E·XFL

Altera - EPF10K100ABC356-1N Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	624
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	274
Number of Gates	-
Voltage - Supply	3V ~ 3.6V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	356-LBGA
Supplier Device Package	356-BGA (35x35)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=epf10k100abc356-1n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FLEX 10K Embedded Programmable Logic Device Family Data Sheet

Device	84-Pin PLCC	100-Pin TQFP	144-Pin TQFP	208-Pin PQFP RQFP	240-Pin PQFP RQFP
EPF10K10	59		102	134	
EPF10K10A		66	102	134	
EPF10K20			102	147	189
EPF10K30				147	189
EPF10K30A			102	147	189
EPF10K40				147	189
EPF10K50					189
EPF10K50V					189
EPF10K70					189
EPF10K100					
EPF10K100A					189
EPF10K130V					
EPF10K250A					

Device	503-Pin	599-Pin	256-Pin	356-Pin	484-Pin	600-Pin	403-Pin
	PGA	PGA	FineLine BGA	BGA	FineLine BGA	BGA	PGA
EPF10K10							
EPF10K10A			150		150 (2)		
EPF10K20							
EPF10K30				246			
EPF10K30A			191	246	246		
EPF10K40							
EPF10K50				274			310
EPF10K50V				274			
EPF10K70	358						
EPF10K100	406						
EPF10K100A				274	369	406	
EPF10K130V		470				470	
EPF10K250A		470				470	

Г

Notes to tables:

- (1)FLEX 10K and FLEX 10KA device package types include plastic J-lead chip carrier (PLCC), thin quad flat pack (TQFP), plastic quad flat pack (PQFP), power quad flat pack (RQFP), ball-grid array (BGA), pin-grid array (PGA), and FineLine BGA[™] packages.
- This option is supported with a 256-pin FineLine BGA package. By using SameFrame pin migration, all FineLine (2) BGA packages are pin compatible. For example, a board can be designed to support both 256-pin and 484-pin FineLine BGA packages. The Altera software automatically avoids conflicting pins when future migration is set.

General Description

Altera's FLEX 10K devices are the industry's first embedded PLDs. Based on reconfigurable CMOS SRAM elements, the Flexible Logic Element MatriX (FLEX) architecture incorporates all features necessary to implement common gate array megafunctions. With up to 250,000 gates, the FLEX 10K family provides the density, speed, and features to integrate entire systems, including multiple 32-bit buses, into a single device.

FLEX 10K devices are reconfigurable, which allows 100% testing prior to shipment. As a result, the designer is not required to generate test vectors for fault coverage purposes. Additionally, the designer does not need to manage inventories of different ASIC designs; FLEX 10K devices can be configured on the board for the specific functionality required.

Table 6 shows FLEX 10K performance for some common designs. All performance values were obtained with Synopsys DesignWare or LPM functions. No special design technique was required to implement the applications; the designer simply inferred or instantiated a function in a Verilog HDL, VHDL, Altera Hardware Description Language (AHDL), or schematic design file.

Table 6. FLEX 10K &	FLEX	IOKA Pe	erformance						
Application	Resources Used			Performance					
	LEs	EABs	-1 Speed Grade	-2 Speed Grade	-3 Speed Grade	-4 Speed Grade			
16-bit loadable counter (1)	16	0	204	166	125	95	MHz		
16-bit accumulator (1)	16	0	204	166	125	95	MHz		
16-to-1 multiplexer (2)	10	0	4.2	5.8	6.0	7.0	ns		
256×8 RAM read cycle speed (3)	0	1	172	145	108	84	MHz		
256×8 RAM write cycle speed (3)	0	1	106	89	68	63	MHz		

Notes:

(1) The speed grade of this application is limited because of clock high and low specifications.

