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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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FLEX 10K Embedded Programmable Logic Device Family Data Sheet
Table 4. FLEX 10K Package Options & I/O Pin Count Note (1)

Device 84-Pin 
PLCC

100-Pin 
TQFP

144-Pin TQFP 208-Pin 
PQFP 
RQFP

240-Pin
PQFP 
RQFP

EPF10K10 59 102 134

EPF10K10A 66 102 134

EPF10K20 102 147 189

EPF10K30 147 189

EPF10K30A 102 147 189

EPF10K40 147 189

EPF10K50 189

EPF10K50V 189

EPF10K70 189

EPF10K100

EPF10K100A 189

EPF10K130V

EPF10K250A

Table 5. FLEX 10K Package Options & I/O Pin Count (Continued) Note (1)

Device 503-Pin 
PGA

599-Pin 
PGA

256-Pin 
FineLine BGA

356-Pin 
BGA

484-Pin 
FineLine BGA

600-Pin 
BGA

403-Pin
PGA

EPF10K10

EPF10K10A 150 150 (2)

EPF10K20

EPF10K30 246

EPF10K30A 191 246 246

EPF10K40

EPF10K50 274 310

EPF10K50V 274

EPF10K70 358

EPF10K100 406

EPF10K100A 274 369 406

EPF10K130V 470 470

EPF10K250A 470 470
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FLEX 10K Embedded Programmable Logic Device Family Data Sheet
Figure 1. FLEX 10K Device Block Diagram

FLEX 10K devices provide six dedicated inputs that drive the flipflops’ 
control inputs to ensure the efficient distribution of high-speed, low-skew 
(less than 1.5 ns) control signals. These signals use dedicated routing 
channels that provide shorter delays and lower skews than the FastTrack 
Interconnect. Four of the dedicated inputs drive four global signals. These 
four global signals can also be driven by internal logic, providing an ideal 
solution for a clock divider or an internally generated asynchronous clear 
signal that clears many registers in the device. 

Embedded Array Block

The EAB is a flexible block of RAM with registers on the input and output 
ports, and is used to implement common gate array megafunctions. The 
EAB is also suitable for functions such as multipliers, vector scalars, and 
error correction circuits, because it is large and flexible. These functions 
can be combined in applications such as digital filters and 
microcontrollers. 
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FLEX 10K Embedded Programmable Logic Device Family Data Sheet
Larger blocks of RAM are created by combining multiple EABs. For 
example, two 256 × 8 RAM blocks can be combined to form a 
256 × 16 RAM block; two 512 × 4 blocks of RAM can be combined to form 
a 512 × 8 RAM block. See Figure 3.

Figure 3. Examples of Combining EABs

If necessary, all EABs in a device can be cascaded to form a single RAM 
block. EABs can be cascaded to form RAM blocks of up to 2,048 words 
without impacting timing. Altera’s software automatically combines 
EABs to meet a designer’s RAM specifications.

EABs provide flexible options for driving and controlling clock signals. 
Different clocks can be used for the EAB inputs and outputs. Registers can 
be independently inserted on the data input, EAB output, or the address 
and WE inputs. The global signals and the EAB local interconnect can drive 
the WE signal. The global signals, dedicated clock pins, and EAB local 
interconnect can drive the EAB clock signals. Because the LEs drive the 
EAB local interconnect, the LEs can control the WE signal or the EAB clock 
signals.

Each EAB is fed by a row interconnect and can drive out to row and 
column interconnects. Each EAB output can drive up to two row channels 
and up to two column channels; the unused row channel can be driven by 
other LEs. This feature increases the routing resources available for EAB 
outputs. See Figure 4.
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FLEX 10K Embedded Programmable Logic Device Family Data Sheet
The programmable flipflop in the LE can be configured for D, T, JK, or SR 
operation. The clock, clear, and preset control signals on the flipflop can 
be driven by global signals, general-purpose I/O pins, or any internal 
logic. For combinatorial functions, the flipflop is bypassed and the output 
of the LUT drives the output of the LE. 

