

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	CPU32
Core Size	32-Bit Single-Core
Speed	16MHz
Connectivity	EBI/EMI, SCI, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	18
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	-
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	132-BQFP Bumpered
Supplier Device Package	132-PQFP (24.13x24.13)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc68331ceh16

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

331 144-PIN QFP

Table 7 SIM Address Map

Access	Address	15 8	5 8 7				
S	\$YFFA00	SIM CONFIGURATION (SIMCR)					
S	\$YFFA02	FACTORY T	EST (SIMTR)				
S	\$YFFA04	CLOCK SYNTHESIZE	R CONTROL (SYNCR)				
S	\$YFFA06	NOT USED	RESET STATUS REGISTER (RSR)				
S	\$YFFA08	MODULE TES	ST E (SIMTRE)				
S	\$YFFA0A	NOT USED	NOT USED				
S	\$YFFA0C	NOT USED	NOT USED				
S	\$YFFA0E	NOT USED	NOT USED				
S/U	\$YFFA10	NOT USED	PORT E DATA (PORTE0)				
S/U	\$YFFA12	NOT USED	PORT E DATA (PORTE1)				
S/U	\$YFFA14	NOT USED	PORT E DATA DIRECTION (DDRE)				
S	\$YFFA16	NOT USED	PORT E PIN ASSIGNMENT (PEPAR)				
S/U	\$YFFA18	NOT USED	PORT F DATA (PORTF0)				
S/U	\$YFFA1A	NOT USED	PORT F DATA (PORTF1)				
S/U	\$YFFA1C	NOT USED	PORT F DATA DIRECTION (DDRF)				
S	\$YFFA1E	NOT USED	PORT F PIN ASSIGNMENT (PFPAR)				
S	\$YFFA20	NOT USED	SYSTEM PROTECTION CONTROL (SYPCR)				
S	\$YFFA22	PERIODIC INTERRU	PT CONTROL (PICR)				
S	\$YFFA24	PERIODIC INTERR	UPT TIMING (PITR)				
S	\$YFFA26	NOT USED	SOFTWARE SERVICE (SWSR)				
S	\$YFFA28	NOT USED	NOT USED				
S	\$YFFA2A	NOT USED	NOT USED				
S	\$YFFA2C	NOT USED	NOT USED				
S	\$YFFA2E	NOT USED	NOT USED				
S	\$YFFA30	TEST MODULE MASTE	R SHIFT A (TSTMSRA)				
S	\$YFFA32	TEST MODULE MASTE	ER SHIFT B (TSTMSRB)				
S	\$YFFA34	TEST MODULE SHI	FT COUNT (TSTSC)				
S	\$YFFA36	TEST MODULE REPETIT	FION COUNTER (TSTRC)				
S	\$YFFA38	TEST MODULE C	CONTROL (CREG)				
S/U	\$YFFA3A	TEST MODULE DISTRIB	UTED REGISTER (DREG)				
	\$YFFA3C	NOT USED	NOT USED				
	\$YFFA3E	NOT USED	NOT USED				
S/U	\$YFFA40	NOT USED	PORT C DATA (PORTC)				
	\$YFFA42	NOT USED	NOT USED				
S	\$YFFA44	CHIP-SELECT PIN AS	SIGNMENT (CSPAR0)				
S	\$YFFA46	CHIP-SELECT PIN AS	SIGNMENT (CSPAR1)				
S	\$YFFA48	CHIP-SELECT BAS	E BOOT (CSBARBT)				
S	\$YFFA4A	CHIP-SELECT OPTI	ON BOOT (CSORBT)				
S	\$YFFA4C	CHIP-SELECT B	ASE 0 (CSBAR0)				
S	\$YFFA4E	CHIP-SELECT O	PTION 0 (CSOR0)				
S	\$YFFA50	CHIP-SELECT B	ASE 1 (CSBAR1)				
S	\$YFFA52	CHIP-SELECT O	PTION 1 (CSOR1)				
S	\$YFFA54	CHIP-SELECT B	ASE 2 (CSBAR2)				
S	\$YFFA56	CHIP-SELECT O	PTION 2 (CSOR2)				
S	\$YFFA58	CHIP-SELECT B	ASE 3 (CSBAR3)				
S	\$YFFA5A	CHIP-SELECT O	PTION 3 (CSOR3)				
S	\$YFFA5C	CHIP-SELECT B	ASE 4 (CSBAR4)				

SLVEN — Factory Test Mode Enabled

This bit is a read-only status bit that reflects the state of DATA11 during reset.

- 0 = IMB is not available to an external master.
- 1 = An external bus master has direct access to the IMB.

SHEN[1:0] — Show Cycle Enable

This field determines what the EBI does with the external bus during internal transfer operations. A show cycle allows internal transfers to be externally monitored. The table below shows whether show cycle data is driven externally, and whether external bus arbitration can occur. To prevent bus conflict, external peripherals must not be enabled during show cycles.