This application uses combinatorial inputs and outputs. (2)

This application uses registered inputs and outputs. (3)

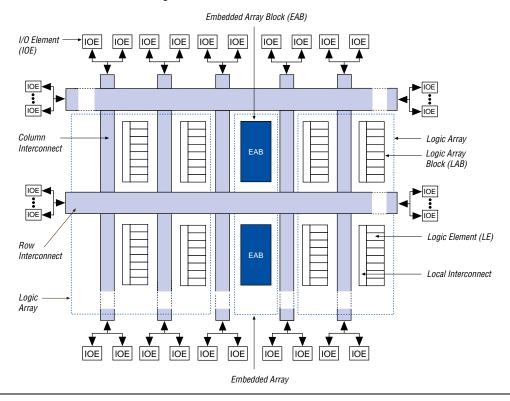
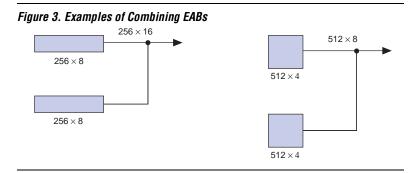
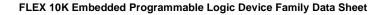
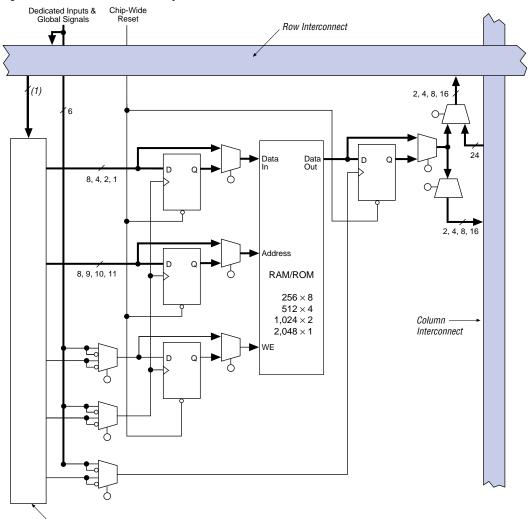



Figure 1. FLEX 10K Device Block Diagram

FLEX 10K devices provide six dedicated inputs that drive the flipflops' control inputs to ensure the efficient distribution of high-speed, low-skew (less than 1.5 ns) control signals. These signals use dedicated routing channels that provide shorter delays and lower skews than the FastTrack Interconnect. Four of the dedicated inputs drive four global signals. These four global signals can also be driven by internal logic, providing an ideal solution for a clock divider or an internally generated asynchronous clear signal that clears many registers in the device.

Embedded Array Block


The EAB is a flexible block of RAM with registers on the input and output ports, and is used to implement common gate array megafunctions. The EAB is also suitable for functions such as multipliers, vector scalars, and error correction circuits, because it is large and flexible. These functions can be combined in applications such as digital filters and microcontrollers. Larger blocks of RAM are created by combining multiple EABs. For example, two 256×8 RAM blocks can be combined to form a 256×16 RAM block; two 512×4 blocks of RAM can be combined to form a 512×8 RAM block. See Figure 3.

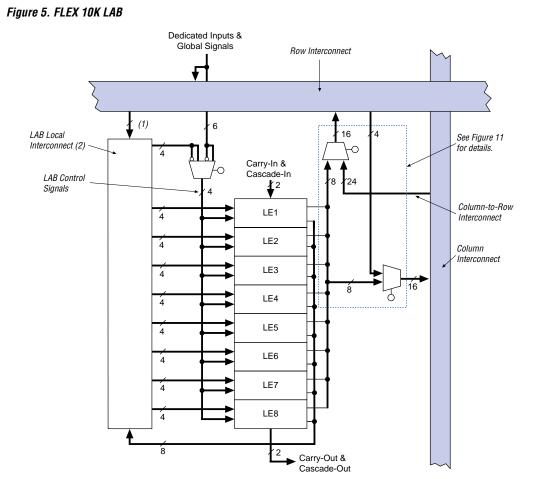


If necessary, all EABs in a device can be cascaded to form a single RAM block. EABs can be cascaded to form RAM blocks of up to 2,048 words without impacting timing. Altera's software automatically combines EABs to meet a designer's RAM specifications.

EABs provide flexible options for driving and controlling clock signals. Different clocks can be used for the EAB inputs and outputs. Registers can be independently inserted on the data input, EAB output, or the address and WE inputs. The global signals and the EAB local interconnect can drive the WE signal. The global signals, dedicated clock pins, and EAB local interconnect can drive the EAB clock signals. Because the LEs drive the EAB local interconnect, the LEs can control the WE signal or the EAB clock signals.