The LE has two outputs that drive the interconnect; one drives the local 
interconnect and the other drives either the row or column FastTrack 
Interconnect. The two outputs can be controlled independently. For 
example, the LUT can drive one output while the register drives the other 
output. This feature, called register packing, can improve LE utilization 
because the register and the LUT can be used for unrelated functions.

The FLEX 10K architecture provides two types of dedicated high-speed 
data paths that connect adjacent LEs without using local interconnect 
paths: carry chains and cascade chains. The carry chain supports high-
speed counters and adders; the cascade chain implements wide-input 
functions with minimum delay. Carry and cascade chains connect all LEs 
in an LAB and all LABs in the same row. Intensive use of carry and 
cascade chains can reduce routing flexibility. Therefore, the use of these 
chains should be limited to speed-critical portions of a design.

Carry Chain

The carry chain provides a very fast (as low as 0.2 ns) carry-forward 
function between LEs. The carry-in signal from a lower-order bit drives 
forward into the higher-order bit via the carry chain, and feeds into both 
the LUT and the next portion of the carry chain. This feature allows the 
FLEX 10K architecture to implement high-speed counters, adders, and 
comparators of arbitrary width efficiently. Carry chain logic can be 
created automatically by the Compiler during design processing, or 
manually by the designer during design entry. Parameterized functions 
such as LPM and DesignWare functions automatically take advantage of 
carry chains.

Carry chains longer than eight LEs are automatically implemented by 
linking LABs together. For enhanced fitting, a long carry chain skips 
alternate LABs in a row. A carry chain longer than one LAB skips either 
from even-numbered LAB to even-numbered LAB, or from odd-
numbered LAB to odd-numbered LAB. For example, the last LE of the 
first LAB in a row carries to the first LE of the third LAB in the row. The 
carry chain does not cross the EAB at the middle of the row. For instance, 
in the EPF10K50 device, the carry chain stops at the eighteenth LAB and a 
new one begins at the nineteenth LAB.
Altera Corporation  15



FLEX 10K Embedded Programmable Logic Device Family Data Sheet
Figure 7 shows how an n-bit full adder can be implemented in n + 1 LEs 
with the carry chain. One portion of the LUT generates the sum of two bits 
using the input signals and the carry-in signal; the sum is routed to the 
output of the LE. The register can either be bypassed for simple adders or 
be used for an accumulator function. The carry chain logic generates the 
carry-out signal, which is routed directly to the carry-in signal of the next-
higher-order bit. The final carry-out signal is routed to an LE, where it can 
be used as a general-purpose signal. 

Figure 7. Carry Chain Operation (n-bit Full Adder)
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LE Operating Modes

The FLEX 10K LE can operate in the following four modes:

■ Normal mode
■ Arithmetic mode
■ Up/down counter mode
■ Clearable counter mode

Each of these modes uses LE resources differently. In each mode, seven 
available inputs to the LE—the four data inputs from the LAB local 
interconnect, the feedback from the programmable register, and the 
carry-in and cascade-in from the previous LE—are directed to different 
destinations to implement the desired logic function. Three inputs to the 
LE provide clock, clear, and preset control for the register. The Altera 
software, in conjunction with parameterized functions such as LPM and 
DesignWare functions, automatically chooses the appropriate mode for 
common functions such as counters, adders, and multipliers. If required, 
the designer can also create special-purpose functions which use a specific 
LE operating mode for optimal performance.

The architecture provides a synchronous clock enable to the register in all 
four modes. The Altera software can set DATA1 to enable the register 
synchronously, providing easy implementation of fully synchronous 
designs.