SHEN	Action
00	Show cycles disabled, external arbitration enabled
01	Show cycles enabled, external arbitration disabled
10	Show cycles enabled, external arbitration enabled
11	Show cycles enabled, external arbitration enabled, internal activity is halted by a bus grant

SUPV — Supervisor/Unrestricted Data Space

The SUPV bit places the SIM global registers in either supervisor or user data space.

- 0 = Registers with access controlled by the SUPV bit are accessible from either the user or supervisor privilege level.
- 1 = Registers with access controlled by the SUPV bit are restricted to supervisor access only.

MM — Module Mapping

- 0 = Internal modules are addressed from \$7FF000 -\$7FFFFF.
- 1 = Internal modules are addressed from \$FFF000 \$FFFFFF.

IARB[3:0] —Interrupt Arbitration Field

Each module that can generate interrupt requests has an interrupt arbitration (IARB) field. Arbitration between interrupt requests of the same priority is performed by serial contention between IARB field bit values. Contention must take place whenever an interrupt request is acknowledged, even when there is only a single pending request. An IARB field must have a non-zero value for contention to take place. If an interrupt request from a module with an IARB field value of %0000 is recognized, the CPU processes a spurious interrupt exception. Because the SIM routes external interrupt requests to the CPU, the SIM IARB field value is used for arbitration between internal and external interrupts of the same priority. The reset value of IARB for the SIM is %1111, and the reset IARB value for all other modules is %0000, which prevents SIM interrupts from being discarded during initialization.

3.2.2 System Protection Control Register

The system protection control register controls system monitor functions, software watchdog clock prescaling, and bus monitor timing. This register can be written only once following power-on or reset, but can be read at any time.

SYPCR —System Protection Control Registe	r							\$YFF	FA21
15	8	7	6	5	4	3	2	1	0
NOT USED		SWE	SWP	SV	VT	HME	BME	BN	MT
RESET:									
		1	MODCLK	0	0	0	0	0	0

SWE —Software Watchdog Enable

0 = Software watchdog disabled

1 = Software watchdog enabled

SWP —Software Watchdog Prescale

This bit controls the value of the software watchdog prescaler.

- 0 = Software watchdog clock not prescaled
- 1 = Software watchdog clock prescaled by 512

SWT[1:0] —Software Watchdog Timing

This field selects the divide ratio used to establish software watchdog time-out period. The following table gives the ratio for each combination of SWP and SWT bits.

SWP	SWT	Ratio
0	00	2 ⁹
0	01	2 ¹¹
0	10	2 ¹³
0	11	2 ¹⁵
1	00	2 ¹⁸
1	01	2 ²⁰
1	10	2 ²²
1	11	2 ²⁴

HME —Halt Monitor Enable

0 = Disable halt monitor function

1 = Enable halt monitor function

BME — Bus Monitor External Enable

0 = Disable bus monitor function for an internal to external bus cycle.

1 = Enable bus monitor function for an internal to external bus cycle.

BMT[1:0] —Bus Monitor Timing

This field selects a bus monitor time-out period as shown in the following table.

BMT	Bus Monitor Time-out Period
00	64 System Clocks
01	32 System Clocks
10	16 System Clocks
11	8 System Clocks

3.2.3 Bus Monitor

The internal bus monitor checks for excessively long DSACK response times during normal bus cycles and for excessively long DSACK or AVEC response times during interrupt acknowledge cycles. The monitor asserts BERR if response time is excessive.

DSACK and AVEC response times are measured in clock cycles. The maximum allowable response time can be selected by setting the BMT field.

The monitor does not check DSACK response on the external bus unless the CPU initiates the bus cycle. The BME bit in the SYPCR enables the internal bus monitor for internal to external bus cycles. If a system contains external bus masters, an external bus monitor must be implemented and the internal to external bus monitor option must be disabled.

3.2.4 Halt Monitor

The halt monitor responds to an assertion of \overline{HALT} on the internal bus. A flag in the reset status register (RSR) indicates that the last reset was caused by the halt monitor. The halt monitor reset can be inhibited by the HME bit in the SYPCR.

CHIP SEL BLOCK

Figure 9 Chip-Select Circuit Block Diagram

The following table lists allocation of chip-selects and discrete outputs on the pins of the MCU.

Pin	Chip Select	Discrete Outputs
CSBOOT	CSBOOT	_
BR	CS0	—
BG	CS1	_
BGACK	CS2	_
FC0	CS3	PC0
FC1	CS4	PC1
FC2	CS5	PC2
ADDR19	CS6	PC3
ADDR20	CS7	PC4
ADDR21	CS8	PC5
ADDR22	CS9	PC6
ADDR23	CS10	ECLK

3.5.1 Chip-Select Registers

Pin assignment registers CSPAR0 and CSPAR1 determine functions of chip-select pins. These registers also determine port size (8- or 16-bit) for dynamic bus allocation.