Each EAB is fed by a row interconnect and can drive out to row and column interconnects. Each EAB output can drive up to two row channels and up to two column channels; the unused row channel can be driven by other LEs. This feature increases the routing resources available for EAB outputs. See Figure 4.

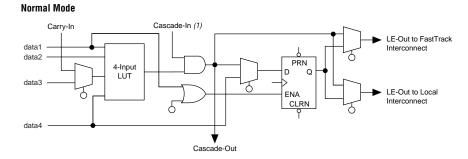
Figure 4. FLEX 10K Embedded Array Block

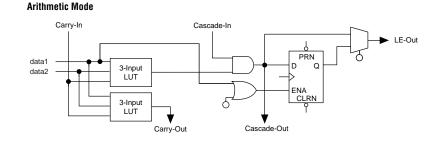

`EAB Local Interconnect (1)

Note:

 EPF10K10, EPF10K10A, EPF10K20, EPF10K30, EPF10K30A, EPF10K40, EPF10K50, and EPF10K50V devices have 22 EAB local interconnect channels; EPF10K70, EPF10K100, EPF10K100A, EPF10K130V, and EPF10K250A devices have 26.

Logic Array Block


Each LAB consists of eight LEs, their associated carry and cascade chains, LAB control signals, and the LAB local interconnect. The LAB provides the coarse-grained structure to the FLEX 10K architecture, facilitating efficient routing with optimum device utilization and high performance. See Figure 5.



Notes:

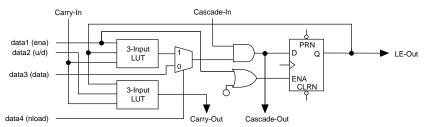
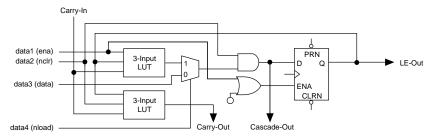

- (1) EPF10K10, EPF10K10A, EPF10K20, EPF10K30, EPF10K30A, EPF10K40, EPF10K50, and EPF10K50V devices have 22 inputs to the LAB local interconnect channel from the row; EPF10K70, EPF10K100, EPF10K100A, EPF10K130V, and EPF10K250A devices have 26.
- (2) EPF10K10, EPF10K10A, EPF10K20, EPF10K30, EPF10K30A, EPF10K40, EPF10K50, and EPF10K50V devices have 30 LAB local interconnect channels; EPF10K70, EPF10K100, EPF10K100A, EPF10K130V, and EPF10K250A devices have 34 LABs.

Figure 9. FLEX 10K LE Operating Modes



Up/Down Counter Mode

Clearable Counter Mode

Note:

