

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	624
Number of Logic Elements/Cells	4992
Total RAM Bits	24576
Number of I/O	274
Number of Gates	158000
Voltage - Supply	3V ~ 3.6V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	356-LBGA
Supplier Device Package	356-BGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epf10k100abc356-2n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2. FLEX 10K Device Features							
Feature	EPF10K70	EPF10K100 EPF10K100A	EPF10K130V	EPF10K250A			
Typical gates (logic and RAM) (1)	70,000	100,000	130,000	250,000			
Maximum system gates	118,000	158,000	211,000	310,000			
LEs	3,744	4,992	6,656	12,160			
LABs	468	624	832	1,520			
EABs	9	12	16	20			
Total RAM bits	18,432	24,576	32,768	40,960			
Maximum user I/O pins	358	406	470	470			

Note to tables:

 The embedded IEEE Std. 1149.1 JTAG circuitry adds up to 31,250 gates in addition to the listed typical or maximum system gates.

...and More Features

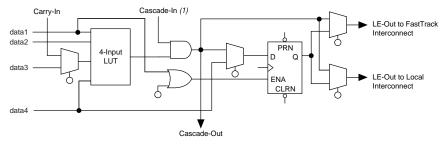
- Devices are fabricated on advanced processes and operate with a 3.3-V or 5.0-V supply voltage (see Table 3
- In-circuit reconfigurability (ICR) via external configuration device, intelligent controller, or JTAG port
- ClockLockTM and ClockBoostTM options for reduced clock delay/skew and clock multiplication
- Built-in low-skew clock distribution trees
- 100% functional testing of all devices; test vectors or scan chains are not required

Table 3. Supply Voltages for FLEX 10K & FLEX 10KA Devices						
5.0-V Devices 3.3-V Devices						
EPF10K10	EPF10K10A					
EPF10K20	EPF10K30A					
EPF10K30	EPF10K50V					
EPF10K40	EPF10K100A					
EPF10K50	EPF10K130V					
EPF10K70	EPF10K250A					
EPF10K100						

The programmable flipflop in the LE can be configured for D, T, JK, or SR operation. The clock, clear, and preset control signals on the flipflop can be driven by global signals, general-purpose I/O pins, or any internal logic. For combinatorial functions, the flipflop is bypassed and the output of the LUT drives the output of the LE.

The LE has two outputs that drive the interconnect; one drives the local interconnect and the other drives either the row or column FastTrack Interconnect. The two outputs can be controlled independently. For example, the LUT can drive one output while the register drives the other output. This feature, called register packing, can improve LE utilization because the register and the LUT can be used for unrelated functions.

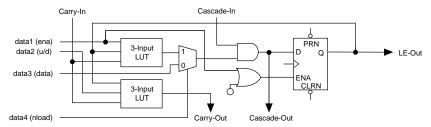
The FLEX 10K architecture provides two types of dedicated high-speed data paths that connect adjacent LEs without using local interconnect paths: carry chains and cascade chains. The carry chain supports high-speed counters and adders; the cascade chain implements wide-input functions with minimum delay. Carry and cascade chains connect all LEs in an LAB and all LABs in the same row. Intensive use of carry and cascade chains can reduce routing flexibility. Therefore, the use of these chains should be limited to speed-critical portions of a design.

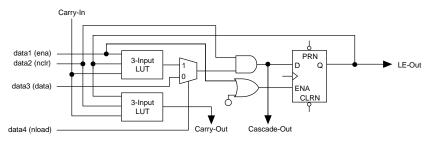

Carry Chain

The carry chain provides a very fast (as low as 0.2 ns) carry-forward function between LEs. The carry-in signal from a lower-order bit drives forward into the higher-order bit via the carry chain, and feeds into both the LUT and the next portion of the carry chain. This feature allows the FLEX 10K architecture to implement high-speed counters, adders, and comparators of arbitrary width efficiently. Carry chain logic can be created automatically by the Compiler during design processing, or manually by the designer during design entry. Parameterized functions such as LPM and DesignWare functions automatically take advantage of carry chains.

Carry chains longer than eight LEs are automatically implemented by linking LABs together. For enhanced fitting, a long carry chain skips alternate LABs in a row. A carry chain longer than one LAB skips either from even-numbered LAB to even-numbered LAB, or from odd-numbered LAB to odd-numbered LAB. For example, the last LE of the first LAB in a row carries to the first LE of the third LAB in the row. The carry chain does not cross the EAB at the middle of the row. For instance, in the EPF10K50 device, the carry chain stops at the eighteenth LAB and a new one begins at the nineteenth LAB.

