
E·XFL

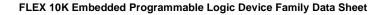
Intel - EPF10K100ABI356-3N Datasheet

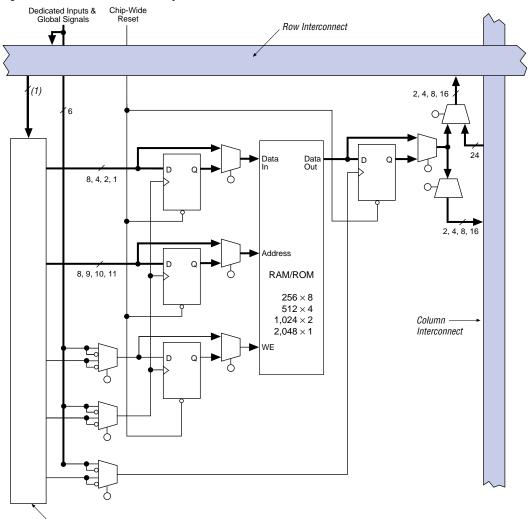
Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs


The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.


Details	
Product Status	Obsolete
Number of LABs/CLBs	624
Number of Logic Elements/Cells	4992
Total RAM Bits	24576
Number of I/O	274
Number of Gates	158000
Voltage - Supply	3V ~ 3.6V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	356-LBGA
Supplier Device Package	356-BGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epf10k100abi356-3n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Flexible interconnect
 - FastTrack[®] Interconnect continuous routing structure for fast, predictable interconnect delays
 - Dedicated carry chain that implements arithmetic functions such as fast adders, counters, and comparators (automatically used by software tools and megafunctions)
 - Dedicated cascade chain that implements high-speed, high-fan-in logic functions (automatically used by software tools and megafunctions)
 - Tri-state emulation that implements internal tri-state buses
 - Up to six global clock signals and four global clear signals
- Powerful I/O pins
 - Individual tri-state output enable control for each pin
 - Open-drain option on each I/O pin
 - Programmable output slew-rate control to reduce switching noise
 - FLEX 10KA devices support hot-socketing
- Peripheral register for fast setup and clock-to-output delay
- Flexible package options
 - Available in a variety of packages with 84 to 600 pins (see Tables 4 and 5)
 - Pin-compatibility with other FLEX 10K devices in the same package
 - FineLine BGA[™] packages maximize board space efficiency
- Software design support and automatic place-and-route provided by Altera development systems for Windows-based PCs and Sun SPARCstation, HP 9000 Series 700/800 workstations
- Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), DesignWare components, Verilog HDL, VHDL, and other interfaces to popular EDA tools from manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, Synplicity, VeriBest, and Viewlogic

Figure 4. FLEX 10K Embedded Array Block

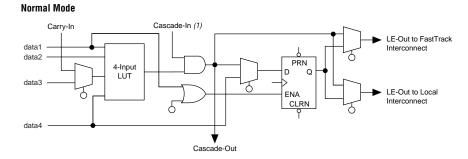
`EAB Local Interconnect (1)

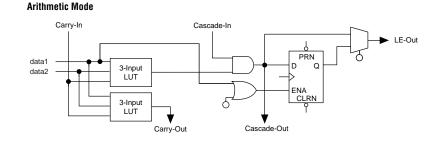
Note:

 EPF10K10, EPF10K10A, EPF10K20, EPF10K30, EPF10K30A, EPF10K40, EPF10K50, and EPF10K50V devices have 22 EAB local interconnect channels; EPF10K70, EPF10K100, EPF10K100A, EPF10K130V, and EPF10K250A devices have 26.

LE Operating Modes

The FLEX 10K LE can operate in the following four modes:


- Normal mode
- Arithmetic mode
- Up/down counter mode
- Clearable counter mode


Each of these modes uses LE resources differently. In each mode, seven available inputs to the LE—the four data inputs from the LAB local interconnect, the feedback from the programmable register, and the carry-in and cascade-in from the previous LE—are directed to different destinations to implement the desired logic function. Three inputs to the LE provide clock, clear, and preset control for the register. The Altera software, in conjunction with parameterized functions such as LPM and DesignWare functions, automatically chooses the appropriate mode for common functions such as counters, adders, and multipliers. If required, the designer can also create special-purpose functions which use a specific LE operating mode for optimal performance.