Figure 9 shows the LE operating modes.
18 Altera Corporation



FLEX 10K Embedded Programmable Logic Device Family Data Sheet
Figure 13. Bidirectional I/O Registers
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Slew-Rate Control

The output buffer in each IOE has an adjustable output slew rate that can 
be configured for low-noise or high-speed performance. A slower slew 
rate reduces system noise and adds a maximum delay of approximately 
2.9 ns. The fast slew rate should be used for speed-critical outputs in 
systems that are adequately protected against noise. Designers can specify 
the slew rate on a pin-by-pin basis during design entry or assign a default 
slew rate to all pins on a device-wide basis. The slow slew rate setting 
affects only the falling edge of the output.

Open-Drain Output Option

FLEX 10K devices provide an optional open-drain (electrically equivalent 
to an open-collector) output for each I/O pin. This open-drain output 
enables the device to provide system-level control signals (e.g., interrupt 
and write enable signals) that can be asserted by any of several devices. It 
can also provide an additional wired-OR plane. Additionally, the Altera 
software can convert tri-state buffers with grounded data inputs to open-
drain pins automatically.

Open-drain output pins on FLEX 10K devices (with a pull-up resistor to 
the 5.0-V supply) can drive 5.0-V CMOS input pins that require a VIH of 
3.5 V. When the open-drain pin is active, it will drive low. When the pin is 
inactive, the trace will be pulled up to 5.0 V by the resistor. The open-drain 
pin will only drive low or tri-state; it will never drive high. The rise time 
is dependent on the value of the pull-up resistor and load impedance. The 
IOL current specification should be considered when selecting a pull-up 
resistor.

Output pins on 5.0-V FLEX 10K devices with VCCIO = 3.3 V or 5.0 V (with 
a pull-up resistor to the 5.0-V supply) can also drive 5.0-V CMOS input 
pins. In this case, the pull-up transistor will turn off when the pin voltage 
exceeds 3.3 V. Therefore, the pin does not have to be open-drain.

MultiVolt I/O Interface 

The FLEX 10K device architecture supports the MultiVolt I/O interface 
feature, which allows FLEX 10K devices to interface with systems of 
differing supply voltages. These devices have one set of VCC pins for 
internal operation and input buffers (VCCINT) and another set for I/O 
output drivers (VCCIO). 
Altera Corporation  39



FLEX 10K Embedded Programmable Logic Device Family Data Sheet
Generic Testing Each FLEX 10K device is functionally tested. Complete testing of each 
configurable SRAM bit and all logic functionality ensures 100% yield. 
AC test measurements for FLEX 10K devices are made under conditions 
equivalent to those shown in Figure 19. Multiple test patterns can be used 
to configure devices during all stages of the production flow.

Figure 19. FLEX 10K AC Test Conditions

Operating 
Conditions

Tables 17 through 21 provide information on absolute maximum ratings, 
recommended operating conditions, DC operating conditions, and 
capacitance for 5.0-V FLEX 10K devices.

VCC

To Test
System

C1 (includes
JIG capacitance)

Device input
rise and fall
times < 3 ns

Device
Output

250 Ω
(8.06 kΩ)

[481 Ω]

464 Ω
(703 Ω)
[521 Ω]

Power supply transients can affect AC
measurements. Simultaneous transitions of
multiple outputs should be avoided for
accurate measurement. Threshold tests must
not be performed under AC conditions.
Large-amplitude, fast-ground-current
transients normally occur as the device
outputs discharge the load capacitances.
When these transients flow through the
parasitic inductance between the device
ground pin and the test system ground,
significant reductions in observable noise
immunity can result. Numbers without 
parentheses are for 5.0-V devices or outputs. 
Numbers in parentheses are for 3.3-V devices 
or outputs. Numbers in brackets are for 
2.5-V devices or outputs.