A pin data register (PORTC) latches discrete output data.

Blocks of addresses are assigned to each chip-select function. Block sizes of 2 Kbytes to 1 Mbyte can be selected by writing values to the appropriate base address register (CSBAR). Address blocks for separate chip-select functions can overlap.

Chip-select option registers (CSORBT and CSOR[10:0]) determine timing of and conditions for assertion of chip-select signals. Eight parameters, including operating mode, access size, synchronization, and wait state insertion can be specified.

Initialization code often resides in a peripheral memory device controlled by the chip-select circuits. A set of special chip-select functions and registers (CSORBT, CSBARBT) is provided to support bootstrap operation.

PORTF0, PORTF1 — Port F Data Register						\$`	YFFA1	9, \$YF	FA1B
15	8	7	6	5	4	3	2	1	0
NOT USED		PF7	PF6	PF5	PF4	PF3	PF2	PF1	PF0
RESET:								-	
		U	U	U	U	U	U	U	U

The write to the port F data register is stored in the internal data latch, and if any port F pin is configured as an output, the value stored for that bit is driven onto the pin. A read of the port F data register returns the value at the pin only if the pin is configured as a discrete input. Otherwise, the value read is the value stored in the register.

The port F data register is a single register that can be accessed in two locations. When accessed at \$YFFA19, the register is referred to as PORTF0; when accessed at \$YFFA1B, the register is referred to as PORTF1. The register can be read or written at any time. It is unaffected by reset.

DDRF — Port F Data Direction Register								\$YF	FA1D
15	8	7	6	5	4	3	2	1	0
NOT USED		DDF7	DDF6	DDF5	DDF4	DDF3	DDF2	DDF1	DDF0
RESET:									
		0	0	0	0	0	0	0	0

The bits in this register control the direction of the pin drivers when the pins are configured for I/O. Any bit in this register set to one configures the corresponding pin as an output. Any bit in this register cleared to zero configures the corresponding pin as an input.

PFPAR — Port F Pin Assignment Register								\$YF	FA1F
15	8	7	6	5	4	3	2	1	0
NOT USED		PFPA7	PFPA6	PFPA5	PFPA4	PFPA3	PFPA2	PFPA1	PFPA0
RESET:									

DATA9 DATA9 DATA9 DATA9 DATA9 DATA9 DATA9 DATA9

The bits in this register control the function of each port F pin. Any bit cleared to zero defines the corresponding pin to be an I/O pin. Any bit set to one defines the corresponding pin to be an interrupt request signal or MODCLK. The MODCLK signal has no function after reset.

PFPAR Field	Port F Signal	Alternate Signal
PFPA7	PF7	IRQ7
PFPA6	PF6	IRQ6
PFPA5	PF5	IRQ5
PFPA4	PF4	IRQ4
PFPA3	PF3	IRQ3
PFPA2	PF2	IRQ2
PFPA1	PF1	IRQ1
PFPA0	PF0	MODCLK

Table 17 Port F Pin Assignments

Data bus pin 9 controls the state of this register following reset. If DATA9 is set to one during reset, the register is set to \$FF, which defines all port F pins as interrupt request inputs. If DATA9 is cleared to zero during reset, this register is set to \$00, defining all port F pins as I/O pins.

3.7 Resets

Reset procedures handle system initialization and recovery from catastrophic failure. The MCU performs resets with a combination of hardware and software. The system integration module determines whether a reset is valid, asserts control signals, performs basic system configuration based on hardware mode-select inputs, then passes control to the CPU.

Reset occurs when an active low logic level on the RESET pin is clocked into the SIM. Resets are gated by the CLKOUT signal. Asynchronous resets are assumed to be catastrophic. An asynchronous reset can occur on any clock edge. Synchronous resets are timed to occur at the end of bus cycles. If there is no clock when RESET is asserted, reset does not occur until the clock starts. Resets are clocked in order to allow completion of write cycles in progress at the time RESET is asserted.

Reset is the highest-priority CPU32 exception. Any processing in progress is aborted by the reset exception, and cannot be restarted. Only essential tasks are performed during reset exception processing. Other initialization tasks must be accomplished by the exception handler routine.

3.7.1 SIM Reset Mode Selection

The logic states of certain data bus pins during reset determine SIM operating configuration. In addition, the state of the MODCLK pin determines system clock source and the state of the BKPT pin determines what happens during subsequent breakpoint assertions. The following table is a summary of reset mode selection options.