The architecture provides a synchronous clock enable to the register in all four modes. The Altera software can set DATA1 to enable the register synchronously, providing easy implementation of fully synchronous designs.

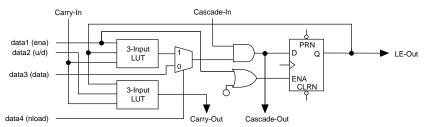
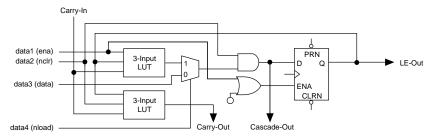
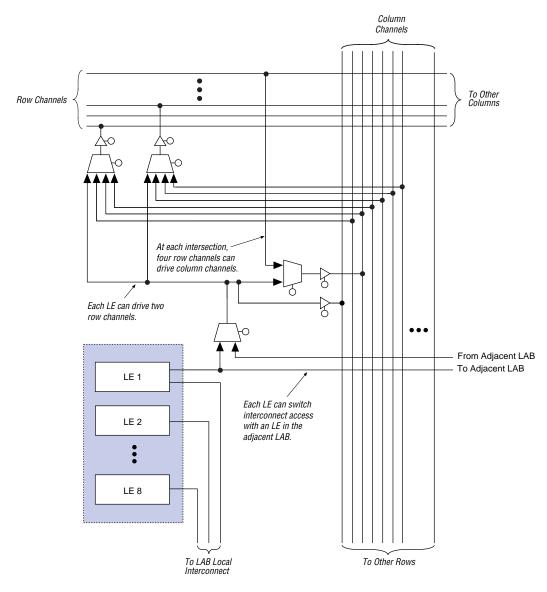

Figure 9 shows the LE operating modes.

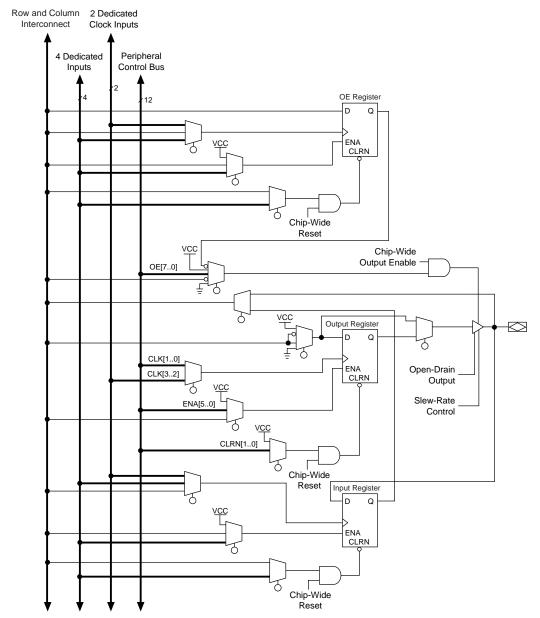
Figure 9. FLEX 10K LE Operating Modes



Up/Down Counter Mode


Clearable Counter Mode

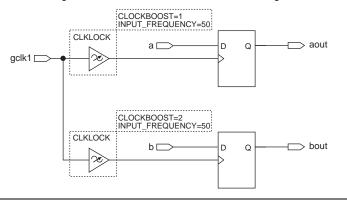
Note:


(1) Packed registers cannot be used with the cascade chain.