Table 17. FLEX 10K 5.0-V Device Absolute Maximum Ratings Note (1)

Symbol Parameter Conditions Min Max Unit

VCC Supply voltage With respect to ground (2) –2.0 7.0 V

VI DC input voltage –2.0 7.0 V

IOUT DC output current, per pin –25 25 mA

TSTG Storage temperature No bias –65 150 ° C

TAMB Ambient temperature Under bias –65 135 ° C

TJ Junction temperature Ceramic packages, under bias 150 ° C

PQFP, TQFP, RQFP, and BGA 
packages, under bias

135 ° C
44 Altera Corporation
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Table 19. FLEX 10K 5.0-V Device DC Operating Conditions Notes (5), (6)

Symbol Parameter Conditions Min Typ Max Unit

VIH High-level input 
voltage

2.0 VCCINT + 0.5 V

VIL Low-level input voltage –0.5 0.8 V

VOH 5.0-V high-level TTL 
output voltage

IOH = –4 mA DC, VCCIO = 4.75 V 
(7)

2.4 V

3.3-V high-level TTL 
output voltage

IOH = –4 mA DC, VCCIO = 3.00 V 
(7)

2.4 V

3.3-V high-level CMOS 
output voltage

IOH = –0.1 mA DC, VCCIO = 3.00 V 
(7)

VCCIO – 0.2 V

VOL 5.0-V low-level TTL 
output voltage

IOL = 12 mA DC, VCCIO = 4.75 V 
(8)

0.45 V

3.3-V low-level TTL 
output voltage

IOL = 12 mA DC, VCCIO = 3.00 V 
(8)

0.45 V

3.3-V low-level CMOS 
output voltage

IOL = 0.1 mA DC, VCCIO = 3.00 V 
(8)

0.2 V

II Input pin leakage 
current

VI = VCC or ground
(9)

–10 10 µA

IOZ Tri-stated I/O pin 
leakage current

VO = VCC or ground
(9)

–40 40 µA

ICC0 VCC supply current 
(standby)

VI = ground, no load 0.5 10 mA

Table 20. 5.0-V Device Capacitance of EPF10K10, EPF10K20 & EPF10K30 Devices Note (10)

Symbol Parameter Conditions Min Max Unit

CIN Input capacitance VIN = 0 V, f = 1.0 MHz 8 pF

CINCLK Input capacitance on dedicated 
clock pin

VIN = 0 V, f = 1.0 MHz 12 pF

COUT Output capacitance VOUT = 0 V, f = 1.0 MHz 8 pF

Table 21. 5.0-V Device Capacitance of EPF10K40, EPF10K50, EPF10K70 & EPF10K100 Devices Note (10)

Symbol Parameter Conditions Min Max Unit

CIN Input capacitance VIN = 0 V, f = 1.0 MHz 10 pF

CINCLK Input capacitance on dedicated 
clock pin

VIN = 0 V, f = 1.0 MHz 15 pF

COUT Output capacitance VOUT = 0 V, f = 1.0 MHz 10 pF
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Notes to tables:
(1) Microparameters are timing delays contributed by individual architectural elements. These parameters cannot be 

measured explicitly.
(2) Operating conditions: VCCIO = 5.0 V ± 5% for commercial use in FLEX 10K devices.

VCCIO = 5.0 V ± 10% for industrial use in FLEX 10K devices.
VCCIO = 3.3 V ± 10% for commercial or industrial use in FLEX 10KA devices.

(3) Operating conditions: VCCIO = 3.3 V ± 10% for commercial or industrial use in FLEX 10K devices.
VCCIO = 2.5 V ± 0.2 V for commercial or industrial use in FLEX 10KA devices.

(4) Operating conditions: VCCIO = 2.5 V, 3.3 V, or 5.0 V.
(5) Because the RAM in the EAB is self-timed, this parameter can be ignored when the WE signal is registered. 
(6) EAB macroparameters are internal parameters that can simplify predicting the behavior of an EAB at its boundary; 

these parameters are calculated by summing selected microparameters. 
(7) These parameters are worst-case values for typical applications. Post-compilation timing simulation and timing 

analysis are required to determine actual worst-case performance.
(8) External reference timing parameters are factory-tested, worst-case values specified by Altera. A representative 

subset of signal paths is tested to approximate typical device applications.
(9) Contact Altera Applications for test circuit specifications and test conditions.
(10) These timing parameters are sample-tested only. 