Figure 9. FLEX 10K LE Operating Modes


Normal Mode


Arithmetic Mode

Up/Down Counter Mode

Clearable Counter Mode

Note:

(1) Packed registers cannot be used with the cascade chain.

Up/Down Counter Mode

The up/down counter mode offers counter enable, clock enable, synchronous up/down control, and data loading options. These control signals are generated by the data inputs from the LAB local interconnect, the carry-in signal, and output feedback from the programmable register. The Up/down counter mode uses 2 three-input LUTs: one generates the counter data, and the other generates the fast carry bit. A 2-to-1 multiplexer provides synchronous loading. Data can also be loaded asynchronously with the clear and preset register control signals, without using the LUT resources.

Clearable Counter Mode

The clearable counter mode is similar to the up/down counter mode, but supports a synchronous clear instead of the up/down control. The clear function is substituted for the cascade-in signal in the up/down counter mode. Clearable counter mode uses 2 three-input LUTs: one generates the counter data, and the other generates the fast carry bit. Synchronous loading is provided by a 2-to-1 multiplexer. The output of this multiplexer is ANDed with a synchronous clear signal.

Internal Tri-State Emulation

Internal tri-state emulation provides internal tri-stating without the limitations of a physical tri-state bus. In a physical tri-state bus, the tri-state buffers' output enable (OE) signals select which signal drives the bus. However, if multiple OE signals are active, contending signals can be driven onto the bus. Conversely, if no OE signals are active, the bus will float. Internal tri-state emulation resolves contending tri-state buffers to a low value and floating buses to a high value, thereby eliminating these problems. The Altera software automatically implements tri-state bus functionality with a multiplexer.

Clear & Preset Logic Control

Logic for the programmable register's clear and preset functions is controlled by the DATA3, LABCTRL1, and LABCTRL2 inputs to the LE. The clear and preset control structure of the LE asynchronously loads signals into a register. Either LABCTRL1 or LABCTRL2 can control the asynchronous clear. Alternatively, the register can be set up so that LABCTRL1 implements an asynchronous load. The data to be loaded is driven to DATA3; when LABCTRL1 is asserted, DATA3 is loaded into the register.

During compilation, the Compiler automatically selects the best control signal implementation. Because the clear and preset functions are active-low, the Compiler automatically assigns a logic high to an unused clear or preset.

The clear and preset logic is implemented in one of the following six modes chosen during design entry:

- Asynchronous clear
- Asynchronous preset
- Asynchronous clear and preset
- Asynchronous load with clear
- Asynchronous load with preset
- Asynchronous load without clear or preset

In addition to the six clear and preset modes, FLEX 10K devices provide a chip-wide reset pin that can reset all registers in the device. Use of this feature is set during design entry. In any of the clear and preset modes, the chip-wide reset overrides all other signals. Registers with asynchronous presets may be preset when the chip-wide reset is asserted. Inversion can be used to implement the asynchronous preset. Figure 10 shows examples of how to enter a section of a design for the desired functionality.

Table 15. 32-Bit FLEX 10K Device IDCODENote (1)								
Device	IDCODE (32 Bits)							
	Version (4 Bits)	Part Number (16 Bits)	Manufacturer's Identity (11 Bits)	1 (1 Bit) (2)				
EPF10K10, EPF10K10A	0000	0001 0000 0001 0000	00001101110	1				
EPF10K20	0000	0001 0000 0010 0000	00001101110	1				
EPF10K30, EPF10K30A	0000	0001 0000 0011 0000	00001101110	1				
EPF10K40	0000	0001 0000 0100 0000	00001101110	1				
EPF10K50, EPF10K50V	0000	0001 0000 0101 0000	00001101110	1				
EPF10K70	0000	0001 0000 0111 0000	00001101110	1				
EPF10K100, EPF10K100A	0000	0000 0001 0000 0000	00001101110	1				
EPF10K130V	0000	0000 0001 0011 0000	00001101110	1				
EPF10K250A	0000	0000 0010 0101 0000	00001101110	1				

Notes:

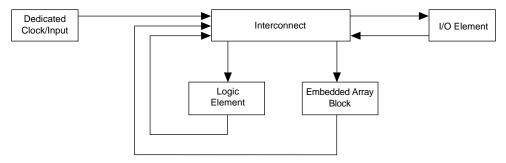
- (1) The most significant bit (MSB) is on the left.
- (2) The least significant bit (LSB) for all JTAG IDCODEs is 1.

