

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	75264
Total RAM Bits	516096
Number of I/O	341
Number of Gates	300000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	484-BGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m1agle3000v5-fgg484i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

IGLOOe Device Family Overview

SRAM and FIFO

IGLOOe devices have embedded SRAM blocks along their north and south sides. Each variable-aspectratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18, 512×9, 1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can be configured with different bit widths on each port. For example, data can be sent through a 4-bit port and read as a single bitstream. The embedded SRAM blocks can be initialized via the device JTAG port (ROM emulation mode) using the UJTAG macro.

In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM block to be configured as a synchronous FIFO without using additional core VersaTiles. The FIFO width and depth are programmable. The FIFO also features programmable Almost Empty (AEMPTY) and Almost Full (AFULL) flags in addition to the normal Empty and Full flags. The embedded FIFO control unit contains the counters necessary for generation of the read and write address pointers. The embedded SRAM/FIFO blocks can be cascaded to create larger configurations.

PLL and CCC

IGLOOe devices provide designers with very flexible clock conditioning capabilities. Each member of the IGLOOe family contains six CCCs, each with an integrated PLL.

The six CCC blocks are located at the four corners and the centers of the east and west sides. One CCC (center west side) has a PLL.

The inputs of the six CCC blocks are accessible from the FPGA core or from one of several inputs located near the CCC that have dedicated connections to the CCC block.

The CCC block has these key features:

- Wide input frequency range ($f_{IN CCC}$) = 1.5 MHz up to 250 MHz
- Output frequency range (f_{OUT CCC}) = 0.75 MHz up to 250 MHz
- 2 programmable delay types for clock skew minimization
- Clock frequency synthesis

Additional CCC specifications:

- Internal phase shift = 0°, 90°, 180°, and 270°. Output phase shift depends on the output divider configuration.
- Output duty cycle = 50% ± 1.5% or better
- Low output jitter: worst case < 2.5% × clock period peak-to-peak period jitter when single global network used
- Maximum acquisition time is 300 µs
- Exceptional tolerance to input period jitter—allowable input jitter is up to 1.5 ns
- Four precise phases; maximum misalignment between adjacent phases of 40 ps × 250 MHz / fout_ccc

Global Clocking

IGLOOe devices have extensive support for multiple clocking domains. In addition to the CCC and PLL support described above, there is a comprehensive global clock distribution network.

Each VersaTile input and output port has access to nine VersaNets: six chip (main) and three quadrant global networks. The VersaNets can be driven by the CCC or directly accessed from the core via multiplexers (MUXes). The VersaNets can be used to distribute low-skew clock signals or for rapid distribution of high-fanout nets.

IGLOOe Device Family Overview

d from file Save to	file		Show BSR Deta
Port Name	Macro Cell	Pin Number	1/O State (Output Only)
BIST	ADLIB:INBUF	T2	1
BYPASS_IO	ADLIB:INBUF	K1	1
CLK	ADLIB:INBUF	B1	1
ENOUT	ADLIB:INBUF	J16	1
LED	ADLIB:OUTBUF	M3	0
MONITOR[0]	ADLIB:OUTBUF	B5	0
MONITOR[1]	ADLIB:OUTBUF	C7	Z
MONITOR[2]	ADLIB:OUTBUF	D9	Z
MONITOR[3]	ADLIB:OUTBUF	D7	Z
MONITOR[4]	ADLIB:OUTBUF	A11	Z
OEa	ADLIB:INBUF	E4	Z
ОЕЬ	ADLIB:INBUF	F1	Z
OSC_EN	ADLIB:INBUF	K3	Z
PAD[10]	ADLIB:BIBUF_LVCMOS33U	M8	Z
PAD[11]	ADLIB:BIBUF_LVCMOS33D	R7	Z
PAD[12]	ADLIB:BIBUF_LVCMOS33U	D11	Z
PAD[13]	ADLIB:BIBUF_LVCM0S33D	C12	Z
PAD[14]	ADLIB:BIBUF_LVCMOS33U	R6	Z

Figure 1-4 • I/O States During Programming Window

- 6. Click OK to return to the FlashPoint Programming File Generator window.
- Note: I/O States During programming are saved to the ADB and resulting programming files after completing programming file generation.