Mode Select Pin	Default Function (Pin Left High)	Alternate Function (Pin Pulled Low)			
DATA0	CSBOOT 16-Bit	CSBOOT 8-Bit			
DATA1	CSO	BR			
	CS1	BG			
	CS2	BGACK			
DATA2	CS3	FC0			
	CS4	FC1			
	CS5	FC2			
DATA3	CS6	ADDR19			
DATA4	CS[7:6]	ADDR[20:19]			
DATA5	CS[8:6]	ADDR[21:19]			
DATA6	CS[9:6]	ADDR[22:19]			
DATA7	CS[10:6]	ADDR[23:19]			
DATA8	DSACK0, DSACK1,	PORTE			
	AVEC, DS, AS,				
	SIZ[1:0]				
DATA9	IRQ[7:1]	PORTF			
	MODCLK				
DATA11	Test Mode Disabled	Test Mode Enabled			
MODCLK	VCO = System Clock	EXTAL = System Clock			
BKPT	Background Mode Disabled	Background Mode Enabled			

Table 18 Reset Mode Selection

3.7.2 Functions of Pins for Other Modules During Reset

Generally, pins associated with modules other than the SIM default to port functions, and input/output ports are set to input state. This is accomplished by disabling pin functions in the appropriate control registers, and by clearing the appropriate port data direction registers. Refer to individual module sections in this manual for more information. The following table is a summary of module pin function out of reset.

3.8.2 Interrupt Processing Summary

A summary of the interrupt processing sequence follows. When the sequence begins, a valid interrupt service request has been detected and is pending.

- A. The CPU finishes higher priority exception processing or reaches an instruction boundary.
- B. Processor state is stacked. The contents of the status register and program counter are saved.
- C. The interrupt acknowledge cycle begins:
 - 1. FC[2:0] are driven to %111 (CPU space) encoding.
 - 2. The address bus is driven as follows. ADDR[23:20] = %1111; ADDR[19:16] = %1111, which indicates that the cycle is an interrupt acknowledge CPU space cycle; ADDR[15:4] = %111111111111; ADDR[3:1] = the level of the interrupt request being acknowledged; and ADDR0 = %1.
 - 3. Request priority level is latched into the IP field in the status register from the address bus.
- D. Modules or external peripherals that have requested interrupt service decode the request level in ADDR[3:1]. If the request level of at least one interrupting module or device is the same as the value in ADDR[3:1], interrupt arbitration contention takes place. When there is no contention, the spurious interrupt monitor asserts BERR, and a spurious interrupt exception is processed.
- E. After arbitration, the interrupt acknowledge cycle can be completed in one of three ways:
 - 1. The dominant interrupt source supplies a vector number and DSACK signals appropriate to the access. The CPU32 acquires the vector number.
 - 2. The AVEC signal is asserted (the signal can be asserted by the dominant interrupt source or the pin can be tied low), and the CPU32 generates an autovector number corresponding to interrupt priority.
 - 3. The bus monitor asserts BERR and the CPU32 generates the spurious interrupt vector number.
- F. The vector number is converted to a vector address.
- G. The content of the vector address is loaded into the PC, and the processor transfers control to the exception handler routine.

3.9 Factory Test Block

The test submodule supports scan-based testing of the various MCU modules. It is integrated into the SIM to support production testing.

Test submodule registers are intended for Motorola use. Register names and addresses are provided to indicate that these addresses are occupied.

SIMTR — System Integration Module Test Register	\$YFFA02
SIMTRE — System Integration Module Test Register (E Clock)	\$YFFA08
TSTMSRA — Master Shift Register A	\$YFFA30
TSTMSRB — Master Shift Register B	\$YFFA32
TSTSC — Test Module Shift Count	\$YFFA34
TSTRC — Test Module Repetition Count	\$YFFA36
CREG — Test Module Control Register	\$YFFA38
DREG — Test Module Distributed Register	\$YFFA3A

Freescale Semiconductor, Inc.

4.7 Background Debugging Mode

The background debugger on the CPU32 is implemented in CPU microcode. The background debugging commands are summarized below.

Command	Mnemonic	Description
Read D/A Register	RDREG/RAREG	Read the selected address or data register and return the results through the serial interface.
Write D/A Register	WDREG/WAREG	The data operand is written to the specified address or data register.
Read System Register	RSREG	The specified system control register is read. All registers that can be read in supervisor mode can be read in background mode.
Write System Register	WSREG	The operand data is written into the specified system control register.
Read Memory Location	READ	Read the sized data at the memory location specified by the long-word address. The source function code register (SFC) determines the address space accessed.
Write Memory Location	WRITE	Write the operand data to the memory location specified by the long-word address. The destination function code (DFC) register determines the address space accessed.
Dump Memory Block	DUMP	Used in conjunction with the READ command to dump large blocks of memory. An initial READ is executed to set up the starting address of the block and retrieve the first result. Subsequent operands are retrieved with the DUMP command.
Fill Memory Block	FILL	Used in conjunction with the WRITE command to fill large blocks of memory. Initially, a WRITE is executed to set up the starting address of the block and supply the first operand. The FILL command writes subsequent operands.
Resume Execution	GO	The pipe is flushed and refilled before resuming instruction execution at the current PC.
Patch User Code	CALL	Current program counter is stacked at the location of the current stack pointer. Instruction execution begins at user patch code.
Reset Peripherals	RST	Asserts RESET for 512 clock cycles. The CPU is not reset by this command. Synonymous with the CPU RESET instruction.
No Operation	NOP	NOP performs no operation and can be used as a null command.