FLEX 10K devices include weak pull-ups on JTAG pins.

For more information, see the following documents:

- Application Note 39 (IEEE 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices)
- BitBlaster Serial Download Cable Data Sheet
- ByteBlasterMV Parallel Port Download Cable Data Sheet
- Jam Programming & Test Language Specification

Tables 22 through 25 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for EPF10K50V and EPF10K130V devices.


Table 2	Table 22. EPF10K50V & EPF10K130V Device Absolute Maximum Ratings Note (1)						
Symbol	Parameter	Conditions	Min	Max	Unit		
V _{CC}	Supply voltage	With respect to ground (2)	-0.5	4.6	V		
VI	DC input voltage		-2.0	5.75	V		
I _{OUT}	DC output current, per pin		-25	25	mA		
T _{STG}	Storage temperature	No bias	-65	150	° C		
T _{AMB}	Ambient temperature	Under bias	-65	135	° C		
TJ	Junction temperature	Ceramic packages, under bias		150	° C		
		RQFP and BGA packages, under bias		135	° C		

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CCINT}	Supply voltage for internal logic and input buffers	(3), (4)	3.00 (3.00)	3.60 (3.60)	V
V _{CCIO}	Supply voltage for output buffers	(3), (4)	3.00 (3.00)	3.60 (3.60)	V
V _I	Input voltage	(5)	-0.5	5.75	V
Vo	Output voltage		0	V _{CCIO}	V
T _A	Ambient temperature	For commercial use	0	70	°C
		For industrial use	-40	85	° C
TJ	Operating temperature	For commercial use	0	85	° C
		For industrial use	-40	100	° C
t _R	Input rise time			40	ns
t _F	Input fall time			40	ns

Timing simulation and delay prediction are available with the MAX+PLUS II Simulator and Timing Analyzer, or with industry-standard EDA tools. The Simulator offers both pre-synthesis functional simulation to evaluate logic design accuracy and post-synthesis timing simulation with 0.1-ns resolution. The Timing Analyzer provides point-to-point timing delay information, setup and hold time analysis, and device-wide performance analysis.

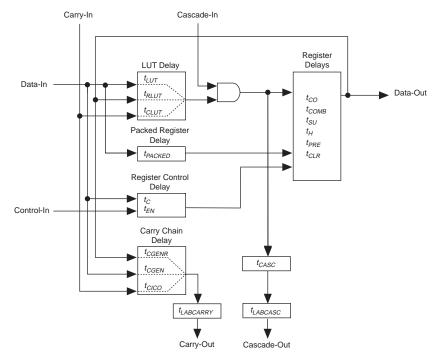

Figure 24 shows the overall timing model, which maps the possible paths to and from the various elements of the FLEX 10K device.

Figure 24. FLEX 10K Device Timing Model

Figures 25 through 27 show the delays that correspond to various paths and functions within the LE, IOE, and EAB timing models.

Figure 25. FLEX 10K Device LE Timing Model

Symbol	Parameter	Conditions
t _{EABAA}	EAB address access delay	
t _{EABRCCOMB}	EAB asynchronous read cycle time	
t _{EABRCREG}	EAB synchronous read cycle time	
t _{EABWP}	EAB write pulse width	
t _{EABWCCOMB}	EAB asynchronous write cycle time	
t _{EABWCREG}	EAB synchronous write cycle time	
t _{EABDD}	EAB data-in to data-out valid delay	
t _{EABDATACO}	EAB clock-to-output delay when using output registers	
t _{EABDATASU}	EAB data/address setup time before clock when using input register	
t _{EABDATAH}	EAB data/address hold time after clock when using input register	
t _{EABWESU}	EAB WE setup time before clock when using input register	
t _{EABWEH}	EAB WE hold time after clock when using input register	
t _{EABWDSU}	EAB data setup time before falling edge of write pulse when not using input registers	
t _{EABWDH}	EAB data hold time after falling edge of write pulse when not using input	
	registers	
t _{EABWASU}	EAB address setup time before rising edge of write pulse when not using	
	input registers	
^t EABWAH	EAB address hold time after falling edge of write pulse when not using input registers	
t _{EABWO}	EAB write enable to data output valid delay	

Tables 39 through 47 show EPF10K10 and EPF10K20 device internal and external timing parameters.