Figures 29 and 30 show the asynchronous and synchronous timing 
waveforms, respectively, for the EAB macroparameters in Table 34. 

Figure 29. EAB Asynchronous Timing Waveforms
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Table 41. EPF10K10 & EPF10K20 Device EAB Internal Microparameters Note (1)

Symbol -3 Speed Grade -4 Speed Grade Unit

Min Max Min Max

tEABDATA1 1.5 1.9 ns

tEABDATA2 4.8 6.0 ns

tEABWE1 1.0 1.2 ns

tEABWE2 5.0 6.2 ns

tEABCLK 1.0 2.2 ns

tEABCO 0.5 0.6 ns

tEABBYPASS 1.5 1.9 ns

tEABSU 1.5 1.8 ns

tEABH 2.0 2.5 ns

tAA 8.7 10.7 ns

tWP 5.8 7.2 ns

tWDSU 1.6 2.0 ns

tWDH 0.3 0.4 ns

tWASU 0.5 0.6 ns

tWAH 1.0 1.2 ns

tWO 5.0 6.2 ns

tDD 5.0 6.2 ns

tEABOUT 0.5 0.6 ns

tEABCH 4.0 4.0 ns

tEABCL 5.8 7.2 ns
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Table 54. EPF10K50 Device Interconnect Timing Microparameters Note (1)

Symbol -3 Speed Grade -4 Speed Grade Unit

Min Max Min Max

tDIN2IOE 8.4 10.2 ns

tDIN2LE 3.6 4.8 ns

tDIN2DATA 5.5 7.2 ns

tDCLK2IOE 4.6 6.2 ns

tDCLK2LE 3.6 4.8 ns

tSAMELAB 0.3 0.3 ns

tSAMEROW 3.3 3.7 ns

tSAMECOLUMN 3.9 4.1 ns

tDIFFROW 7.2 7.8 ns

tTWOROWS 10.5 11.5 ns

tLEPERIPH 7.5 8.2 ns

tLABCARRY 0.4 0.6 ns

tLABCASC 2.4 3.0 ns

Table 55. EPF10K30, EPF10K40 & EPF10K50 Device External Timing Parameters Note (1)

Symbol -3 Speed Grade -4 Speed Grade Unit

Min Max Min Max

tDRR 17.2 21.1 ns

tINSU (2), (3) 5.7 6.4 ns

tINH (3) 0.0 0.0 ns

tOUTCO (3) 2.0 8.8 2.0 11.2 ns

Table 56. EPF10K30, EPF10K40 & EPF10K50 Device External Bidirectional Timing Parameters  Note (1)

Symbol -3 Speed Grade -4 Speed Grade Unit

Min Max Min Max

tINSUBIDIR 4.1 4.6 ns

tINHBIDIR 0.0 0.0 ns

tOUTCOBIDIR 2.0 8.8 2.0 11.2 ns

tXZBIDIR 12.3 15.0 ns

tZXBIDIR 12.3 15.0 ns
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Table 68. EPF10K100 Device Interconnect Timing Microparameters Note (1)

Symbol -3DX Speed Grade -3 Speed Grade -4 Speed Grade Unit

Min Max Min Max Min Max

tDIN2IOE 10.3 10.3 12.2 ns

tDIN2LE 4.8 4.8 6.0 ns

tDIN2DATA 7.3 7.3 11.0 ns

tDCLK2IOE without ClockLock or 
ClockBoost circuitry

6.2 6.2 7.7 ns

tDCLK2IOE with ClockLock or ClockBoost 
circuitry

2.3 – – ns

tDCLK2LE without ClockLock or 
ClockBoost circuitry

4.8 4.8 6.0 ns

tDCLK2LE with ClockLock or ClockBoost 
circuitry

2.3 – – ns

tSAMELAB 0.4 0.4 0.5 ns

tSAMEROW 4.9 4.9 5.5 ns

tSAMECOLUMN 5.1 5.1 5.4 ns

tDIFFROW 10.0 10.0 10.9 ns

tTWOROWS 14.9 14.9 16.4 ns

tLEPERIPH 6.9 6.9 8.1 ns

tLABCARRY 0.9 0.9 1.1 ns

tLABCASC 3.0 3.0 3.2 ns
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Table 89. EPF10K10A Device Interconnect Timing Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tDIN2IOE 4.2 5.0 6.5 ns