Table 21 Background Debugging Mode

5 Queued Serial Module

The QSM contains two serial interfaces, the queued serial peripheral interface (QSPI) and the serial communication interface (SCI).

Figure 12 QSM Block Diagram

5.1 Overview

The QSPI provides easy peripheral expansion or interprocessor communication through a full-duplex, synchronous, three-line bus: data in, data out, and a serial clock. Four programmable peripheral chipselect pins provide addressability for up to 16 peripheral devices. A self-contained RAM queue allows up to 16 serial transfers of 8 to 16 bits each, or transmission of a 256-bit data stream without CPU intervention. A special wraparound mode supports continuous sampling of a serial peripheral, with automatic QSPI RAM updating, which makes the interface to A/D converters more efficient.

The SCI provides a standard nonreturn to zero (NRZ) mark/space format. It operates in either full- or half-duplex mode. There are separate transmitter and receiver enable bits and dual data buffers. A modulus-type baud rate generator provides rates from 64 to 524 kbaud with a 16.78-MHz system clock, or 110 to 655 kbaud with a 20.97 MHz system clock. Word length of either 8 or 9 bits is software selectable. Optional parity generation and detection provide either even or odd parity check capability. Advanced error detection circuitry catches glitches of up to 1/16 of a bit time in duration. Wakeup functions allow the CPU to run uninterrupted until meaningful data is available.

An address map of the QSM is shown below. The "Access" column indicates which registers are accessible only at the supervisor privilege level and which can be assigned to either the supervisor or user privilege level, according to the value of the SUPV bit in the QSMCR.

OSM BLOCK

DDRQS determines whether pins are inputs or outputs. Clearing a bit makes the corresponding pin an input; setting a bit makes the pin an output. DDRQS affects both QSPI function and I/O function.

QSM Pin	Mode	DDRQS Bit	Bit State	Pin Function
MISO	Master	DDQ0	0	Serial Data Input to QSPI
			1	Disables Data Input
	Slave		0	Disables Data Output
			1	Serial Data Output from QSPI
MOSI	Master	DDQ1	0	Disables Data Output
			1	Serial Data Output from QSPI
	Slave		0	Serial Data Input to QSPI
			1	Disables Data Input
SCK ¹	Master	DDQ2	0	Disables Clock Output
			1	Clock Output from QSPI
	Slave		0	Clock Input to QSPI
			1	Disables Clock Input
PCS0/SS	Master	DDQ3	0	Assertion Causes Mode Fault
			1	Chip-Select Output
	Slave		0	QSPI Slave Select Input
			1	Disables Select Input
PCS[3:1]	Master	DDQ[4:6]	0	Disables Chip-Select Output
			1	Chip-Select Output
	Slave		0	Inactive
			1	Inactive
TXD ²	Transmit	DDQ7	Х	Serial Data Output from SCI
RXD	Receive	None	NA	Serial Data Input to SCI

Table 24 Effect of DDRQS on QSM Pin Function

NOTES:

1. PQS2 is a digital I/O pin unless the SPI is enabled (SPE in SPCR1 set), in which case it becomes SPI serial clock SCK.

2. PQS7 is a digital I/O pin unless the SCI transmitter is enabled (TE in SCCR1 = 1), in which case it becomes SCI serial output TXD.

DDRQS determines the direction of the TXD pin only when the SCI transmitter is disabled. When the SCI transmitter is enabled, the TXD pin is an output.

5.4 QSPI Submodule

The QSPI submodule communicates with external devices through a synchronous serial bus. The QSPI is fully compatible with the serial peripheral interface (SPI) systems found on other Motorola products. A block diagram of the QSPI is shown below.

Figure 13 QSPI Block Diagram

5.4.1 QSPI Pins

Seven pins are associated with the QSPI. When not needed for a QSPI application, they can be configured as general-purpose I/O pins. The PCS0/SS pin can function as a peripheral chip select output, slave select input, or general-purpose I/O. Refer to the following table for QSPI input and output pins and their functions.

MSTR — Master/Slave Mode Select

0 = QSPI is a slave device and only responds to externally generated serial data.

1 = QSPI is system master and can initiate transmission to external SPI devices.