Altera Corporation

Figure 11. LAB Connections to Row & Column Interconnect

Figure 13. Bidirectional I/O Registers



Each IOE selects the clock, clear, clock enable, and output enable controls from a network of I/O control signals called the peripheral control bus. The peripheral control bus uses high-speed drivers to minimize signal skew across devices; it provides up to 12 peripheral control signals that can be allocated as follows:

- Up to eight output enable signals
- Up to six clock enable signals
- Up to two clock signals
- Up to two clear signals

If more than six clock enable or eight output enable signals are required, each IOE on the device can be controlled by clock enable and output enable signals driven by specific LEs. In addition to the two clock signals available on the peripheral control bus, each IOE can use one of two dedicated clock pins. Each peripheral control signal can be driven by any of the dedicated input pins or the first LE of each LAB in a particular row. In addition, an LE in a different row can drive a column interconnect, which causes a row interconnect to drive the peripheral control signal. The chip-wide reset signal will reset all IOE registers, overriding any other control signals.

Tables 8 and 9 list the sources for each peripheral control signal, and the rows that can drive global signals. These tables also show how the output enable, clock enable, clock, and clear signals share 12 peripheral control signals.

To use both the ClockLock and ClockBoost circuits in the same design, designers must use Revision C EPF10K100GC503-3DX devices and MAX+PLUS II software versions 7.2 or higher. The die revision is indicated by the third digit of the nine-digit code on the top side of the device.

Output Configuration

This section discusses the peripheral component interconnect (PCI) pull-up clamping diode option, slew-rate control, open-drain output option, MultiVolt I/O interface, and power sequencing for FLEX 10K devices. The PCI pull-up clamping diode, slew-rate control, and open-drain output options are controlled pin-by-pin via Altera logic options. The MultiVolt I/O interface is controlled by connecting V_{CCIO} to a different voltage than V_{CCINT}. Its effect can be simulated in the Altera software via the **Global Project Device Options** dialog box (Assign menu).

PCI Clamping Diodes

The EPF10K10A and EPF10K30A devices have a pull-up clamping diode on every I/O, dedicated input, and dedicated clock pin. PCI clamping diodes clamp the transient overshoot caused by reflected waves to the $V_{\rm CCIO}$ value and are required for 3.3-V PCI compliance. Clamping diodes can also be used to limit overshoot in other systems.

Clamping diodes are controlled on a pin-by-pin basis via a logic option in the Altera software. When V_{CCIO} is 3.3 V, a pin that has the clamping diode turned on can be driven by a 2.5-V or 3.3-V signal, but not a 5.0-V signal. When V_{CCIO} is 2.5 V, a pin that has the clamping diode turned on can be driven by a 2.5-V signal, but not a 3.3-V or 5.0-V signal. However, a clamping diode can be turned on for a subset of pins, which allows devices to bridge between a 3.3-V PCI bus and a 5.0-V device.

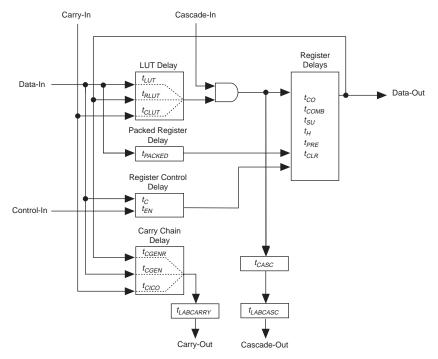
Table 1	8. FLEX 10K 5.0-V Device Reco	mmended Operating Conditions			
Symbol	Parameter	Conditions	Min	Max	Unit
V _{CCINT}	Supply voltage for internal logic and input buffers	(3), (4)	4.75 (4.50)	5.25 (5.50)	V
V _{CCIO}	Supply voltage for output buffers, 5.0-V operation	(3), (4)	4.75 (4.50)	5.25 (5.50)	V
	Supply voltage for output buffers, 3.3-V operation	(3), (4)	3.00 (3.00)	3.60 (3.60)	V
VI	Input voltage		-0.5	$V_{CCINT} + 0.5$	V
Vo	Output voltage		0	V _{CCIO}	V
T _A	Ambient temperature	For commercial use	0	70	°C
		For industrial use	-40	85	°C
ТJ	Operating temperature	For commercial use	0	85	°C
		For industrial use	-40	100	°C
t _R	Input rise time			40	ns
t _F	Input fall time			40	ns