Calculating Power Dissipation

Quiescent Supply Current

Quiescent supply current (IDD) calculation depends on multiple factors, including operating voltages (VCC, VCCI, and VJTAG), operating temperature, system clock frequency, and power modes usage. Microsemi recommends using the PowerCalculator and SmartPower software estimation tools to evaluate the projected static and active power based on the user design, power mode usage, operating voltage, and temperature.

Table 2-8 • Power Supply State per Mode

	Power Supply Configurations						
Modes/power supplies	VCC	VCCPLL	VCCI	VJTAG	VPUMP		
Flash*Freeze	On	On	On	On	On/off/floating		
Sleep	Off	Off	On	Off	Off		
Shutdown	Off	Off	Off	Off	Off		
No Flash*Freeze	On	On	On	On	On/off/floating		

Note: Off: Power supply level = 0 V

Table 2-9 • Quiescent Supply Current (IDD), IGLOOe Flash*Freeze Mode*

	Core Voltage	AGLE600	AGLE3000	Units
Typical (25°C)	1.2 V	34	95	μΑ
	1.5 V	72	310	μΑ

Note: *IDD includes VCC, VPUMP, VCCI, VCCPLL, and VMV currents. Values do not include I/O static contribution, which is shown in Table 2-13 on page 2-9 and Table 2-14 on page 2-10 (PDC6 and PDC7).

Table 2-10 • Quiescent Supply Current (IDD) Characteristics, IGLOOe Sleep Mode*

	Core Voltage	AGLE600	AGLE3000	Units
VCCI/VJTAG = 1.2 V (per bank) Typical (25°C)	1.2 V	1.7	1.7	μA
VCCI/VJTAG = 1.5 V (per bank) Typical (25°C)	1.2 V / 1.5 V	1.8	1.8	μA
VCCI/VJTAG = 1.8 V (per bank) Typical (25°C)	1.2 V / 1.5 V	1.9	1.9	μA
VCCI/VJTAG = 2.5 V (per bank) Typical (25°C)	1.2 V / 1.5 V	2.2	2.2	μA
VCCI/VJTAG= 3.3 V (per bank) Typical (25°C)	1.2 V / 1.5 V	2.5	2.5	μA

Note: $*IDD = N_{BANKS} \times ICCI$. Values do not include I/O static contribution, which is shown in Table 2-13 on page 2-9 and Table 2-14 on page 2-10 (PDC6 and PDC7).

Table 2-11 • Quiescent Supply Current (IDD) Characteristics, IGLOOe Shutdown Mode*

	Core Voltage	AGLE600	AGLE3000	Units
Typical (25°C)	1.2 V / 1.5 V	0	0	μA

Microsemi.

IGLOOe DC and Switching Characteristics

Parameter	Definition
t _{DP}	Data to Pad delay through the Output Buffer
t _{PY}	Pad to Data delay through the Input Buffer with Schmitt trigger disabled
t _{DOUT}	Data to Output Buffer delay through the I/O interface
t _{EOUT}	Enable to Output Buffer Tristate Control delay through the I/O interface
t _{DIN}	Input Buffer to Data delay through the I/O interface
t _{PYS}	Pad to Data delay through the Input Buffer with Schmitt trigger enabled
t _{HZ}	Enable to Pad delay through the Output Buffer—HIGH to Z
t _{ZH}	Enable to Pad delay through the Output Buffer—Z to HIGH
t _{LZ}	Enable to Pad delay through the Output Buffer—LOW to Z
t _{ZL}	Enable to Pad delay through the Output Buffer—Z to LOW
t _{ZHS}	Enable to Pad delay through the Output Buffer with delayed enable—Z to HIGH
t _{ZLS}	Enable to Pad delay through the Output Buffer with delayed enable—Z to LOW

Table 2-24 • I/O AC Parameter Definitions

🌜 Microsemi.

IGLOOe DC and Switching Characteristics

2.5 V LVCMOS

Low-Voltage CMOS for 2.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 2.5 V applications.