Symbol	-3 Spee	d Grade	-4 Spee	Unit	
	Min	Max	Min	Max	1
t_{LUT}		1.4		1.7	ns
t _{CLUT}		0.6		0.7	ns
t _{RLUT}		1.5		1.9	ns
t _{PACKED}		0.6		0.9	ns
t_{EN}		1.0		1.2	ns
t _{CICO}		0.2		0.3	ns
t _{CGEN}		0.9		1.2	ns
t _{CGENR}		0.9		1.2	ns
t _{CASC}		0.8		0.9	ns
$t_{\mathbb{C}}$		1.3		1.5	ns
t_{CO}		0.9		1.1	ns
t_{COMB}		0.5		0.6	ns
t _{SU}	1.3		2.5		ns
t_H	1.4		1.6		ns
t _{PRE}		1.0		1.2	ns
t _{CLR}		1.0		1.2	ns
t _{CH}	4.0		4.0		ns
t_{CL}	4.0		4.0		ns

Symbol	-3 Spee	d Grade	-4 Spee	d Grade	Unit
	Min	Max	Min	Max	
t _{DIN2IOE}		4.8		6.2	ns
t _{DIN2LE}		2.6		3.8	ns
t _{DIN2DATA}		4.3		5.2	ns
t _{DCLK2IOE}		3.4	_	4.0	ns
t _{DCLK2LE}		2.6		3.8	ns
t _{SAMELAB}		0.6		0.6	ns
t _{SAMEROW}		3.6		3.8	ns
t _{SAMECOLUMN}		0.9		1.1	ns
t _{DIFFROW}		4.5		4.9	ns
t _{TWOROWS}		8.1		8.7	ns
t _{LEPERIPH}		3.3		3.9	ns
t _{LABCARRY}		0.5		0.8	ns
t _{LABCASC}		2.7		3.0	ns

Symbol	-3 Spee	d Grade	-4 Spee	d Grade	Unit
	Min	Max	Min	Max	
t _{DIN2IOE}		5.2		6.6	ns
t _{DIN2LE}		2.6		3.8	ns
t _{DIN2DATA}		4.3	_	5.2	ns
t _{DCLK2IOE}		4.3		4.0	ns
t _{DCLK2LE}		2.6		3.8	ns
t _{SAMELAB}		0.6		0.6	ns
t _{SAMEROW}		3.7		3.9	ns
t _{SAMECOLUMN}		1.4		1.6	ns
t _{DIFFROW}		5.1		5.5	ns
t _{TWOROWS}		8.8		9.4	ns
t _{LEPERIPH}		4.7		5.6	ns
t _{LABCARRY}		0.5		0.8	ns
t _{LABCASC}		2.7		3.0	ns

Symbol	-2 Spee	-2 Speed Grade		-3 Speed Grade		-4 Speed Grade	
	Min	Max	Min	Max	Min	Max	
t_{IOD}		0.0		0.0		0.0	ns
t _{IOC}		0.4		0.5		0.7	ns
t _{IOCO}		0.4		0.4		0.9	ns
t _{IOCOMB}		0.0		0.0		0.0	ns
t _{IOSU}	4.5		5.0		6.2		ns
t_{IOH}	0.4		0.5		0.7		ns
t _{IOCLR}		0.6		0.7		1.6	ns
t_{OD1}		3.6		4.0		5.0	ns
t_{OD2}		5.6		6.3		7.3	ns
t_{OD3}		6.9		7.7		8.7	ns
t_{XZ}		5.5		6.2		6.8	ns
t_{ZX1}		5.5		6.2		6.8	ns
t _{ZX2}		7.5		8.5		9.1	ns
t _{ZX3}		8.8		9.9		10.5	ns
t _{INREG}		8.0		9.0		10.2	ns
t _{IOFD}		7.2		8.1		10.3	ns
t_{INCOMB}		7.2		8.1		10.3	ns

Tables 71 through 77 show EPF10K50V device internal and external timing parameters.