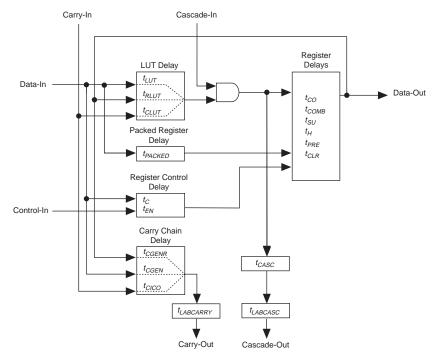
(1) Packed registers cannot be used with the cascade chain.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IH}	High-level input voltage		$\begin{array}{c} 1.7 \text{ or} \\ 0.5 \times V_{\text{CCINT}}, \\ \text{whichever is} \\ \text{lower} \end{array}$		5.75	V
VIL	Low-level input voltage		-0.5		$0.3 \times V_{CCINT}$	V
V _{OH}	3.3-V high-level TTL output voltage	$I_{OH} = -11 \text{ mA DC},$ $V_{CCIO} = 3.00 \text{ V} (8)$	2.4			V
	3.3-V high-level CMOS output voltage	$I_{OH} = -0.1 \text{ mA DC},$ $V_{CCIO} = 3.00 \text{ V} (8)$	V _{CCIO} – 0.2			V
	3.3-V high-level PCI output voltage	$I_{OH} = -0.5 \text{ mA DC},$ $V_{CCIO} = 3.00 \text{ to } 3.60 \text{ V} (8)$	$0.9 imes V_{CCIO}$			V
	2.5-V high-level output voltage	I _{OH} = -0.1 mA DC, V _{CCIO} = 2.30 V <i>(8)</i>	2.1			V
		I _{OH} = –1 mA DC, V _{CCIO} = 2.30 V <i>(8)</i>	2.0			V
		$I_{OH} = -2 \text{ mA DC},$ $V_{CCIO} = 2.30 \text{ V} (8)$	1.7			V
V _{OL}	3.3-V low-level TTL output voltage	I _{OL} = 9 mA DC, V _{CCIO} = 3.00 V <i>(</i> 9 <i>)</i>			0.45	V
	3.3-V low-level CMOS output voltage	I _{OL} = 0.1 mA DC, V _{CCIO} = 3.00 V (9)			0.2	V
	3.3-V low-level PCI output voltage	I _{OL} = 1.5 mA DC, V _{CCIO} = 3.00 to 3.60 V <i>(9)</i>			$0.1 \times V_{CCIO}$	V
	2.5-V low-level output voltage	I _{OL} = 0.1 mA DC, V _{CCIO} = 2.30 V (9)			0.2	V
		I _{OL} = 1 mA DC, V _{CCIO} = 2.30 V (9)			0.4	V
		I _{OL} = 2 mA DC, V _{CCIO} = 2.30 V (9)			0.7	V
I _I	Input pin leakage current	$V_{I} = 5.3 \text{ V to } -0.3 \text{ V} (10)$	-10		10	μΑ
I _{OZ}	Tri-stated I/O pin leakage current	$V_{O} = 5.3 \text{ V to } -0.3 \text{ V} (10)$	-10		10	μA
I _{CC0}	V _{CC} supply current (standby)	V _I = ground, no load		0.3	10	mA
		V_{I} = ground, no load (11)		10		mA

Figure 23. Output Drive Characteristics for EPF10K250A Device

Timing Model

The continuous, high-performance FastTrack Interconnect routing resources ensure predictable performance and accurate simulation and timing analysis. This predictable performance contrasts with that of FPGAs, which use a segmented connection scheme and therefore have unpredictable performance.


Device performance can be estimated by following the signal path from a source, through the interconnect, to the destination. For example, the registered performance between two LEs on the same row can be calculated by adding the following parameters:

- LE register clock-to-output delay (t_{CO})
- Interconnect delay (t_{SAMEROW})
- LE look-up table delay (t_{LUT})
- LE register setup time (t_{SU})

The routing delay depends on the placement of the source and destination LEs. A more complex registered path may involve multiple combinatorial LEs between the source and destination LEs.

Figures 25 through 27 show the delays that correspond to various paths and functions within the LE, IOE, and EAB timing models.

Symbol	-3DX Spe	ed Grade	-3 Spee	ed Grade	-4 Spee	Unit	
	Min	Max	Min	Max	Min	Мах	
t _{EABAA}		13.7		13.7		17.0	ns
t _{EABRCCOMB}	13.7		13.7		17.0		ns
t _{EABRCREG}	9.7		9.7		11.9		ns
t _{EABWP}	5.8		5.8		7.2		ns
t _{EABWCCOMB}	7.3		7.3		9.0		ns
t _{EABWCREG}	13.0		13.0		16.0		ns
t _{EABDD}		10.0		10.0		12.5	ns
t _{EABDATACO}		2.0		2.0		3.4	ns
t _{EABDATASU}	5.3		5.3		5.6		ns
t _{EABDATAH}	0.0		0.0		0.0		ns
t _{EABWESU}	5.5		5.5		5.8		ns
t _{EABWEH}	0.0		0.0		0.0		ns
t _{EABWDSU}	5.5		5.5		5.8		ns
t _{EABWDH}	0.0		0.0		0.0		ns
t _{EABWASU}	2.1		2.1		2.7		ns
t _{EABWAH}	0.0		0.0		0.0		ns
t _{EABWO}		9.5		9.5		11.8	ns

Tables 71 through 77 show EPF10K50V device internal and external timing parameters.