2.5 V LVCMOS	v	ΊL	V	ΊH	VOL	VOH	IOL	ЮН	IOSH	IOSL	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
4 mA	-0.3	0.7	1.7	3.6	0.7	1.7	4	4	16	18	10	10
8 mA	-0.3	0.7	1.7	3.6	0.7	1.7	8	8	32	37	10	10
12 mA	-0.3	0.7	1.7	3.6	0.7	1.7	12	12	65	74	10	10
16 mA	-0.3	0.7	1.7	3.6	0.7	1.7	16	16	83	87	10	10
24 mA	-0.3	0.7	1.7	3.6	0.7	1.7	24	24	169	124	10	10

Table 2-46 •	Minimum and Maximum D	C Input and Output Levels
--------------	-----------------------	---------------------------

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Test Point
Datapath
$$\downarrow$$
 35 pF $R = 1 k$
Enable Path \downarrow R to VCCI for $t_{LZ} / t_{ZL} / t_{ZLS}$
 R to GND for $t_{HZ} / t_{ZH} / t_{ZHS}$
 $5 pF for t_{ZH} / t_{ZHS} / t_{ZL} / t_{ZLS}$
 $5 pF for t_{HZ} / t_{LZ}$

Figure 2-8 • AC Loading

Table 2-47 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	C _{LOAD} (pF)
0	2.5	1.2	-	5

Note: **Measuring point = Vtrip. See Table 2-23 on page 2-23 for a complete table of trip points.*

1.2 V LVCMOS (JESD8-12A)

Low-Voltage CMOS for 1.2 V complies with the LVCMOS standard JESD8-12A for general purpose 1.2 V applications. It uses a 1.2 V input buffer and a push-pull output buffer.

Table 2-64 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks

1.2 V LVCMOS ¹		VIL	VIH		VOL	VOH	IOL	ЮН	IOSH	IOSL	IIL ²	IIH ³
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ⁴	Max. mA ⁴	µA⁵	μA ⁵
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	2	2	20	26	10	10

Notes:

- 1. Applicable to V2 devices ONLY.
- 2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
- 3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.
- 4. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
- 5. Currents are measured at 85°C junction temperature.
- 6. Software default selection highlighted in gray.

Test Point
Datapath
$$\downarrow$$
 5 pF $R = 1 k$
Enable Path \downarrow $R = 1 k$
 $Test Point$
Enable Path \downarrow $Test Point$
 $F = 1 k$
 $R to VCCI for tLZ / tZL / tZLS $R to GND for tHZ / tZH / tZHS / tZL / tZLS$
 $5 pF for tZH / tZHS / tZL / tZLS$$

Figure 2-11 • AC Loading

Table 2-65 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	C _{LOAD} (pF)
0	1.2	0.6	_	5

Note: **Measuring point = Vtrip* See Table 2-23 on page 2-23 for a complete table of trip points.

2.5 V GTL+

Gunning Transceiver Logic Plus is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 2.5 V.

2.5 V GTL+		VIL	VIH	VIH		VOH	IOL	IOH	IOSH	IOSL	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
33 mA	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.6	1	33	33	169	124	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operating conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

Figure 2-16 • AC Loading

Table 2-86 •	AC Waveforms.	Measuring	Points.	and Ca	pacitive	Loads
		measuring	i onita,			Luaus

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.1	VREF + 0.1	1.0	1.0	1.5	10

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-23 for a complete table of trip points.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-87 • 2.5 V GTL+ – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V VREF = 1.0 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
Std.	0.98	1.97	0.19	1.29	0.67	2.00	1.84			5.63	5.47	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-88 • 2.5 V GTL+ – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V,

Worst-Case VCCI = 2.3 V VREF = 1.0 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	1.55	2.23	0.26	1.55	1.10	2.28	2.11			8.08	7.91	ns

SSTL3 Class II

Stub-Speed Terminated Logic for 3.3 V memory bus standard (JESD8-8). IGLOOe devices support Class II. This provides a differential amplifier input buffer and a push-pull output buffer.

Table 2-109 • Minimun	n and Maximum	DC Input and	Output Levels
-----------------------	---------------	---------------------	----------------------

SSTL3 Class II		VIL VIF		/IH VOL		VOH	IOLIOH		IOSH	IOSL	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
21 mA	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.5	VCCI – 0.9	21	21	103	109	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operating conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

Figure 2-22 • AC Loading

Table 2-110 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.2	VREF + 0.2	1.5	1.5	1.485	30

Note: Measuring point = Vtrip. See Table 2-23 on page 2-23 for a complete table of trip points.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-111 • SSTL 3 Class II – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,

Worst-Case VCCI = 3.0 V VREF = 1.5 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.98	1.86	0.19	1.09	0.67	1.89	1.58			5.52	5.21	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-112 • SSTL 3 Class II – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V,

Worst-Case VCCI = 3.0 V VREF = 1.5 V	
--------------------------------------	--

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	1.55	2.12	0.26	1.32	1.10	2.16	1.89			7.97	7.70	ns

🌜 Microsemi.