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		-4 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	Min	Max	
t _{LUT}		0.9		1.0		1.3		1.6	ns
t _{CLUT}		0.1		0.5		0.6		0.6	ns
t _{RLUT}		0.5		0.8		0.9		1.0	ns
t _{PACKED}		0.4		0.4		0.5		0.7	ns
t_{EN}		0.7		0.9		1.1		1.4	ns
t _{CICO}		0.2		0.2		0.2		0.3	ns
t _{CGEN}		0.8		0.7		8.0		1.2	ns
t _{CGENR}		0.4		0.3		0.3		0.4	ns
t _{CASC}		0.7		0.7		8.0		0.9	ns
t_{C}		0.3		1.0		1.3		1.5	ns
t_{CO}		0.5		0.7		0.9		1.0	ns
t_{COMB}		0.4		0.4		0.5		0.6	ns
t_{SU}	0.8		1.6		2.2		2.5		ns
t _H	0.5		0.8		1.0		1.4		ns
t _{PRE}		0.8		0.4		0.5		0.5	ns
t _{CLR}		0.8		0.4		0.5		0.5	ns
t _{CH}	2.0		4.0		4.0		4.0		ns
t_{CL}	2.0		4.0		4.0		4.0		ns

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		-4 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	Min	Max	Ì
t _{EABAA}		9.5		13.6		16.5		20.8	ns
t _{EABRCCOMB}	9.5		13.6		16.5		20.8		ns
t _{EABRCREG}	6.1		8.8		10.8		13.4		ns
t _{EABWP}	6.0		4.9		6.0		7.4		ns
t _{EABWCCOMB}	6.2		6.1		7.5		9.2		ns
t _{EABWCREG}	12.0		11.6		14.2		17.4		ns
t _{EABDD}		6.8		9.7		11.8		14.9	ns
t _{EABDATA} CO		1.0		1.4		1.8		2.2	ns
t _{EABDATASU}	5.3		4.6		5.6		6.9		ns
t _{EABDATAH}	0.0		0.0		0.0		0.0		ns
t _{EABWESU}	4.4		4.8		5.8		7.2		ns
t _{EABWEH}	0.0		0.0		0.0		0.0		ns
t _{EABWDSU}	1.8		1.1		1.4		2.1		ns
t _{EABWDH}	0.0		0.0		0.0		0.0		ns
t _{EABWASU}	4.5		4.6		5.6		7.4		ns
t _{EABWAH}	0.0		0.0		0.0		0.0		ns
t _{EABWO}		5.1		9.4		11.4		14.0	ns

Symbol	-1 Speed Grade		-2 Spee	d Grade	-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	-
t _{EABDATA1}		3.3		3.9		5.2	ns
t _{EABDATA2}		1.0		1.3		1.7	ns
t _{EABWE1}		2.6		3.1		4.1	ns
t _{EABWE2}		2.7		3.2		4.3	ns
t _{EABCLK}		0.0		0.0		0.0	ns
t _{EABCO}		1.2		1.4		1.8	ns
t _{EABBYPASS}		0.1		0.2		0.2	ns
t _{EABSU}	1.4		1.7		2.2		ns
t _{EABH}	0.1		0.1		0.1		ns
t_{AA}		4.5		5.4		7.3	ns
t_{WP}	2.0		2.4		3.2		ns
t _{WDSU}	0.7		0.8		1.1		ns
t _{WDH}	0.5		0.6		0.7		ns
t _{WASU}	0.6		0.7		0.9		ns
t _{WAH}	0.9		1.1		1.5		ns
t_{WO}		3.3		3.9		5.2	ns
t_{DD}		3.3		3.9		5.2	ns
t _{EABOUT}		0.1		0.1		0.2	ns
t _{EABCH}	3.0		3.5		4.0		ns
t _{EABCL}	3.03		3.5		4.0		ns

Symbol	-1 Speed Grade		Timing Macroparameters -2 Speed Grade		Note (1) -3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	_
t _{EABAA}		8.1		9.8		13.1	ns
t _{EABRCCOMB}	8.1		9.8		13.1		ns
t _{EABRCREG}	5.8		6.9		9.3		ns
t _{EABWP}	2.0		2.4		3.2		ns
t _{EABWCCOMB}	3.5		4.2		5.6		ns
t _{EABWCREG}	9.4		11.2		14.8		ns
t _{EABDD}		6.9		8.3		11.0	ns
t _{EABDATACO}		1.3		1.5		2.0	ns
t _{EABDATASU}	2.4		3.0		3.9		ns
t _{EABDATAH}	0.0		0.0		0.0		ns
t _{EABWESU}	4.1		4.9		6.5		ns
t _{EABWEH}	0.0		0.0		0.0		ns
t _{EABWDSU}	1.4		1.6		2.2		ns
t _{EABWDH}	0.0		0.0	_	0.0	_	ns
t _{EABWASU}	2.5		3.0	_	4.1	_	ns
t _{EABWAH}	0.0		0.0		0.0		ns
t _{EABWO}		6.2		7.5		9.9	ns