MSTR configures the QSPI for either master or slave mode operation. This bit is cleared on reset and may only be written by the CPU.

WOMQ — Wired-OR Mode for QSPI Pins

0 = Outputs have normal MOS drivers.

1 = Pins designated for output by DDRQS have open-drain drivers.

WOMQ allows the wired-OR function to be used on QSPI pins, regardless of whether they are used as general-purpose outputs or as QSPI outputs. WOMQ affects the QSPI pins regardless of whether the QSPI is enabled or disabled.

BITS — Bits Per Transfer

In master mode, when BITSE in a command is set, the BITS field determines the number of data bits transferred. When BITSE is cleared, eight bits are transferred. Reserved values default to eight bits. BITSE is not used in slave mode.

The following table shows the number of bits per transfer.

BITS	Bits per Transfer
0000	16
0001	Reserved
0010	Reserved
0011	Reserved
0100	Reserved
0101	Reserved
0110	Reserved
0111	Reserved
1000	8
1001	9
1010	10
1011	11
1100	12
1101	13
1110	14
1111	15

CPOL — Clock Polarity

0 = The inactive state value of SCK is logic level zero.

1 = The inactive state value of SCK is logic level one.

CPOL is used to determine the inactive state value of the serial clock (SCK). It is used with CPHA to produce a desired clock/data relationship between master and slave devices.

CPHA — Clock Phase

0 = Data is captured on the leading edge of SCK and changed on the following edge of SCK.

1 = Data is changed on the leading edge of SCK and captured on the following edge of SCK. CPHA determines which edge of SCK causes data to change and which edge causes data to be captured. CPHA is used with CPOL to produce a desired clock/data relationship between master and slave devices. CPHA is set at reset.

Command RAM consists of 16 bytes. Each byte is divided into two fields. The peripheral chip-select field enables peripherals for transfer. The command control field provides transfer options.

A maximum of 16 commands can be in the queue. Queue execution by the QSPI proceeds from the address in NEWQP through the address in ENDQP. (Both of these fields are in SPCR2.)

CONT — Continue

0 = Control of chip selects returned to PORTQS after transfer is complete.

1 = Peripheral chip selects remain asserted after transfer is complete.

BITSE — Bits per Transfer Enable

0 = 8 bits

1 = Number of bits set in BITS field of SPCR0

DT — Delay after Transfer

The QSPI provides a variable delay at the end of serial transfer to facilitate the interface with peripherals that have a latency requirement. The delay between transfers is determined by the SPCR1 DTL field.

DSCK — PCS to SCK Delay

0 = PCS valid to SCK transition is one-half SCK.

1 = SPCR1 DSCKL field specifies delay from PCS valid to SCK.

PCS[3:0] — Peripheral Chip Select

Use peripheral chip-select bits to select an external device for serial data transfer. More than one peripheral chip select can be activated at a time, and more than one peripheral chip can be connected to each PCS pin, provided that proper fanout is observed.

SS — Slave Mode Select

Initiates slave mode serial transfer. If SS is taken low when the QSPI is in master mode, a mode fault will be generated.

5.4.4 Operating Modes

The QSPI operates in either master or slave mode. Master mode is used when the MCU originates data transfers. Slave mode is used when an external device initiates serial transfers to the MCU through the QSPI. Switching between the modes is controlled by MSTR in SPCR0. Before entering either mode, appropriate QSM and QSPI registers must be properly initialized.

In master mode, the QSPI executes a queue of commands defined by control bits in each command RAM queue entry. Chip-select pins are activated, data is transmitted from transmit RAM and received into receive RAM.

In slave mode, operation proceeds in response to \overline{SS} pin activation by an external bus master. Operation is similar to master mode, but no peripheral chip selects are generated, and the number of bits transferred is controlled in a different manner. When the QSPI is selected, it automatically executes the next queue transfer to exchange data with the external device correctly.

Although the QSPI inherently supports multimaster operation, no special arbitration mechanism is provided. A mode fault flag (MODF) indicates a request for SPI master arbitration. System software must provide arbitration. Note that unlike previous SPI systems, MSTR is not cleared by a mode fault being set, nor are the QSPI pin output drivers disabled. The QSPI and associated output drivers must be disabled by clearing SPE in SPCR1.

5.5 SCI Submodule

The SCI submodule is used to communicate with external devices through an asynchronous serial bus. The SCI is fully compatible with the SCI systems found on other Motorola MCUs, such as the M68HC11 and M68HC05 Families.

5.5.1 SCI Pins

There are two unidirectional pins associated with the SCI. The SCI controls the transmit data (TXD) pin when enabled, whereas the receive data (RXD) pin remains a dedicated input pin to the SCI. TXD is available as a general-purpose I/O pin when the SCI transmitter is disabled. When used for I/O, TXD can be configured either as input or output, as determined by QSM register DDRQS.