IGLOOe DC and Switching Characteristics

Output Register

Timing Characteristics

1.5 V DC Core Voltage

Table 2-125 • Output Data Register Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{OCLKQ}	Clock-to-Q of the Output Data Register	1.00	ns
t _{OSUD}	Data Setup Time for the Output Data Register	0.51	ns
t _{OHD}	Data Hold Time for the Output Data Register	0.00	ns
t _{OSUE}	Enable Setup Time for the Output Data Register	0.70	ns
t _{OHE}	Enable Hold Time for the Output Data Register	0.00	ns
t _{OCLR2Q}	Asynchronous Clear-to-Q of the Output Data Register	1.34	ns
t _{OPRE2Q}	Asynchronous Preset-to-Q of the Output Data Register	1.34	ns
t _{OREMCLR}	Asynchronous Clear Removal Time for the Output Data Register	0.00	ns
t _{ORECCLR}	Asynchronous Clear Recovery Time for the Output Data Register	0.24	ns
t _{OREMPRE}	Asynchronous Preset Removal Time for the Output Data Register	0.00	ns
t _{ORECPRE}	Asynchronous Preset Recovery Time for the Output Data Register	0.24	ns
t _{OWCLR}	Asynchronous Clear Minimum Pulse Width for the Output Data Register	0.19	ns
t _{OWPRE}	Asynchronous Preset Minimum Pulse Width for the Output Data Register	0.19	ns
t _{OCKMPWH}	Clock Minimum Pulse Width HIGH for the Output Data Register	0.31	ns
t _{OCKMPWL}	Clock Minimum Pulse Width LOW for the Output Data Register	0.28	ns

Figure 2-32 • Input DDR Timing Diagram

Timing Characteristics

1.5 V DC Core Voltage

Table 2-130 • Input DDR Propagation Delays Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{DDRICLKQ1}	Clock-to-Out Out_QR for Input DDR	0.48	ns
t _{DDRICLKQ2}	Clock-to-Out Out_QF for Input DDR	0.65	ns
t _{DDRISUD1}	Data Setup for Input DDR (negedge)	0.50	ns
t _{DDRISUD2}	Data Setup for Input DDR (posedge)	0.40	ns
t _{DDRIHD1}	Data Hold for Input DDR (negedge)	0.00	ns
t _{DDRIHD2}	Data Hold for Input DDR (posedge)	0.00	ns
t _{DDRICLR2Q1}	Asynchronous Clear to Out Out_QR for Input DDR	0.82	ns
t _{DDRICLR2Q2}	Asynchronous Clear-to-Out Out_QF for Input DDR	0.98	ns
t _{DDRIREMCLR}	Asynchronous Clear Removal Time for Input DDR	0.00	ns
t _{DDRIRECCLR}	Asynchronous Clear Recovery Time for Input DDR	0.23	ns
t _{DDRIWCLR}	Asynchronous Clear Minimum Pulse Width for Input DDR	0.19	ns
t _{DDRICKMPWH}	Clock Minimum Pulse Width HIGH for Input DDR	0.31	ns
t _{DDRICKMPWL}	Clock Minimum Pulse Width LOW for Input DDR	0.28	ns
F _{DDRIMAX}	Maximum Frequency for Input DDR	250.00	MHz

