

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	624
Number of Logic Elements/Cells	4992
Total RAM Bits	24576
Number of I/O	274
Number of Gates	158000
Voltage - Supply	3V ~ 3.6V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	356-LBGA
Supplier Device Package	356-BGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epf10k100abc356-2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 4. FLEX 10K Pa	ackage Options & l	1/O Pin Count	Note (1)		
Device	84-Pin PLCC	100-Pin TQFP	144-Pin TQFP	208-Pin PQFP RQFP	240-Pin PQFP RQFP
EPF10K10	59		102	134	
EPF10K10A		66	102	134	
EPF10K20			102	147	189
EPF10K30				147	189
EPF10K30A			102	147	189
EPF10K40				147	189
EPF10K50					189
EPF10K50V					189
EPF10K70					189
EPF10K100					
EPF10K100A					189
EPF10K130V					
EPF10K250A					

Device	503-Pin PGA	599-Pin PGA	256-Pin FineLine BGA	356-Pin BGA	484-Pin FineLine BGA	600-Pin BGA	403-Pin PGA
EPF10K10		-					
EPF10K10A			150		150 (2)		
EPF10K20							
EPF10K30				246			
EPF10K30A			191	246	246		
EPF10K40							
EPF10K50				274			310
EPF10K50V				274			
EPF10K70	358						
EPF10K100	406						
EPF10K100A				274	369	406	
EPF10K130V		470				470	
EPF10K250A		470				470	

FastTrack Interconnect

In the FLEX 10K architecture, connections between LEs and device I/O pins are provided by the FastTrack Interconnect, which is a series of continuous horizontal and vertical routing channels that traverse the device. This global routing structure provides predictable performance, even in complex designs. In contrast, the segmented routing in FPGAs requires switch matrices to connect a variable number of routing paths, increasing the delays between logic resources and reducing performance.

The FastTrack Interconnect consists of row and column interconnect channels that span the entire device. Each row of LABs is served by a dedicated row interconnect. The row interconnect can drive I/O pins and feed other LABs in the device. The column interconnect routes signals between rows and can drive I/O pins.

A row channel can be driven by an LE or by one of three column channels. These four signals feed dual 4-to-1 multiplexers that connect to two specific row channels. These multiplexers, which are connected to each LE, allow column channels to drive row channels even when all eight LEs in an LAB drive the row interconnect.

Each column of LABs is served by a dedicated column interconnect. The column interconnect can then drive I/O pins or another row's interconnect to route the signals to other LABs in the device. A signal from the column interconnect, which can be either the output of an LE or an input from an I/O pin, must be routed to the row interconnect before it can enter an LAB or EAB. Each row channel that is driven by an IOE or EAB can drive one specific column channel.

Access to row and column channels can be switched between LEs in adjacent pairs of LABs. For example, an LE in one LAB can drive the row and column channels normally driven by a particular LE in the adjacent LAB in the same row, and vice versa. This routing flexibility enables routing resources to be used more efficiently. See Figure 11.

SameFrame Pin-Outs

FLEX 10KE devices support the SameFrame pin-out feature for FineLine BGA packages. The SameFrame pin-out feature is the arrangement of balls on FineLine BGA packages such that the lower-ball-count packages form a subset of the higher-ball-count packages. SameFrame pin-outs provide the flexibility to migrate not only from device to device within the same package, but also from one package to another. A given printed circuit board (PCB) layout can support multiple device density/package combinations. For example, a single board layout can support a range of devices from an EPF10K10A device in a 256-pin FineLine BGA package to an EPF10K100A device in a 484-pin FineLine BGA package.

The Altera software provides support to design PCBs with SameFrame pin-out devices. Devices can be defined for present and future use. The Altera software generates pin-outs describing how to lay out a board to take advantage of this migration (see Figure 16).

Printed Circuit Board
Designed for 484-PinFineLine BGA Package

256-Pin
FineLine
BGA

256-Pin FineLine
BGA

256-Pin FineLine
BGA

256-Pin FineLine
BGA

Figure 16. SameFrame Pin-Out Example

(Reduced I/O Count or Logic Requirements) (Increased I/O Count or Logic Requirements)

Table 13. FLEX 10K	JTAG Instructions
JTAG Instruction	Description
SAMPLE/PRELOAD	Allows a snapshot of signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern output at the device pins.
EXTEST	Allows the external circuitry and board-level interconnections to be tested by forcing a test pattern at the output pins and capturing test results at the input pins.
BYPASS	Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through a selected device to adjacent devices during normal device operation.
USERCODE	Selects the user electronic signature (USERCODE) register and places it between the TDI and TDO pins, allowing the USERCODE to be serially shifted out of TDO.
IDCODE	Selects the IDCODE register and places it between TDI and TDO, allowing the IDCODE to be serially shifted out of TDO.
ICR Instructions	These instructions are used when configuring a FLEX 10K device via JTAG ports with a BitBlaster, or ByteBlasterMV or MasterBlaster download cable, or using a Jam File (.jam) or Jam Byte-Code File (.jbc) via an embedded processor.

