PckgMechDrwngs.pdf

This document contains the package mechanical drawings for all packages currently or previously supplied by Microsemi. Use the bookmarks to navigate to the package mechanical drawings.

Additional packaging materials: http://www.microsemi.com/soc/products/solutions/package/docs.aspx.

4 – Package Pin Assignments

FG256

Note: This is the bottom view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx.

Package Pin Assignments

FG256				
Pin Number	AGLE600 Function			
P9	IO82PDB5V0			
P10	IO76NDB4V1			
P11	IO76PDB4V1			
P12	VMV4			
P13	TCK			
P14	VPUMP			
P15	TRST			
P16	GDA0/IO67NDB3V1			
R1	GEA1/IO102PDB6V0			
R2	GEA0/IO102NDB6V0			
R3	GNDQ			
R4	GEC2/IO99PDB5V2			
R5	IO95NPB5V1			
R6	IO91NDB5V1			
R7	IO91PDB5V1			
R8	IO83NDB5V0			
R9	IO83PDB5V0			
R10	IO77NDB4V1			
R11	IO77PDB4V1			
R12	IO69NDB4V0			
R13	GDB2/IO69PDB4V0			
R14	TDI			
R15	GNDQ			
R16	TDO			
T1	GND			
T2	IO100NDB5V2			
Т3	FF/GEB2/IO100PDB5 V2			
T4	IO99NDB5V2			
T5	IO88NDB5V0			
Т6	IO88PDB5V0			
T7	IO89NSB5V0			
Т8	IO80NSB4V1			
Т9	IO81NDB4V1			
T10	IO81PDB4V1			
T11	IO70NDB4V0			

FG256					
Pin Number	AGLE600 Function				
T12	GDC2/IO70PDB4V0				
T13	IO68NDB4V0				
T14	GDA2/IO68PDB4V0				
T15	TMS				
T16	GND				

Package Pin Assignments

FG484			FG484	FG484		
Pin Number	AGLE3000 Function	Pin Number	AGLE3000 Function	Pin Number	AGLE3000 Function	
C18	GND	E9	IO22NDB0V2	F22	IO98NDB2V2	
C19	IO76PPB1V4	E10	IO30NDB0V3	G1	IO289NDB7V1	
C20	IO88NDB2V0	E11	IO38PDB0V4	G2	IO289PDB7V1	
C21	IO94PPB2V1	E12	IO44NDB1V0	G3	IO291PPB7V2	
C22	VCCIB2	E13	IO58NDB1V2	G4	IO295PDB7V2	
D1	IO293PDB7V2	E14	IO58PDB1V2	G5	IO297PDB7V2	
D2	IO303NDB7V3	E15	GBC1/IO79PDB1V4	G6	GAC2/IO307PDB7V4	
D3	IO305NDB7V3	E16	GBB0/IO80NDB1V4	G7	VCOMPLA	
D4	GND	E17	GNDQ	G8	GNDQ	
D5	GAA0/IO00NDB0V0	E18	GBA2/IO82PDB2V0	G9	IO26NDB0V3	
D6	GAA1/IO00PDB0V0	E19	IO86NDB2V0	G10	IO26PDB0V3	
D7	GAB0/IO01NDB0V0	E20	GND	G11	IO36PDB0V4	
D8	IO20PDB0V2	E21	IO90NDB2V1	G12	IO42PDB1V0	
D9	IO22PDB0V2	E22	IO98PDB2V2	G13	IO50PDB1V1	
D10	IO30PDB0V3	F1	IO299NPB7V3	G14	IO60NDB1V2	
D11	IO38NDB0V4	F2	IO301NDB7V3	G15	GNDQ	
D12	IO52NDB1V1	F3	IO301PDB7V3	G16	VCOMPLB	
D13	IO52PDB1V1	F4	IO308NDB7V4	G17	GBB2/IO83PDB2V0	
D14	IO66NDB1V3	F5	IO309NDB7V4	G18	IO92PDB2V1	
D15	IO66PDB1V3	F6	VMV7	G19	IO92NDB2V1	
D16	GBB1/IO80PDB1V4	F7	VCCPLA	G20	IO102PDB2V2	
D17	GBA0/IO81NDB1V4	F8	GAC0/IO02NDB0V0	G21	IO102NDB2V2	
D18	GBA1/IO81PDB1V4	F9	GAC1/IO02PDB0V0	G22	IO105NDB2V2	
D19	GND	F10	IO32NDB0V3	H1	IO286PSB7V1	
D20	IO88PDB2V0	F11	IO32PDB0V3	H2	IO291NPB7V2	
D21	IO90PDB2V1	F12	IO44PDB1V0	H3	VCC	
D22	IO94NPB2V1	F13	IO50NDB1V1	H4	IO295NDB7V2	
E1	IO293NDB7V2	F14	IO60PDB1V2	H5	IO297NDB7V2	
E2	IO299PPB7V3	F15	GBC0/IO79NDB1V4	H6	IO307NDB7V4	
E3	GND	F16	VCCPLB	H7	IO287PDB7V1	
E4	GAB2/IO308PDB7V4	F17	VMV2	H8	VMV0	
E5	GAA2/IO309PDB7V4	F18	IO82NDB2V0	H9	VCCIB0	
E6	GNDQ	F19	IO86PDB2V0	H10	VCCIB0	
E7	GAB1/IO01PDB0V0	F20	IO96PDB2V1	H11	IO36NDB0V4	
E8	IO20NDB0V2	F21	IO96NDB2V1	H12	IO42NDB1V0	