Symbol	-1 Spee	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		-4 Speed Grade	
	Min	Max	Min	Max	Min	Max	Min	Max	
t _{LUT}		0.9		1.0		1.3		1.6	ns
t _{CLUT}		0.1		0.5		0.6		0.6	ns
t _{RLUT}		0.5		0.8		0.9		1.0	ns
t _{PACKED}		0.4		0.4		0.5		0.7	ns
t _{EN}		0.7		0.9		1.1		1.4	ns
tcico		0.2		0.2		0.2		0.3	ns
t _{CGEN}		0.8		0.7		0.8		1.2	ns
t _{CGENR}		0.4		0.3		0.3		0.4	ns
t _{CASC}		0.7		0.7		0.8		0.9	ns
t _C		0.3		1.0		1.3		1.5	ns
t _{CO}		0.5		0.7		0.9		1.0	ns
t _{COMB}		0.4		0.4		0.5		0.6	ns
t _{SU}	0.8		1.6		2.2		2.5		ns
t _H	0.5		0.8		1.0		1.4		ns
t _{PRE}		0.8		0.4		0.5		0.5	ns
t _{CLR}		0.8		0.4		0.5		0.5	ns
t _{CH}	2.0		4.0		4.0		4.0		ns
t _{CL}	2.0		4.0		4.0		4.0	1	ns

FLEX 10K Embedded Programmable Logic Device Family Data Sheet

Symbol	-1 Speed Grade		-2 Spee	-2 Speed Grade		-3 Speed Grade		-4 Speed Grade	
	Min	Мах	Min	Max	Min	Мах	Min	Max	
t _{IOD}		1.2		1.6		1.9		2.1	ns
t _{IOC}		0.3		0.4		0.5		0.5	ns
t _{IOCO}		0.3		0.3		0.4		0.4	ns
t _{IOCOMB}		0.0		0.0		0.0		0.0	ns
t _{IOSU}	2.8		2.8		3.4		3.9		ns
t _{IOH}	0.7		0.8		1.0		1.4		ns
t _{IOCLR}		0.5		0.6		0.7		0.7	ns
t _{OD1}		2.8		3.2		3.9		4.7	ns
t _{OD2}		-		-		-		-	ns
t _{OD3}		6.5		6.9		7.6		8.4	ns
t _{XZ}		2.8		3.1		3.8		4.6	ns
t _{ZX1}		2.8		3.1		3.8		4.6	ns
t _{ZX2}		-		-		-		-	ns
t _{ZX3}		6.5		6.8		7.5		8.3	ns
t _{INREG}		5.0		5.7		7.0		9.0	ns
t _{IOFD}		1.5		1.9		2.3		2.7	ns
t _{INCOMB}		1.5		1.9		2.3		2.7	ns

FLEX 10K Embedded Programmable Logic Device Family Data Sheet

Symbol	-2 Spee	d Grade	-3 Spee	ed Grade	-4 Spee	Unit	
	Min	Max	Min	Max	Min	Мах	
t _{EABDATA1}		1.9		2.4		2.4	ns
t _{EABDATA2}		3.7		4.7		4.7	ns
t _{EABWE1}		1.9		2.4		2.4	ns
t _{EABWE2}		3.7		4.7		4.7	ns
t _{EABCLK}		0.7		0.9		0.9	ns
t _{EABCO}		0.5		0.6		0.6	ns
t _{EABBYPASS}		0.6		0.8		0.8	ns
t _{EABSU}	1.4		1.8		1.8		ns
t _{EABH}	0.0		0.0		0.0		ns
t _{AA}		5.6		7.1		7.1	ns
t _{WP}	3.7		4.7		4.7		ns
t _{WDSU}	4.6		5.9		5.9		ns
t _{WDH}	0.0		0.0		0.0		ns
t _{WASU}	3.9		5.0		5.0		ns
t _{WAH}	0.0		0.0		0.0		ns
t _{WO}		5.6		7.1		7.1	ns
t _{DD}		5.6		7.1		7.1	ns
t _{EABOUT}		2.4		3.1		3.1	ns
t _{EABCH}	4.0		4.0		4.0		ns
t _{EABCL}	4.0		4.7		4.7		ns