The instruction register length of FLEX 10K devices is 10 bits. The USERCODE register length in FLEX 10K devices is 32 bits; 7 bits are determined by the user, and 25 bits are predetermined. Tables 14 and 15 show the boundary-scan register length and device IDCODE information for FLEX 10K devices.

Device	Boundary-Scan Register Length
EPF10K10, EPF10K10A	480
EPF10K20	624
EPF10K30, EPF10K30A	768
EPF10K40	864
EPF10K50, EPF10K50V	960
EPF10K70	1,104
EPF10K100, EPF10K100A	1,248
EPF10K130V	1,440
EPF10K250A	1,440

Table 15. 32-Bit FLEX 10K Device	e IDCODE	Note (1)					
Device	IDCODE (32 Bits)						
	Version (4 Bits)	Part Number (16 Bits)	Manufacturer's Identity (11 Bits)	1 (1 Bit) (2)			
EPF10K10, EPF10K10A	0000	0001 0000 0001 0000	00001101110	1			
EPF10K20	0000	0001 0000 0010 0000	00001101110	1			
EPF10K30, EPF10K30A	0000	0001 0000 0011 0000	00001101110	1			
EPF10K40	0000	0001 0000 0100 0000	00001101110	1			
EPF10K50, EPF10K50V	0000	0001 0000 0101 0000	00001101110	1			
EPF10K70	0000	0001 0000 0111 0000	00001101110	1			
EPF10K100, EPF10K100A	0000	0000 0001 0000 0000	00001101110	1			
EPF10K130V	0000	0000 0001 0011 0000	00001101110	1			
EPF10K250A	0000	0000 0010 0101 0000	00001101110	1			

Notes:

- (1) The most significant bit (MSB) is on the left.
- (2) The least significant bit (LSB) for all JTAG IDCODEs is 1.

FLEX 10K devices include weak pull-ups on JTAG pins.

For more information, see the following documents:

- Application Note 39 (IEEE 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices)
- BitBlaster Serial Download Cable Data Sheet
- ByteBlasterMV Parallel Port Download Cable Data Sheet
- Jam Programming & Test Language Specification

Figure 26. FLEX 10K Device IOE Timing Model

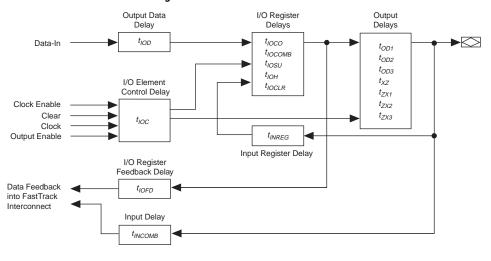
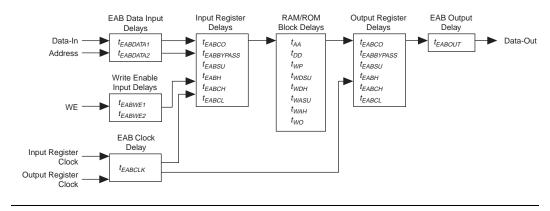
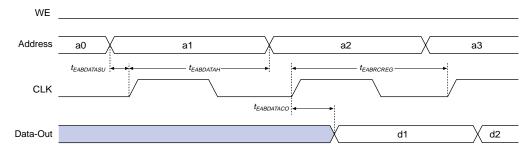



Figure 27. FLEX 10K Device EAB Timing Model



Figures 28 shows the timing model for bidirectional I/O pin timing.