tDIN2LE 2.2 2.6 3.4 ns

tDIN2DATA 4.3 5.2 7.1 ns

tDCLK2IOE 4.2 4.9 6.6 ns

tDCLK2LE 2.2 2.6 3.4 ns

tSAMELAB 0.1 0.1 0.2 ns

tSAMEROW 2.2 2.4 2.9 ns

tSAMECOLUMN 0.8 1.0 1.4 ns

tDIFFROW 3.0 3.4 4.3 ns

tTWOROWS 5.2 5.8 7.2 ns

tLEPERIPH 1.8 2.2 2.8 ns

tLABCARRY 0.5 0.5 0.7 ns

tLABCASC 0.9 1.0 1.5 ns

Table 90. EPF10K10A External Reference Timing Parameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tDRR 10.0 12.0 16.0 ns

tINSU (2), (3) 1.6 2.1 2.8 ns

tINH (3) 0.0 0.0 0.0 ns

tOUTCO (3) 2.0 5.8 2.0 6.9 2.0 9.2 ns

Table 91. EPF10K10A Device External Bidirectional Timing Parameters Note (1)

Symbol -2 Speed Grade -3 Speed Grade -4 Speed Grade Unit

Min Max Min Max Min Max

tINSUBIDIR 2.4 3.3 4.5 ns

tINHBIDIR 0.0 0.0 0.0 ns

tOUTCOBIDIR 2.0 5.8 2.0 6.9 2.0 9.2 ns

tXZBIDIR 6.3 7.5 9.9 ns

tZXBIDIR 6.3 7.5 9.9 ns
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Table 95. EPF10K30A Device EAB Internal Timing Macroparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tEABAA 9.7 11.6 16.2 ns

tEABRCCOMB 9.7 11.6 16.2 ns

tEABRCREG 5.9 7.1 9.7 ns

tEABWP 3.8 4.5 5.9 ns

tEABWCCOMB 4.0 4.7 6.3 ns

tEABWCREG 9.8 11.6 16.6 ns

tEABDD 9.2 11.0 16.1 ns

tEABDATACO 1.7 2.1 3.4 ns

tEABDATASU 2.3 2.7 3.5 ns

tEABDATAH 0.0 0.0 0.0 ns

tEABWESU 3.3 3.9 4.9 ns

tEABWEH 0.0 0.0 0.0 ns

tEABWDSU 3.2 3.8 5.0 ns

tEABWDH 0.0 0.0 0.0 ns

tEABWASU 3.7 4.4 5.1 ns

tEABWAH 0.0 0.0 0.0 ns

tEABWO 6.1 7.3 11.3 ns
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Table 100. EPF10K100A Device IOE Timing Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tIOD 2.5 2.9 3.4 ns

tIOC 0.3 0.3 0.4 ns

tIOCO 0.2 0.2 0.3 ns

tIOCOMB 0.5 0.6 0.7 ns

tIOSU 1.3 1.7 1.8 ns

tIOH 0.2 0.2 0.3 ns

tIOCLR 1.0 1.2 1.4 ns

tOD1 2.2 2.6 3.0 ns

tOD2 4.5 5.3 6.1 ns

tOD3 6.8 7.9 9.3 ns

tXZ 2.7 3.1 3.7 ns

tZX1 2.7 3.1 3.7 ns

tZX2 5.0 5.8 6.8 ns

tZX3 7.3 8.4 10.0 ns

tINREG 5.3 6.1 7.2 ns

tIOFD 4.7 5.5 6.4 ns

tINCOMB 4.7 5.5 6.4 ns
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Notes:
(1) To implement the ClockLock and ClockBoost circuitry with the MAX+PLUS II software, designers must specify the 

input frequency. The MAX+PLUS II software tunes the PLL in the ClockLock and ClockBoost circuitry to this 
frequency. The fCLKDEV parameter specifies how much the incoming clock can differ from the specified frequency 
during device operation. Simulation does not reflect this parameter.