Symbol	-1 Spee	d Grade	-2 Spee	d Grade	-3 Spee	Unit	
	Min	Max	Min	Max	Min	Max	
t _{EABAA}		9.7		11.6		16.2	ns
t _{EABRCCOMB}	9.7		11.6		16.2		ns
t _{EABRCREG}	5.9		7.1		9.7		ns
t _{EABWP}	3.8		4.5		5.9		ns
t _{EABWCCOMB}	4.0		4.7		6.3		ns
t _{EABWCREG}	9.8		11.6		16.6		ns
t _{EABDD}		9.2		11.0		16.1	ns
t _{EABDATACO}		1.7		2.1		3.4	ns
t _{EABDATASU}	2.3		2.7		3.5		ns
t _{EABDATAH}	0.0		0.0		0.0		ns
t _{EABWESU}	3.3		3.9		4.9		ns
t _{EABWEH}	0.0		0.0		0.0		ns
t _{EABWDSU}	3.2		3.8		5.0		ns
t _{EABWDH}	0.0		0.0		0.0		ns
t _{EABWASU}	3.7		4.4		5.1		ns
t _{EABWAH}	0.0		0.0		0.0		ns
t _{EABWO}		6.1		7.3		11.3	ns

Symbol	-1 Spee	ed Grade	-2 Spee	d Grade	-3 Spee	d Grade	Unit
	Min	Max	Min	Мах	Min	Max	
t _{EABDATA1}		1.8		2.1		2.4	ns
t _{EABDATA2}		3.2		3.7		4.4	ns
t _{EABWE1}		0.8		0.9		1.1	ns
t _{EABWE2}		2.3		2.7		3.1	ns
t _{EABCLK}		0.8		0.9		1.1	ns
t _{EABCO}		1.0		1.1		1.4	ns
t _{EABBYPASS}		0.3		0.3		0.4	ns
t _{EABSU}	1.3		1.5		1.8		ns
t _{EABH}	0.4		0.5		0.5		ns
t _{AA}		4.1		4.8		5.6	ns
t _{WP}	3.2		3.7		4.4		ns
t _{WDSU}	2.4		2.8		3.3		ns
t _{WDH}	0.2		0.2		0.3		ns
t _{WASU}	0.2		0.2		0.3		ns
t _{WAH}	0.0		0.0		0.0		ns
t _{WO}		3.4		3.9		4.6	ns
t _{DD}		3.4		3.9		4.6	ns
t EABOUT		0.3		0.3		0.4	ns
t _{EABCH}	2.5		3.5		4.0		ns
t _{EABCL}	3.2		3.7		4.4		ns

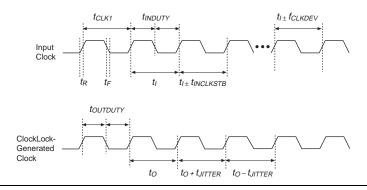
Notes to tables:

- (1) All timing parameters are described in Tables 32 through 38 in this data sheet.
- (2) Using an LE to register the signal may provide a lower setup time.
- (3) This parameter is specified by characterization.

Tables 106 through 112 show EPF10K250A device internal and external timing parameters.

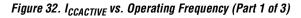
Table 106. EPF10K250A Device LE Timing Microparameters Note (1)										
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit			
	Min	Max	Min	Max	Min	Max				
t _{LUT}		0.9		1.0		1.4	ns			
t _{CLUT}		1.2		1.3		1.6	ns			
t _{RLUT}		2.0		2.3		2.7	ns			
t _{PACKED}		0.4		0.4		0.5	ns			
t _{EN}		1.4		1.6		1.9	ns			
t _{CICO}		0.2		0.3		0.3	ns			
t _{CGEN}		0.4		0.6		0.6	ns			
t _{CGENR}		0.8		1.0		1.1	ns			
t _{CASC}		0.7		0.8		1.0	ns			
t _C		1.2		1.3		1.6	ns			
t _{CO}		0.6		0.7		0.9	ns			
t _{COMB}		0.5		0.6		0.7	ns			
t _{SU}	1.2		1.4		1.7		ns			
t _H	1.2		1.3		1.6		ns			
t _{PRE}		0.7		0.8		0.9	ns			
t _{CLR}		0.7		0.8		0.9	ns			
t _{CH}	2.5		3.0		3.5		ns			
t _{CL}	2.5		3.0		3.5		ns			