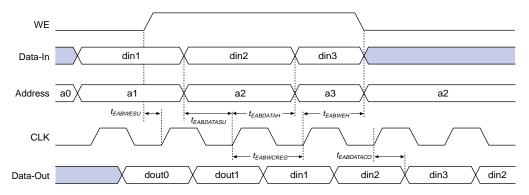

Symbol	Parameter	Conditions
t _{EABAA}	EAB address access delay	
t _{EABRCCOMB}	EAB asynchronous read cycle time	
t _{EABRCREG}	EAB synchronous read cycle time	
t _{EABWP}	EAB write pulse width	
t _{EABWCCOMB}	EAB asynchronous write cycle time	
t _{EABWCREG}	EAB synchronous write cycle time	
t _{EABDD}	EAB data-in to data-out valid delay	
t _{EABDATACO}	EAB clock-to-output delay when using output registers	
t _{EABDATASU}	EAB data/address setup time before clock when using input register	
t _{EABDATAH}	EAB data/address hold time after clock when using input register	
t _{EABWESU}	EAB WE setup time before clock when using input register	
t _{EABWEH}	EAB WE hold time after clock when using input register	
t _{EABWDSU}	EAB data setup time before falling edge of write pulse when not using input registers	
t _{EABWDH}	EAB data hold time after falling edge of write pulse when not using input	
	registers	
t _{EABWASU}	EAB address setup time before rising edge of write pulse when not using	
	input registers	
^t EABWAH	EAB address hold time after falling edge of write pulse when not using input registers	
t _{EABWO}	EAB write enable to data output valid delay	

Figure 30. EAB Synchronous Timing Waveforms

EAB Synchronous Read

EAB Synchronous Write (EAB Output Registers Used)

Symbol	-3 Spee	d Grade	-4 Spee	d Grade	Unit
	Min	Max	Min	Max	
t _{DIN2IOE}		4.8		6.2	ns
t _{DIN2LE}		2.6		3.8	ns
t _{DIN2DATA}		4.3		5.2	ns
t _{DCLK2IOE}		3.4		4.0	ns
t _{DCLK2LE}		2.6		3.8	ns
t _{SAMELAB}		0.6		0.6	ns
t _{SAMEROW}		3.6		3.8	ns
t _{SAME} COLUMN		0.9		1.1	ns
t _{DIFFROW}		4.5		4.9	ns
t _{TWOROWS}		8.1		8.7	ns
t _{LEPERIPH}		3.3		3.9	ns
t _{LABCARRY}		0.5		0.8	ns
t _{LABCASC}		2.7		3.0	ns

Symbol	-3 Spee	d Grade	-4 Spee	-4 Speed Grade		
	Min	Max	Min	Max		
t _{DIN2IOE}		5.2		6.6	ns	
t _{DIN2LE}		2.6		3.8	ns	
t _{DIN2DATA}		4.3		5.2	ns	
t _{DCLK2IOE}		4.3		4.0	ns	
t _{DCLK2LE}		2.6		3.8	ns	
t _{SAMELAB}		0.6		0.6	ns	
t _{SAMEROW}		3.7		3.9	ns	
t _{SAMECOLUMN}		1.4		1.6	ns	
t _{DIFFROW}		5.1		5.5	ns	
t _{TWOROWS}		8.8		9.4	ns	
t _{LEPERIPH}		4.7		5.6	ns	
t _{LABCARRY}		0.5		0.8	ns	
t _{LABCASC}		2.7		3.0	ns	

Tables 48 through 56 show EPF10K30, EPF10K40, and EPF10K50 device internal and external timing parameters.

Symbol	-3 Spee	d Grade	-4 Spee	Unit	
	Min	Max	Min	Max	1
t_{LUT}		1.3		1.8	ns
t _{CLUT}		0.6		0.6	ns
t _{RLUT}		1.5		2.0	ns
t _{PACKED}		0.5		0.8	ns
t _{EN}		0.9		1.5	ns
t _{CICO}		0.2		0.4	ns
t _{CGEN}		0.9		1.4	ns
t _{CGENR}		0.9		1.4	ns
t _{CASC}		1.0		1.2	ns
$t_{\mathbb{C}}$		1.3		1.6	ns
t_{CO}		0.9		1.2	ns
t _{COMB}		0.6		0.6	ns
t _{SU}	1.4		1.4		ns
t_H	0.9		1.3		ns
t _{PRE}		0.9		1.2	ns
t _{CLR}		0.9		1.2	ns
t _{CH}	4.0		4.0		ns
t_{CL}	4.0		4.0		ns