The following table shows SCI pins and their functions.

Pin Names	Mnemonics	Mode	Function
Receive Data	RXD	Receiver Disabled Receiver Enabled	Not Used Serial Data Input to SCI
Transmit Data	TXD	Transmitter Disabled Transmitter Enabled	General-Purpose I/O Serial Data Output from SCI

5.5.2 SCI Registers

The SCI programming model includes QSM global and pin control registers, and four SCI registers. There are two SCI control registers, one status register, and one data register. All registers can be read or written at any time by the CPU.

Changing the value of SCI control bits during a transfer operation may disrupt operation. Before changing register values, allow the transmitter to complete the current transfer, then disable the receiver and transmitter. Status flags in the SCSR may be cleared at any time.

SCCR0 — SCI Control Register 0													\$YF	FC08	
15	14	13	12												0
0	0	0		SCBR											
RESET:															
0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0

SCCR0 contains a baud rate selection parameter. Baud rate must be set before the SCI is enabled. The CPU can read and write this register at any time.

Bits [15:13] — Not Implemented

SCBR — Baud Rate

SCI baud rate is programmed by writing a 13-bit value to BR. The baud rate is derived from the MCU system clock by a modulus counter.

The SCI receiver operates asynchronously. An internal clock is necessary to synchronize with an incoming data stream. The SCI baud rate generator produces a receiver sampling clock with a frequency 16 times that of the expected baud rate of the incoming data. The SCI determines the position of bit boundaries from transitions within the received waveform, and adjusts sampling points to the proper positions within the bit period. Receiver sampling rate is always 16 times the frequency of the SCI baud rate, which is calculated as follows:

SCI Baud Rate = System Clock/(32SCBR)

or

SCBR = System Clock(32SCK)(Baud Rate Desired)

where SCBR is in the range $\{1, 2, 3, ..., 8191\}$

Writing a value of zero to SCBR disables the baud rate generator.

The following table lists the SCBR settings for standard and maximum baud rates using 16.78-MHz and 20.97-MHz system clocks.

- PT Parity Type
 - 0 = Even parity

1 = Odd parity

When parity is enabled, PT determines whether parity is even or odd for both the receiver and the transmitter.

PE — Parity Enable

0 = SCI parity disabled

1 = SCI parity enabled

PE determines whether parity is enabled or disabled for both the receiver and the transmitter. If the received parity bit is not correct, the SCI sets the PF error flag in SCSR.

When PE is set, the most significant bit (MSB) of the data field is used for the parity function, which results in either seven or eight bits of user data, depending on the condition of M bit. The following table lists the available choices.

М	PE	Result
0	0	8 Data Bits
0	1	7 Data Bits, 1 Parity Bit
1	0	9 Data Bits
1	1	8 Data Bits, 1 Parity Bit

M — Mode Select

0 = SCI frame: 1 start bit, 8 data bits, 1 stop bit (10 bits total)

1 = SCI frame: 1 start bit, 9 data bits, 1 stop bit (11 bits total)

WAKE — Wakeup by Address Mark

0 = SCI receiver awakened by idle-line detection

1 = SCI receiver awakened by address mark (last bit set)

- TIE Transmit Interrupt Enable
 - 0 = SCI TDRE interrupts inhibited
 - 1 = SCI TDRE interrupts enabled
- TCIE Transmit Complete Interrupt Enable
 - 0 = SCI TC interrupts inhibited
 - 1 = SCI TC interrupts enabled
- RIE Receiver Interrupt Enable
 - 0 = SCI RDRF interrupt inhibited
 - 1 = SCI RDRF interrupt enabled

ILIE — Idle-Line Interrupt Enable

- 0 = SCI IDLE interrupts inhibited
- 1 = SCI IDLE interrupts enabled

TE — Transmitter Enable

0 = SCI transmitter disabled (TXD pin may be used as I/O)

1 = SCI transmitter enabled (TXD pin dedicated to SCI transmitter)

The transmitter retains control of the TXD pin until completion of any character transfer in progress when TE is cleared.

RE — Receiver Enable

- 0 = SCI receiver disabled (status bits inhibited)
- 1 = SCI receiver enabled

RAF — Receiver Active Flag

0 = SCI receiver is idle

1 = SCI receiver is busy

RAF indicates whether the SCI receiver is busy. It is set when the receiver detects a possible start bit and is cleared when the chosen type of idle line is detected. RAF can be used to reduce collisions in systems with multiple masters.

IDLE — Idle-Line Detected Flag

0 = SCI receiver did not detect an idle-line condition.

1 = SCI receiver detected an idle-line condition.