	FG484	FG484		
Pin Number	AGLE3000 Function	Pin Number	AGLE3000 Function	
V3	GND	W15	GDC2/IO156PDB4V0	
V4	GEA1/IO234PDB6V0	W16	IO154NDB4V0	
V5	GEA0/IO234NDB6V0	W17	GDA2/IO154PDB4V0	
V6	GNDQ	W18	TMS	
V7	GEC2/IO231PDB5V4	W19	GND	
V8	IO222NPB5V3	W20	IO150NDB3V4	
V9	IO204NDB5V1	W21	IO146NDB3V4	
V10	IO204PDB5V1	W22	IO148PPB3V4	
V11	IO195NDB5V0	Y1	VCCIB6	
V12	IO195PDB5V0	Y2	IO237NDB6V0	
V13	IO178NDB4V3	Y3	IO228NDB5V4	
V14	IO178PDB4V3	Y4	IO224NDB5V3	
V15	IO155NDB4V0	Y5	GND	
V16	GDB2/IO155PDB4V0	Y6	IO220NDB5V3	
V17	TDI	Y7	IO220PDB5V3	
V18	GNDQ	Y8	VCC	
V19	TDO	Y9	VCC	
V20	GND	Y10	IO200PDB5V0	
V21	IO146PDB3V4	Y11	IO192PDB4V4	
V22	IO142NDB3V3	Y12	IO188NPB4V4	
W1	IO239NDB6V0	Y13	IO187PSB4V4	
W2	IO237PDB6V0	Y14	VCC	
W3	IO230PSB5V4	Y15	VCC	
W4	GND	Y16	IO164NDB4V1	
W5	IO232NDB5V4	Y17	IO164PDB4V1	
W6	FF/GEB2/IO232PDB5	Y18	GND	
	V4	Y19	IO158PPB4V0	
W7	IO231NDB5V4	Y20	IO150PDB3V4	
W8	IO214NDB5V2	Y21	IO148NPB3V4	
W9	IO214PDB5V2	Y22	VCCIB3	
W10	IO200NDB5V0	L	1	
W11	IO192NDB4V4			
W12	IO184NDB4V3			
W13	IO184PDB4V3			