Symbol	-3 Spee	d Grade	-4 Spee	Unit	
	Min	Max	Min	Max	
t _{IOD}		0.4		0.6	ns
t _{IOC}		0.5		0.9	ns
t _{IOCO}		0.4		0.5	ns
t _{IOCOMB}		0.0		0.0	ns
t _{iosu}	3.1		3.5		ns
t _{IOH}	1.0		1.9		ns
t _{IOCLR}		1.0		1.2	ns
t _{OD1}		3.3		3.6	ns
t _{OD2}		5.6		6.5	ns
t_{OD3}		7.0		8.3	ns
t_{XZ}		5.2		5.5	ns
t _{ZX1}		5.2		5.5	ns
t _{ZX2}		7.5		8.4	ns
t _{ZX3}		8.9		10.2	ns
t _{INREG}		7.7		10.0	ns
t _{IOFD}		3.3		4.0	ns
t _{INCOMB}		3.3		4.0	ns

Table 66. EPF10K100	Device EAB Int	ternal Microp	parameters	Note (1)			
Symbol	-3DX Spe	ed Grade	-3 Speed Grade		-4 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{EABDATA1}		1.5		1.5		1.9	ns
t _{EABDATA2}		4.8		4.8		6.0	ns
t _{EABWE1}		1.0		1.0		1.2	ns
t _{EABWE2}		5.0		5.0		6.2	ns
t _{EABCLK}		1.0		1.0		2.2	ns
t _{EABCO}		0.5		0.5		0.6	ns
t _{EABBYPASS}		1.5		1.5		1.9	ns
t _{EABSU}	1.5		1.5		1.8		ns
t _{EABH}	2.0		2.0		2.5		ns
t_{AA}		8.7		8.7		10.7	ns
t_{WP}	5.8		5.8		7.2		ns
t _{WDSU}	1.6		1.6		2.0		ns
t _{WDH}	0.3		0.3		0.4		ns
t _{WASU}	0.5		0.5		0.6		ns
t _{WAH}	1.0		1.0		1.2		ns
t_{WO}		5.0		5.0		6.2	ns
t_{DD}		5.0		5.0		6.2	ns
t _{EABOUT}		0.5		0.5		0.6	ns
t _{EABCH}	4.0		4.0		4.0		ns
t _{EABCL}	5.8		5.8		7.2		ns

0	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		-4 Speed Grade		Unit
Symbol	-1 Spee	d Grade	-2 Spee	d Grade	-3 Spe	ed Grade	-4 Spee	ed Grade	Unit
	Min	Max	Min	Max	Min	Max	Min	Max	
t _{EABDATA1}		1.7		2.8		3.4		4.6	ns
t _{EABDATA2}		4.9		3.9		4.8		5.9	ns
t _{EABWE1}		0.0		2.5		3.0		3.7	ns
t _{EABWE2}		4.0		4.1		5.0		6.2	ns
t _{EABCLK}		0.4		0.8		1.0		1.2	ns
t _{EABCO}		0.1		0.2		0.3		0.4	ns
t _{EABBYPASS}		0.9		1.1		1.3		1.6	ns
t _{EABSU}	0.8		1.5		1.8		2.2		ns
t _{EABH}	0.8		1.6		2.0		2.5		ns
t_{AA}		5.5		8.2		10.0		12.4	ns
t_{WP}	6.0		4.9		6.0		7.4		ns
t _{WDSU}	0.1		0.8		1.0		1.2		ns
t _{WDH}	0.1		0.2		0.3		0.4		ns
t _{WASU}	0.1		0.4		0.5		0.6		ns
t _{WAH}	0.1		0.8		1.0		1.2		ns
t_{WO}		2.8		4.3		5.3		6.5	ns
t_{DD}		2.8		4.3		5.3		6.5	ns
t _{EABOUT}		0.5		0.4		0.5		0.6	ns
t _{EABCH}	2.0		4.0		4.0		4.0		ns
t _{EABCL}	6.0		4.9		6.0		7.4		ns