Microsemi. IGLOOe DC and Switching Characteristics

Timing Characteristics

1.5 V DC Core Voltage

Table 2-135 • Combinatorial Cell Propagation Delays

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Combinatorial Cell	Equation	Parameter	Std.	Units
INV	Y = !A	t _{PD}	0.80	ns
AND2	$Y = A \cdot B$	t _{PD}	0.84	ns
NAND2	Y = !(A · B)	t _{PD}	0.90	ns
OR2	Y = A + B	t _{PD}	1.19	ns
NOR2	Y = !(A + B)	t _{PD}	1.10	ns
XOR2	Y = A ⊕ B	t _{PD}	1.37	ns
MAJ3	Y = MAJ(A, B, C)	t _{PD}	1.33	ns
XOR3	$Y=A\oplusB\oplusC$	t _{PD}	1.79	ns
MUX2	Y = A !S + B S	t _{PD}	1.48	ns
AND3	$Y = A \cdot B \cdot C$	t _{PD}	1.21	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-136 • Combinatorial Cell Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Combinatorial Cell	Equation	Parameter	Std.	Units
INV	Y = !A	t _{PD}	1.35	ns
AND2	$Y = A \cdot B$	t _{PD}	1.42	ns
NAND2	Y = !(A · B)	t _{PD}	1.58	ns
OR2	Y = A + B	t _{PD}	2.10	ns
NOR2	Y = !(A + B)	t _{PD}	1.94	ns
XOR2	Y = A ⊕ B	t _{PD}	2.33	ns
MAJ3	Y = MAJ(A, B, C)	t _{PD}	2.34	ns
XOR3	$Y = A \oplus B \oplus C$	t _{PD}	3.05	ns
MUX2	Y = A !S + B S	t _{PD}	2.64	ns
AND3	$Y = A \cdot B \cdot C$	t _{PD}	2.10	ns

1.2 V DC Core Voltage

Table 2-138 • Register Delays

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{CLKQ}	Clock-to-Q of the Core Register	1.61	ns
t _{SUD}	Data Setup Time for the Core Register	1.17	ns
t _{HD}	Data Hold Time for the Core Register	0.00	ns
t _{SUE}	Enable Setup Time for the Core Register	1.29	ns
t _{HE}	Enable Hold Time for the Core Register	0.00	ns
t _{CLR2Q}	Asynchronous Clear-to-Q of the Core Register	0.87	ns
t _{PRE2Q}	Asynchronous Preset-to-Q of the Core Register	0.89	ns
t _{REMCLR}	Asynchronous Clear Removal Time for the Core Register	0.00	ns
t _{RECCLR}	Asynchronous Clear Recovery Time for the Core Register	0.24	ns
t _{REMPRE}	Asynchronous Preset Removal Time for the Core Register	0.00	ns
t _{RECPRE}	Asynchronous Preset Recovery Time for the Core Register	0.24	ns
t _{WCLR}	Asynchronous Clear Minimum Pulse Width for the Core Register	0.46	ns
t _{WPRE}	Asynchronous Preset Minimum Pulse Width for the Core Register	0.46	ns
t _{CKMPWH}	Clock Minimum Pulse Width HIGH for the Core Register	0.95	ns
t _{CKMPWL}	Clock Minimum Pulse Width LOW for the Core Register	0.95	ns

🌜 Microsemi.

IGLOOe DC and Switching Characteristics

1.2 V DC Core Voltage

Table 2-141 • AGLE600 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.14 V

		Std.		
Parameter	Description	Min. ¹ Max. ²		Units
t _{RCKL}	Input Low Delay for Global Clock	2.22	2.67	ns
t _{RCKH}	Input High Delay for Global Clock	2.32 2.93		ns
t _{RCKMPWH}	Minimum Pulse Width HIGH for Global Clock	1.40		ns
t _{RCKMPWL}	Minimum Pulse Width LOW for Global Clock	1.65		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.61	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

Table 2-142 • AGLE3000 Global Resource Commercial-Case Conditions:

ommercial-Case Conditions: T _J = 70°0	C, VCC = 1.14 V
--	-----------------

		Std.		
Parameter	Description	Min. ¹ Max. ²		Units
t _{RCKL}	Input Low Delay for Global Clock	2.83	3.27	ns
t _{RCKH}	Input High Delay for Global Clock	3.00	3.61	ns
t _{RCKMPWH}	Minimum Pulse Width HIGH for Global Clock	1.40		ns
t _{RCKMPWL}	Minimum Pulse Width LOW for Global Clock	1.65		ns
t _{RCKSW}	Maximum Skew for Global Clock	0.61		ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

Microsemi. IGLOOe DC and Switching Characteristics

Table 2-144 • IGLOOe CCC/PLL Specification For IGLOOe V2 Devices, 1.2 V DC Core Supply Voltage