W14

IO156NDB4V0

FG896			FG896		FG896
Pin Number	AGLE3000 Function	Pin Number	AGLE3000 Function	Pin Number	AGLE3000 Function
AF29	GNDQ	AH4	FF/GEB2/IO232PPB5	AJ8	IO213NDB5V2
AF30	GND		V4	AJ9	IO213PDB5V2
AG1	IO238NPB6V0	AH5	VCCIB5	AJ10	IO209NDB5V1
AG2	VCC	AH6	IO219NDB5V3	AJ11	IO209PDB5V1
AG3	IO232NPB5V4	AH7	IO219PDB5V3	AJ12	IO203NDB5V1
AG4	GND	AH8	IO227NDB5V4	AJ13	IO203PDB5V1
AG5	IO220PPB5V3	AH9	IO227PDB5V4	AJ14	IO197NDB5V0
AG6	IO228PDB5V4	AH10	IO225PPB5V3	AJ15	IO195PDB5V0
AG7	IO231NDB5V4	AH11	IO223PPB5V3	AJ16	IO183NDB4V3
AG8	GEC2/IO231PDB5V4	AH12	IO211NDB5V2	AJ17	IO183PDB4V3
AG9	IO225NPB5V3	AH13	IO211PDB5V2	AJ18	IO179NPB4V3
AG10	IO223NPB5V3	AH14	IO205PPB5V1	AJ19	IO177PDB4V2
AG11	IO221PDB5V3	AH15	IO195NDB5V0	AJ20	IO173NDB4V2
AG12	IO221NDB5V3	AH16	IO185NDB4V3	AJ21	IO173PDB4V2
AG13	IO205NPB5V1	AH17	IO185PDB4V3	AJ22	IO163NDB4V1
AG14	IO199NDB5V0	AH18	IO181PDB4V3	AJ23	IO163PDB4V1
AG15	IO199PDB5V0	AH19	IO177NDB4V2	AJ24	IO167NPB4V1
AG16	IO187NDB4V4	AH20	IO171NPB4V2	AJ25	VCC
AG17	IO187PDB4V4	AH21	IO165PPB4V1	AJ26	IO156NPB4V0
AG18	IO181NDB4V3	AH22	IO161PPB4V0	AJ27	VCC
AG19	IO171PPB4V2	AH23	IO157NDB4V0	A.128	TMS
AG20	IO165NPB4V1	AH24	IO157PDB4V0	A.129	GND
AG21	IO161NPB4V0	AH25	IO155NDB4V0	A.130	GND
AG22		AH26	VCCIB4	AK2	GND
AG23		AH27	TDI		GND
AG24		AH28	VCC	ΔK4	IO217PPB5\/2
AG25		AH29	VPUMP		GND
AG25		AH30	GND		
AG20		AJ1	GND		
AG27		AJ2	GND		
AG20	VJIAO	AJ3	GEA2/IO233PPB5V4		
AG29		AJ4	VCC		
AGSU		AJ5	IO217NPB5V2		
		AJ6	VCC	AK11 AK10	
AH2	10233NPB5V4	AJ7	IO215NPB5V2	AK12	
AH3	VCC			AK13	IO193PDB4V4

Datasheet Information

Revision	Changes	Page
Revision 8 (Nov 2009)	The version changed to v2.0 for IGLOOe datasheet chapters, indicating the datasheet contains information based on final characterization.	N/A
Product Brief v2.0	The "Pro (Professional) I/O" section was revised to add "Hot-swappable and cold-sparing I/Os."	I
	The "Reprogrammable Flash Technology" section was revised to add "250 MHz (1.5 V systems) and 160 MHz (1.2 V systems) System Performance."	I
	Definitions of hot-swap and cold-sparing were added to the "Pro I/Os with Advanced I/O Standards" section.	1-7
DC and Switching Characteristics v2.0	$3.3~\rm V$ LVCMOS and $1.2~\rm V$ LVCMOS Wide Range support was added to the datasheet. This affects all tables that contained $3.3~\rm V$ LVCMOS and $1.2~\rm V$ LVCMOS data.	N/A
	IIL and IIH input leakage current information was added to all "Minimum and Maximum DC Input and Output Levels" tables.	N/A
	Values for 1.2 V wide range DC core supply voltage were added to Table 2-2 • Recommended Operating Conditions 1. Table notes regarding 3.3 V wide range and the core voltage required for programming were added to the table.	2-2
	The data in Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays (1.5 V DC core supply voltage) and Table 2-7 • Temperature and Voltage Derating Factors for Timing Delays (1.2 V DC core supply voltage) was revised.	2-6
	3.3 V LVCMOS wide range data was included in Table 2-13 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings and Table 2-14 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings1. Table notes were added in connection with this data.	2-9, 2-10
	The temperature was revised from 110°C to 100°C in Table 2-31 • Duration of Short Circuit Event before Failure and Table 2-33 • I/O Input Rise Time, Fall Time, and Related I/O Reliability*.	2-31, 2-31
	The tables in the "Overview of I/O Performance" section and "Detailed I/O DC Characteristics" sectionwere revised to include 3.3 V LVCMOS and 1.2 V LVCMOS wide range.	2-20, 2-28
	Most tables were updated in the following sections, revising existing values and adding information for 3.3 V and 1.2 V wide range: "Single-Ended I/O Characteristics" "Voltage-Referenced I/O Characteristics" "Differential I/O Characteristics"	2-32, 2-51, 2-62
	The value for "Delay range in block: fixed delay" was revised in Table 2-143 • IGLOOe CCC/PLL Specification and Table 2-144 • IGLOOe CCC/PLL Specification.	2-91, 2-92
	The timing characteristics tables for RAM4K9 and RAM512X18 were updated, including renaming of the address collision parameters.	2-98 – 2-101
Revision 7 (Apr 2009) Product Brief v1.4 DC and Switching Characteristics Advance v0.4	The –F speed grade is no longer offered for IGLOOe devices and was removed from the documentation. The speed grade column and note regarding –F speed grade were removed from "IGLOOe Ordering Information". The "Speed Grade and Temperature Grade Matrix" section was removed.	III, IV