Table 74. EPF	10K50V De	evice EAB I	Internal Til	ming Macı	oparamete	ers Not	re (1)		
Symbol	-1 Spee	d Grade	-2 Speed Grade		-3 Speed Grade		-4 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	Min	Max	
t _{EABAA}		9.5		13.6		16.5		20.8	ns
t _{EABRCCOMB}	9.5		13.6		16.5		20.8		ns
t _{EABRCREG}	6.1		8.8		10.8		13.4		ns
t _{EABWP}	6.0		4.9		6.0		7.4		ns
t _{EABWCCOMB}	6.2		6.1		7.5		9.2		ns
t _{EABWCREG}	12.0		11.6		14.2		17.4		ns
t _{EABDD}		6.8		9.7		11.8		14.9	ns
t _{EABDATA} CO		1.0		1.4		1.8		2.2	ns
t _{EABDATASU}	5.3		4.6		5.6		6.9		ns
t _{EABDATAH}	0.0		0.0		0.0		0.0		ns
t _{EABWESU}	4.4		4.8		5.8		7.2		ns
t _{EABWEH}	0.0		0.0		0.0		0.0		ns
t _{EABWDSU}	1.8		1.1		1.4		2.1		ns
t _{EABWDH}	0.0		0.0		0.0		0.0		ns
t _{EABWASU}	4.5		4.6		5.6		7.4		ns
t _{EABWAH}	0.0		0.0		0.0		0.0		ns
t _{EABWO}		5.1		9.4		11.4		14.0	ns

Notes to tables:

- (1) All timing parameters are described in Tables 32 through 38 in this data sheet.
- (2) Using an LE to register the signal may provide a lower setup time.
- (3) This parameter is specified by characterization.

Tables 78 through 84 show EPF10K130V device internal and external timing parameters.

Symbol	-2 Speed Grade		-3 Spee	ed Grade	-4 Spee	Unit	
	Min	Max	Min	Max	Min	Max	
t_{LUT}		1.3		1.8		2.3	ns
t _{CLUT}		0.5		0.7		0.9	ns
t_{RLUT}		1.2		1.7		2.2	ns
t _{PACKED}		0.5		0.6		0.7	ns
t_{EN}		0.6		0.8		1.0	ns
t_{CICO}		0.2		0.3		0.4	ns
t _{CGEN}		0.3		0.4		0.5	ns
t _{CGENR}		0.7		1.0		1.3	ns
t_{CASC}		0.9		1.2		1.5	ns
$t_{\rm C}$		1.9		2.4		3.0	ns
t_{CO}		0.6		0.9		1.1	ns
t _{COMB}		0.5		0.7		0.9	ns
t _{SU}	0.2		0.2		0.3		ns
t _H	0.0		0.0		0.0		ns
t _{PRE}		2.4		3.1		3.9	ns
t _{CLR}		2.4		3.1		3.9	ns
t _{CH}	4.0		4.0		4.0		ns
t_{CL}	4.0		4.0		4.0		ns

Symbol	-2 Spee	d Grade	-3 Spee	ed Grade	-4 Spee	Unit	
	Min	Max	Min	Max	Min	Max	
t _{EABDATA1}		1.9		2.4		2.4	ns
t _{EABDATA2}		3.7		4.7		4.7	ns
t _{EABWE1}		1.9		2.4		2.4	ns
t _{EABWE2}		3.7		4.7		4.7	ns
t _{EABCLK}		0.7		0.9		0.9	ns
t _{EABCO}		0.5		0.6		0.6	ns
t _{EABBYPASS}		0.6		0.8		0.8	ns
t _{EABSU}	1.4		1.8		1.8		ns
t _{EABH}	0.0		0.0		0.0		ns
t_{AA}		5.6		7.1		7.1	ns
t_{WP}	3.7		4.7		4.7		ns
t_{WDSU}	4.6		5.9		5.9		ns
t _{WDH}	0.0		0.0		0.0		ns
t _{WASU}	3.9		5.0		5.0		ns
t _{WAH}	0.0		0.0		0.0		ns
t_{WO}		5.6		7.1		7.1	ns
t_{DD}		5.6		7.1		7.1	ns
t _{EABOUT}		2.4		3.1		3.1	ns
t _{EABCH}	4.0		4.0		4.0		ns
t _{EABCL}	4.0		4.7		4.7		ns

Symbol	-1 Speed Grade		-2 Spee	d Grade	-3 Spee	Unit	
	Min	Max	Min	Max	Min	Max	
t _{DIN2IOE}		4.8		5.4		6.0	ns
t _{DIN2LE}		2.0		2.4		2.7	ns
t _{DIN2DATA}		2.4		2.7		2.9	ns
t _{DCLK2IOE}		2.6		3.0		3.5	ns
t _{DCLK2LE}		2.0		2.4		2.7	ns
t _{SAMELAB}		0.1		0.1		0.1	ns
t _{SAMEROW}		1.5		1.7		1.9	ns
t _{SAME} COLUMN		5.5		6.5		7.4	ns
t _{DIFFROW}		7.0		8.2		9.3	ns
t _{TWOROWS}		8.5		9.9		11.2	ns
t _{LEPERIPH}		3.9		4.2		4.5	ns
t _{LABCARRY}		0.2		0.2		0.3	ns
t _{LABCASC}		0.4		0.5		0.6	ns