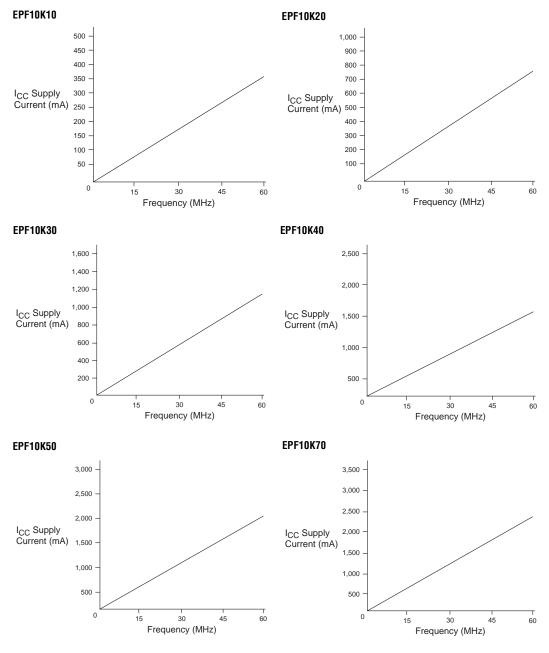
Notes to tables:


- (1) All timing parameters are described in Tables 32 through 37 in this data sheet.
- (2) Using an LE to register the signal may provide a lower setup time.
- (3) This parameter is specified by characterization.

ClockLock & ClockBoost Timing Parameters

For the ClockLock and ClockBoost circuitry to function properly, the incoming clock must meet certain requirements. If these specifications are not met, the circuitry may not lock onto the incoming clock, which generates an erroneous clock within the device. The clock generated by the ClockLock and ClockBoost circuitry must also meet certain specifications. If the incoming clock meets these requirements during configuration, the ClockLock and ClockBoost circuitry will lock onto the clock during configuration. The circuit will be ready for use immediately after configuration. Figure 31 illustrates the incoming and generated clock specifications.


Figure 31. Specifications for the Incoming & Generated Clocks


The t_l parameter refers to the nominal input clock period; the t_0 parameter refers to the nominal output clock period.

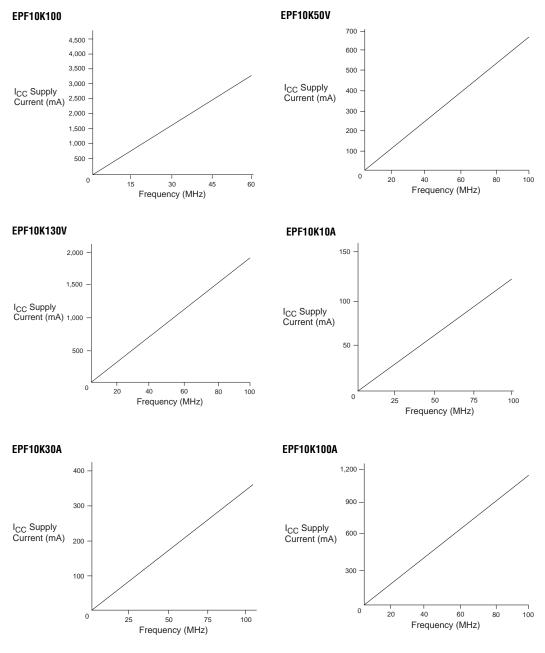


Table 113 summarizes the ClockLock and ClockBoost parameters.

Table 113. ClockLock & ClockBoost Parameters (Part 1 of 2)									
Symbol	Parameter	Min	Тур	Max	Unit				
t _R	Input rise time			2	ns				
t _F	Input fall time			2	ns				
t _{INDUTY}	Input duty cycle	45		55	%				
f _{CLK1}	Input clock frequency (ClockBoost clock multiplication factor equals 1)	30		80	MHz				
t _{CLK1}	Input clock period (ClockBoost clock multiplication factor equals 1)	12.5		33.3	ns				
f _{CLK2}	Input clock frequency (ClockBoost clock multiplication factor equals 2)	16		50	MHz				
t _{CLK2}	Input clock period (ClockBoost clock multiplication factor equals 2)	20		62.5	ns				

Figure 32. I_{CCACTIVE} vs. Operating Frequency (Part 2 of 3)