Parameter	Min.	Typ.	Max.	Units
Clock Conditioning Circuitry Input Frequency find and	1.5	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	160	MHz
Clock Conditioning Circuitry Output Frequency four coo	0.75		160	MHz
Serial Clock (SCI K) for Dynamic PLI ¹			60	MHz
Delay Increments in Programmable Delay Blocks ^{2, 3}		580 ⁴		ns
Number of Programmable Values in Each Programmable Delay Block			32	
Input Cycle-to-Cycle Jitter (peak magnitude)			0.25	ns
CCC Output Peak-to-Peak Period Jitter F _{CCC_OUT} ⁵	Max	Peak-to-Pe	ak Period Jitte	er
	1 Global Network Used	External FB Used	3 Global Networks Used	
0.75 MHz to 24 MHz	0.50%	0.75%	0.70%	
24 MHz to 100 MHz	1.00%	1.50%	1.20%	
100 MHz to 160 MHz	2.50%	3.75%	2.75%	
Acquisition Time				
LockControl = 0			300	μs
LockControl = 1			6.0	ms
Tracking Jitter ⁶				
LockControl = 0			4	ns
LockControl = 1			3	ns
Output Duty Cycle	48.5		51.5	%
Delay Range in Block: Programmable Delay 1 ^{2, 3, 7}	2.3		20.86	ns
Delay Range in Block: Programmable Delay 2 ^{2, 3, 7}	0.863		20.86	ns
Delay Range in Block: Fixed Delay ^{2, 3}		5.7		ns

Notes:

1. Maximum value obtained for a Std. speed grade device in Worst Case Commercial Conditions. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

This delay is a function of voltage and temperature. See Table 2-6 on page 2-6 and Table 2-7 on page 2-6 for deratings.
 T₁ = 25°C, VCC = 1.5 V

4. When the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay increments are available. Refer to the Libero SoC Online Help associated with the core for more information.

5. VCO output jitter is calculated as a percentage of the VCO frequency. The jitter (in ps) can be calculated by multiplying the VCO period by the per cent jitter. The VCO jitter (in ps) applies to CCC_OUT regardless of the output divider settings. For example, if the jitter on VCO is 300 ps, the jitter on CCC_OUT is also 300 ps, regardless of the output divider settings.

6. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to PLL input clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by period jitter parameter.

7. For definitions of Type 1 and Type 2, refer to the PLL Block Diagram in the "Clock Conditioning Circuits in IGLOO and ProASIC3 Devices" chapter of the IGLOOe FPGA Fabric User's Guide.

Embedded FlashROM Characteristics

Figure 2-55 • Timing Diagram

Timing Characteristics Applies to 1.5 V DC Core Voltage

Table 2-151 • Embedded FlashROM Access Time Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

Parameter	Description	Std.	Units
t _{SU}	Address Setup Time	0.58	ns
t _{HOLD}	Address Hold Time	0.00	ns
t _{CK2Q}	Clock-to-Out	34.14	ns
F _{MAX}	Maximum Clock Frequency	15	MHz

Applies to 1.2 V DC Core Voltage

Table 2-152 • Embedded FlashROM Access Time Commercial-Case Conditions: T_J = 70°C, VCC = 1.14 V

Parameter	Description	Std.	Units
t _{SU}	Address Setup Time	0.59	ns
t _{HOLD}	Address Hold Time	0.00	ns
t _{CK2Q}	Clock-to-Out	52.90	ns
F _{MAX}	Maximum Clock Frequency	10	MHz

Related Documents

User's Guides

IGLOOe FPGA Fabric User's Guide http://www.microsemi.com/soc/documents/IGLOOe UG.pdf

Packaging Documents

The following documents provide packaging information and device selection for low power flash devices.

Product Catalog

http://www.microsemi.com/soc/documents/ProdCat_PIB.pdf

Lists devices currently recommended for new designs and the packages available for each member of the family. Use this document or the datasheet tables to determine the best package for your design, and which package drawing to use.

Package Mechanical Drawings

http://www.microsemi.com/soc/documents/PckgMechDrwngs.pdf

This document contains the package mechanical drawings for all packages currently or previously supplied by Microsemi. Use the bookmarks to navigate to the package mechanical drawings.

Additional packaging materials: http://www.microsemi.com/soc/products/solutions/package/docs.aspx.