IDLE is disabled when RWU in SCCR1 is set. IDLE is set when the SCI receiver detects the idle-line condition specified by ILT in SCCR1. If cleared, IDLE will not set again until after RDRF is set. RDRF is set when a break is received, so that a subsequent idle line can be detected.

OR — Overrun Error Flag

0 = RDRF is cleared before new data arrives.

1 = RDRF is not cleared before new data arrives.

OR is set when a new byte is ready to be transferred from the receive serial shifter to the RDR, and RDRF is still set. Data transfer is inhibited until OR is cleared. Previous data in RDR remains valid, but data received during overrun condition (including the byte that set OR) is lost.

NF — Noise Error Flag

- 0 = No noise detected on the received data
- 1 = Noise occurred on the received data

NF is set when the SCI receiver detects noise on a valid start bit, on any data bit, or on a stop bit. It is not set by noise on the idle line or on invalid start bits. Each bit is sampled three times. If none of the three samples are the same logic level, the majority value is used for the received data value, and NF is set. NF is not set until an entire frame is received and RDRF is set.

FE — Framing Error Flag

0 = No framing error on the received data.

1 = Framing error or break occurred on the received data.

FE is set when the SCI receiver detects a zero where a stop bit was to have occurred. FE is not set until the entire frame is received and RDRF is set. A break can also cause FE to be set. It is possible to miss a framing error if RXD happens to be at logic level one at the time the stop bit is expected.

PF — Parity Error Flag

0 = No parity error on the received data

1 = Parity error occurred on the received data

PF is set when the SCI receiver detects a parity error. PF is not set until the entire frame is received and RDRF is set.

SCDR — SCI Data Register \$YF												FC0E			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	R8/T8	R7/T7	R6/T6	R5/T5	R4/T4	R3/T3	R2/T2	R1/T1	R0/T0
RESET:															
٥	٥	٥	٥	٥	٥	٥		П	П						

SCDR contains two data registers at the same address. Receive data register (RDR) is a read-only register that contains data received by the SCI. The data comes into the receive serial shifter and is transferred to RDR. Transmit data register (TDR) is a write-only register that contains data to be transmitted. The data is first written to TDR, then transferred to the transmit serial shifter, where additional format bits are added before transmission. R[7:0]/T[7:0] contain either the first eight data bits received when SCDR is read, or the first eight data bits to be transmitted when SCDR is written. R8/T8 are used when the SCI is configured for 9-bit operation. When it is configured for 8-bit operation, they have no meaning or effect.

6.3 Pulse-Width Modulator

The pulse-width modulation submodule has two output pins. The outputs are periodic waveforms controlled by a single frequency whose duty cycles can be independently selected and modified by user software. Each PWM can be independently programmed to run in fast or slow mode. The PWM unit has its own 16-bit free-running counter, which is clocked by an output of the nine-stage prescaler (the same prescaler used by the capture/compare unit) or by the clock input pin, PCLK.

6.4 GPT Registers **GPTMCR** — GPT Module Configuration Register **\$YFF900** 15 14 13 12 11 10 9 7 5 3 0 8 6 4 STOP FRZ1 FRZ0 STOPP INCP SUPV 0 0 IARB 0 0 0 0 RESET: 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 The GPTMCR contains parameters for configuring the GPT. STOP — Stop Clocks 0 = Internal clocks not shut down 1 = Internal clocks shut down FRZ1 — Not implemented at this time FRZ0 — FREEZE Response 0 = Ignore FREEZE 1 = FREEZE the current state of the GPT STOPP — Stop Prescaler 0 = Normal operation1 = Stop prescaler and pulse accumulator from incrementing. Ignore changes to input pins. **INCP** — Increment Prescaler 0 = Has no meaning 1 = If STOPP is asserted, increment prescaler once and clock input synchronizers once. SUPV — Supervisor/Unrestricted Data Space 0 = Registers with access controlled by SUPV bit are accessible from either user or supervisor privilege level. 1 = Registers with access controlled by SUPV bit are restricted to supervisor access only. IARB — Interrupt Arbitration Field The IARB field is used to arbitrate between simultaneous interrupt requests of the same priority. Each module that can generate interrupt requests must be assigned a unique, non-zero IARB field value. Refer to 3.8 Interrupts for more information. MTR — GPT Module Test Register (Reserved) **\$YFF902** This address is currently unused and returns zeros if read. It is reserved for GPT factory test. **ICR** — GPT Interrupt Configuration Register **\$YFF904** 8 7 IPL IVBA 15 3 2 0 0 0 IPA

RESET:			•	•			•								
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

IPA — Interrupt Priority Adjust

Specifies which GPT interrupt source is given highest internal priority

IPL — Interrupt Priority Level

Specifies the priority level of interrupts generated by the GPT.

IVBA — Interrupt Vector Base Address

Most significant nibble of interrupt vector number generated by the GPT when an interrupt service request is acknowledged.