(2) During device configuration, the ClockLock and ClockBoost circuitry is configured before the rest of the device. If 
the incoming clock is supplied during configuration, the ClockLock and ClockBoost circuitry locks during 
configuration, because the tLOCK value is less than the time required for configuration.

(3) The tJITTER specification is measured under long-term observation.

Power 
Consumption

The supply power (P) for FLEX 10K devices can be calculated with the 
following equation:

P = PINT + PIO = (ICCSTANDBY + ICCACTIVE) × VCC + PIO

Typical ICCSTANDBY values are shown as ICC0 in the FLEX 10K device DC 
operating conditions tables on pages 46, 49, and 52 of this data sheet. The 
ICCACTIVE value depends on the switching frequency and the application 
logic. This value is calculated based on the amount of current that each LE 
typically consumes. The PIO value, which depends on the device output 
load characteristics and switching frequency, can be calculated using the 
guidelines given in Application Note 74 (Evaluating Power for Altera Devices).

1 Compared to the rest of the device, the embedded array 
consumes a negligible amount of power. Therefore, the 
embedded array can be ignored when calculating supply 
current.

The ICCACTIVE value is calculated with the following equation:

 ICCACTIVE = K × fMAX × N × togLC × 

The parameters in this equation are shown below:

fCLKDEV1 Input deviation from user specification in MAX+PLUS II (ClockBoost clock 
multiplication factor equals 1) (1)

±1 MHz

fCLKDEV2 Input deviation from user specification in MAX+PLUS II (ClockBoost clock 
multiplication factor equals 2) (1)

±0.5  MHz

t INCLKSTB Input clock stability (measured between adjacent clocks) 100 ps

tLOCK Time required for ClockLock or ClockBoost to acquire lock (2) 10 µs

tJITTER Jitter on ClockLock or ClockBoost-generated clock (3) 1 ns

tOUTDUTY Duty cycle for ClockLock or ClockBoost-generated clock 40 50 60 %

Table 113.  ClockLock & ClockBoost Parameters   (Part 2 of 2) 

Symbol Parameter Min Typ Max Unit

µA
MHz LE×
---------------------------
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fMAX = Maximum operating frequency in MHz
N = Total number of logic cells used in the device
togLC = Average percent of logic cells toggling at each clock 

(typically 12.5%)
K = Constant, shown in Tables 114 and 115

This calculation provides an ICC estimate based on typical conditions with 
no output load. The actual ICC should be verified during operation 
because this measurement is sensitive to the actual pattern in the device 
and the environmental operating conditions.

To better reflect actual designs, the power model (and the constant K in 
the power calculation equations) for continuous interconnect FLEX 
devices assumes that logic cells drive FastTrack Interconnect channels. In 
contrast, the power model of segmented FPGAs assumes that all logic 
cells drive only one short interconnect segment. This assumption may 
lead to inaccurate results, compared to measured power consumption for 
an actual design in a segmented interconnect FPGA.

Figure 32 shows the relationship between the current and operating 
frequency of FLEX 10K devices.

Table 114. FLEX 10K K Constant Values

Device K Value

EPF10K10 82

EPF10K20 89

EPF10K30 88

EPF10K40 92

EPF10K50 95

EPF10K70 85

EPF10K100 88

Table 115. FLEX 10KA K Constant Values

Device K Value

EPF10K10A 17

EPF10K30A 17

EPF10K50V 19

EPF10K100A 19

EPF10K130V 22

EPF10K250A 23
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Figure 32. ICCACTIVE vs. Operating Frequency (Part 2 of 3)
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