	FG484		FG484		FG484
Pin Number	AGLE3000 Function	Pin Number	AGLE3000 Function	Pin Number	AGLE3000 Function
H13	VCCIB1	K4	IO279NDB7V0	L17	GCA0/IO114NPB3V0
H14	VCCIB1	K5	IO283NDB7V1	L18	VCOMPLC
H15	VMV1	K6	IO281NDB7V0	L19	GCB0/IO113NPB2V3
H16	GBC2/IO84PDB2V0	K7	GFC1/IO275PPB7V0	L20	IO110PPB2V3
H17	IO83NDB2V0	K8	VCCIB7	L21	IO111NDB2V3
H18	IO100NDB2V2	K9	VCC	L22	IO111PDB2V3
H19	IO100PDB2V2	K10	GND	M1	GNDQ
H20	VCC	K11	GND	M2	IO255NPB6V2
H21	VMV2	K12	GND	M3	IO272NDB6V4
H22	IO105PDB2V2	K13	GND	M4	GFA2/IO272PDB6V4
J1	IO285NDB7V1	K14	VCC	M5	GFA1/IO273PDB6V4
J2	IO285PDB7V1	K15	VCCIB2	M6	VCCPLF
J3	VMV7	K16	GCC1/IO112PPB2V3	M7	IO271NDB6V4
J4	IO279PDB7V0	K17	IO108NDB2V3	M8	GFB2/IO271PDB6V4
J5	IO283PDB7V1	K18	IO108PDB2V3	M9	VCC
J6	IO281PDB7V0	K19	IO110NPB2V3	M10	GND
J7	IO287NDB7V1	K20	IO106NPB2V3	M11	GND
J8	VCCIB7	K21	IO109NDB2V3	M12	GND
J9	GND	K22	IO107NDB2V3	M13	GND
J10	VCC	L1	IO257PSB6V2	M14	VCC
J11	VCC	L2	IO276PDB7V0	M15	GCB2/IO116PPB3V0
J12	VCC	L3	IO276NDB7V0	M16	GCA1/IO114PPB3V0
J13	VCC	L4	GFB0/IO274NPB7V0	M17	GCC2/IO117PPB3V0
J14	GND	L5	GFA0/IO273NDB6V4	M18	VCCPLC
J15	VCCIB2	L6	GFB1/IO274PPB7V0	M19	GCA2/IO115PDB3V0
J16	IO84NDB2V0	L7	VCOMPLF	M20	IO115NDB3V0
J17	IO104NDB2V2	L8	GFC0/IO275NPB7V0	M21	IO126PDB3V1
J18	IO104PDB2V2	L9	VCC	M22	IO124PSB3V1
J19	IO106PPB2V3	L10	GND	N1	IO255PPB6V2
J20	GNDQ	L11	GND	N2	IO253NDB6V2
J21	IO109PDB2V3	L12	GND	N3	VMV6
J22	IO107PDB2V3	L13	GND	N4	GFC2/IO270PPB6V4
K1	IO277NDB7V0	L14	VCC	N5	IO261PPB6V3
K2	IO277PDB7V0	L15	GCC0/IO112NPB2V3	N6	IO263PDB6V3
K3	GNDQ	L16	GCB1/IO113PPB2V3	N7	IO263NDB6V3

FG896

Note: This is the bottom view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx.

FG896		FG896			FG896	
ıber	AGLE3000 Function	Pin Number	AGLE3000 Function	Pin Number	AGLE3000 Function	
6	IO87NDB2V0	N1	IO276PDB7V0	P6	GFC1/IO275PDB7V0	
,	IO97PDB2V1	N2	IO278PDB7V0	P7	GFC0/IO275NDB7V0	
	IO101PDB2V2	N3	IO280PDB7V0	P8	IO277PDB7V0	
	IO103PDB2V2	N4	IO284PDB7V1	P9	IO277NDB7V0	
	IO119NDB3V0	N5	IO279PDB7V0	P10	VCCIB7	
	IO282NDB7V1	N6	IO285NDB7V1	P11	VCC	
	IO282PDB7V1	N7	IO287NDB7V1	P12	GND	
	IO292NDB7V2	N8	IO281NDB7V0	P13	GND	
	IO292PDB7V2	N9	IO281PDB7V0	P14	GND	
	IO283NDB7V1	N10	VCCIB7	P15	GND	
	IO285PDB7V1	N11	VCC	P16	GND	
	IO287PDB7V1	N12	GND	P17	GND	
	IO289PDB7V1	N13	GND	P18	GND	
	IO289NDB7V1	N14	GND	P19	GND	
	VCCIB7	N15	GND	P20	VCC	
	VCC	N16	GND	P21	VCCIB2	
	GND	N17	GND	P22	GCC1/IO112PDB2V3	
	GND	N18	GND	P23	IO110PDB2V3	
	GND	N19	GND	P24	IO110NDB2V3	
	GND	N20	VCC	P25	IO109PPB2V3	
	GND	N21	VCCIB2	P26	IO111NPB2V3	
	GND	N22	IO106NDB2V3	P27	IO105PDB2V2	
	GND	N23	IO106PDB2V3	P28	IO105NDB2V2	
	GND	N24	IO108PDB2V3	P29	GCC2/IO117PDB3V0	
	VCC	N25	IO108NDB2V3	P30	IO117NDB3V0	
	VCCIB2	N26	IO95NDB2V1	R1	GFC2/IO270PDB6V4	
	NC	N27	IO99NDB2V2	R2	GFB1/IO274PPB7V0	
	IO104PPB2V2	N28	IO99PDB2V2	R3	VCOMPLF	
	IO102PDB2V2	N29	IO107PDB2V3	R4	GFA0/IO273NDB6V4	
	IO102NDB2V2	N30	IO107NDB2V3	R5	GFB0/IO274NPB7V0	
	IO95PDB2V1	P1	IO276NDB7V0	R6	IO271NDB6V4	
	IO97NDB2V1	P2	IO278NDB7V0	R7	GFB2/IO271PDB6V4	
	IO101NDB2V2	P3	IO280NDB7V0	R8	IO269PDB6V4	
	IO103NDB2V2	P4	IO284NDB7V1	R9	IO269NDB6V4	
	IO119PDB3V0	P5	IO279NDB7V0	R10	VCCIB7	
		· • • • • • • • • • • • • • • • • • • •				