Table 104. EPF1	OK100A Devi	ce External T	iming Param	eters Not	e (1)		
Symbol	-1 Spee	ed Grade	-2 Speed Grade		-3 Spee	Unit	
	Min	Max	Min	Max	Min	Max	
t _{DRR}		12.5		14.5		17.0	ns
t _{INSU} (2), (3)	3.7		4.5		5.1		ns
t _{INH} (3)	0.0		0.0		0.0		ns
t _{оитсо} (3)	2.0	5.3	2.0	6.1	2.0	7.2	ns

Table 105. EPF10K1	00A Device Ext	ernal Bidirec	tional Timin	g Parameter	s Note (1)	
Symbol	-1 Spee	ed Grade	-2 Spe	ed Grade -3 Speed Grade		Unit	
	Min	Max	Min	Max	Min	Max	
t _{INSUBIDIR}	4.9		5.8		6.8		ns
t _{INHBIDIR}	0.0		0.0		0.0		ns
toutcobidir	2.0	5.3	2.0	6.1	2.0	7.2	ns
t _{XZBIDIR}		7.4		8.6		10.1	ns
t _{ZXBIDIR}		7.4		8.6		10.1	ns

Notes to tables:

- (1) All timing parameters are described in Tables 32 through 38 in this data sheet.
- (2) Using an LE to register the signal may provide a lower setup time.
- (3) This parameter is specified by characterization.

Tables 106 through 112 show EPF10K250A device internal and external timing parameters.

Table 106. EPF1	1		<u> </u>				ı
Symbol	-1 Spee	-1 Speed Grade		d Grade	-3 Spee	Unit	
	Min	Max	Min	Max	Min	Max	
t_{LUT}		0.9		1.0		1.4	ns
t _{CLUT}		1.2		1.3		1.6	ns
t _{RLUT}		2.0		2.3		2.7	ns
t _{PACKED}		0.4		0.4		0.5	ns
t_{EN}		1.4		1.6		1.9	ns
t_{CICO}		0.2		0.3		0.3	ns
t _{CGEN}		0.4		0.6		0.6	ns
t _{CGENR}		0.8		1.0		1.1	ns
t _{CASC}		0.7		0.8		1.0	ns
t_C		1.2		1.3		1.6	ns
t_{CO}		0.6		0.7		0.9	ns
t _{COMB}		0.5		0.6		0.7	ns
t_{SU}	1.2		1.4		1.7		ns
t _H	1.2		1.3		1.6		ns
t _{PRE}		0.7		0.8		0.9	ns
t _{CLR}		0.7		0.8		0.9	ns
t _{CH}	2.5		3.0		3.5		ns
t_{CL}	2.5		3.0		3.5		ns

Symbol	-1 Spee	d Grade	-2 Spee	d Grade	-3 Spee	Unit	
	Min	Max	Min	Max	Min	Max	
t _{EABDATA1}		1.3		1.5		1.7	ns
t _{EABDATA2}		1.3		1.5		1.7	ns
t _{EABWE1}		0.9		1.1		1.3	ns
t _{EABWE2}		5.0		5.7		6.7	ns
t _{EABCLK}		0.6		0.7		0.8	ns
t _{EABCO}		0.0		0.0		0.0	ns
t _{EABBYPASS}		0.1		0.1		0.2	ns
t _{EABSU}	3.8		4.3		5.0		ns
t _{EABH}	0.7		0.8		0.9		ns
t_{AA}		4.5		5.0		5.9	ns
t_{WP}	5.6		6.4		7.5		ns
t _{WDSU}	1.3		1.4		1.7		ns
t_{WDH}	0.1		0.1		0.2		ns
t _{WASU}	0.1		0.1		0.2		ns
t _{WAH}	0.1		0.1		0.2		ns
t_{WO}		4.1		4.6		5.5	ns
t_{DD}		4.1		4.6		5.5	ns
t _{EABOUT}		0.1		0.1		0.2	ns
t _{EABCH}	2.5		3.0		3.5		ns
t _{EABCL}	5.6		6.4		7.5		ns

101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com Applications Hotline: (800) 800-EPLD Customer Marketing: (408) 544-7104 Literature Services: lit_req@altera.com

Copyright © 2003 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to

current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

I.S. EN ISO 9001