Table 95. EPF10K30A Device EAB Internal Timing Macroparameters Note (1)							
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{EABAA}		9.7		11.6		16.2	ns
t _{EABRCCOMB}	9.7		11.6		16.2		ns
t _{EABRCREG}	5.9		7.1		9.7		ns
t _{EABWP}	3.8		4.5		5.9		ns
t _{EABWCCOMB}	4.0		4.7		6.3		ns
t _{EABWCREG}	9.8		11.6		16.6		ns
t _{EABDD}		9.2		11.0		16.1	ns
t _{EABDATA} CO		1.7		2.1		3.4	ns
t _{EABDATASU}	2.3		2.7		3.5		ns
t _{EABDATAH}	0.0		0.0		0.0		ns
t _{EABWESU}	3.3		3.9		4.9		ns
t _{EABWEH}	0.0		0.0		0.0		ns
t _{EABWDSU}	3.2		3.8		5.0		ns
t _{EABWDH}	0.0		0.0		0.0		ns
t _{EABWASU}	3.7		4.4		5.1		ns
t _{EABWAH}	0.0		0.0		0.0		ns
t _{EABWO}		6.1		7.3		11.3	ns

Symbol	-1 Speed Grade		-2 Spee	d Grade	-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{EABDATA1}		1.8		2.1		2.4	ns
t _{EABDATA2}		3.2		3.7		4.4	ns
t _{EABWE1}		0.8		0.9		1.1	ns
t _{EABWE2}		2.3		2.7		3.1	ns
t _{EABCLK}		0.8		0.9		1.1	ns
t _{EABCO}		1.0		1.1		1.4	ns
t _{EABBYPASS}		0.3		0.3		0.4	ns
t _{EABSU}	1.3		1.5		1.8		ns
t _{EABH}	0.4		0.5		0.5		ns
t_{AA}		4.1		4.8		5.6	ns
t_{WP}	3.2		3.7		4.4		ns
t _{WDSU}	2.4		2.8		3.3		ns
t_{WDH}	0.2		0.2		0.3		ns
t _{WASU}	0.2		0.2		0.3		ns
t _{WAH}	0.0		0.0		0.0		ns
t_{WO}		3.4		3.9		4.6	ns
t _{DD}		3.4		3.9		4.6	ns
t _{EABOUT}		0.3		0.3		0.4	ns
t _{EABCH}	2.5		3.5		4.0		ns
t _{EABCL}	3.2		3.7		4.4		ns

Multiple FLEX 10K devices can be configured in any of the five configuration schemes by connecting the configuration enable (nCE) and configuration enable output (nCEO) pins on each device.

Table 116. Data Sources for Configuration					
Configuration Scheme	Data Source				
Configuration device	EPC1, EPC2, EPC16, or EPC1441 configuration device				
Passive serial (PS)	BitBlaster, MasterBlaster, or ByteBlasterMV download cable, or serial data source				
Passive parallel asynchronous (PPA)	Parallel data source				
Passive parallel synchronous (PPS)	Parallel data source				
JTAG	BitBlaster, MasterBlaster, or ByteBlasterMV download cable, or microprocessor with Jam STAPL file or Jam Byte-Code file				

Device Pin-Outs

See the Altera web site (http://www.altera.com) or the Altera Digital Library for pin-out information.

Revision History

The information contained in the *FLEX 10K Embedded Programmable Logic Device Family Data Sheet* version 4.2 supersedes information published in previous versions.

Version 4.2 Changes

The following change was made to version 4.2 of the *FLEX 10K Embedded Programmable Logic Device Family Data Sheet*: updated Figure 13.

Version 4.1 Changes

The following changes were made to version 4.1 of the FLEX 10K Embedded Programmable Logic Device Family Data Sheet.

- Updated General Description section
- Updated I/O Element section
- Updated SameFrame Pin-Outs section
- Updated Figure 16
- Updated Tables 13 and 116
- Added Note 9 to Table 19
- Added Note 10 to Table 24
- Added Note 10 to Table 28