Datasheet Information

Revision	Changes	Page
Revision 8 (Nov 2009)	The version changed to v2.0 for IGLOOe datasheet chapters, indicating the datasheet contains information based on final characterization.	N/A
Product Brief v2.0	The "Pro (Professional) I/O" section was revised to add "Hot-swappable and cold-sparing I/Os."	I
	The "Reprogrammable Flash Technology" section was revised to add "250 MHz (1.5 V systems) and 160 MHz (1.2 V systems) System Performance."	I
	Definitions of hot-swap and cold-sparing were added to the "Pro I/Os with Advanced I/O Standards" section.	1-7
DC and Switching Characteristics v2.0	$3.3~\rm V$ LVCMOS and $1.2~\rm V$ LVCMOS Wide Range support was added to the datasheet. This affects all tables that contained $3.3~\rm V$ LVCMOS and $1.2~\rm V$ LVCMOS data.	N/A
	IIL and IIH input leakage current information was added to all "Minimum and Maximum DC Input and Output Levels" tables.	N/A
	Values for 1.2 V wide range DC core supply voltage were added to Table 2-2 • Recommended Operating Conditions 1. Table notes regarding 3.3 V wide range and the core voltage required for programming were added to the table.	2-2
	The data in Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays (1.5 V DC core supply voltage) and Table 2-7 • Temperature and Voltage Derating Factors for Timing Delays (1.2 V DC core supply voltage) was revised.	2-6
	3.3 V LVCMOS wide range data was included in Table 2-13 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings and Table 2-14 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings1. Table notes were added in connection with this data.	2-9, 2-10
	The temperature was revised from 110°C to 100°C in Table 2-31 • Duration of Short Circuit Event before Failure and Table 2-33 • I/O Input Rise Time, Fall Time, and Related I/O Reliability*.	2-31, 2-31
	The tables in the "Overview of I/O Performance" section and "Detailed I/O DC Characteristics" sectionwere revised to include 3.3 V LVCMOS and 1.2 V LVCMOS wide range.	2-20, 2-28
	Most tables were updated in the following sections, revising existing values and adding information for 3.3 V and 1.2 V wide range: "Single-Ended I/O Characteristics" "Voltage-Referenced I/O Characteristics" "Differential I/O Characteristics"	2-32, 2-51, 2-62
	The value for "Delay range in block: fixed delay" was revised in Table 2-143 • IGLOOe CCC/PLL Specification and Table 2-144 • IGLOOe CCC/PLL Specification.	2-91, 2-92
	The timing characteristics tables for RAM4K9 and RAM512X18 were updated, including renaming of the address collision parameters.	2-98 – 2-101
Revision 7 (Apr 2009) Product Brief v1.4 DC and Switching Characteristics Advance v0.4	The –F speed grade is no longer offered for IGLOOe devices and was removed from the documentation. The speed grade column and note regarding –F speed grade were removed from "IGLOOe Ordering Information". The "Speed Grade and Temperature Grade Matrix" section was removed.	III, IV