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IH}	High-level input voltage		$\begin{array}{c} 1.7 \text{ or} \\ 0.5 \times V_{\text{CCINT}}, \\ \text{whichever is} \\ \text{lower} \end{array}$		5.75	V
VIL	Low-level input voltage		-0.5		$0.3 \times V_{CCINT}$	V
V _{OH}	3.3-V high-level TTL output voltage	$I_{OH} = -11 \text{ mA DC},$ $V_{CCIO} = 3.00 \text{ V} (8)$	2.4			V
	3.3-V high-level CMOS output voltage	$I_{OH} = -0.1 \text{ mA DC},$ $V_{CCIO} = 3.00 \text{ V} (8)$	V _{CCIO} – 0.2			V
	3.3-V high-level PCI output voltage	$I_{OH} = -0.5 \text{ mA DC},$ $V_{CCIO} = 3.00 \text{ to } 3.60 \text{ V} (8)$	$0.9 imes V_{CCIO}$			V
	2.5-V high-level output voltage	I _{OH} = -0.1 mA DC, V _{CCIO} = 2.30 V <i>(8)</i>	2.1			V
		I _{OH} = –1 mA DC, V _{CCIO} = 2.30 V <i>(8)</i>	2.0			V
		$I_{OH} = -2 \text{ mA DC},$ $V_{CCIO} = 2.30 \text{ V} (8)$	1.7			V
V _{OL}	3.3-V low-level TTL output voltage	I _{OL} = 9 mA DC, V _{CCIO} = 3.00 V <i>(</i> 9 <i>)</i>			0.45	V
	3.3-V low-level CMOS output voltage	I _{OL} = 0.1 mA DC, V _{CCIO} = 3.00 V (9)			0.2	V
	3.3-V low-level PCI output voltage	I _{OL} = 1.5 mA DC, V _{CCIO} = 3.00 to 3.60 V <i>(9)</i>			$0.1 \times V_{CCIO}$	V
	2.5-V low-level output voltage	I _{OL} = 0.1 mA DC, V _{CCIO} = 2.30 V (9)			0.2	V
		I _{OL} = 1 mA DC, V _{CCIO} = 2.30 V (9)			0.4	V
		I _{OL} = 2 mA DC, V _{CCIO} = 2.30 V (9)			0.7	V
I _I	Input pin leakage current	$V_{\rm I} = 5.3 \text{ V to} -0.3 \text{ V} (10)$	-10		10	μΑ
I _{OZ}	Tri-stated I/O pin leakage current	$V_{O} = 5.3 \text{ V to } -0.3 \text{ V} (10)$	-10		10	μA
I _{CC0}	V _{CC} supply current (standby)	V _I = ground, no load		0.3	10	mA
		V_{I} = ground, no load (11)		10		mA

Figure 23. Output Drive Characteristics for EPF10K250A Device

Timing Model

The continuous, high-performance FastTrack Interconnect routing resources ensure predictable performance and accurate simulation and timing analysis. This predictable performance contrasts with that of FPGAs, which use a segmented connection scheme and therefore have unpredictable performance.


Device performance can be estimated by following the signal path from a source, through the interconnect, to the destination. For example, the registered performance between two LEs on the same row can be calculated by adding the following parameters:

- LE register clock-to-output delay (t_{CO})
- Interconnect delay (*t*_{SAMEROW})
- LE look-up table delay (t_{LUT})
- LE register setup time (t_{SU})

The routing delay depends on the placement of the source and destination LEs. A more complex registered path may involve multiple combinatorial LEs between the source and destination LEs.

Figures 25 through 27 show the delays that correspond to various paths and functions within the LE, IOE, and EAB timing models.

Symbol	-3 Spee	d Grade	-4 Spee	d Grade	Unit
	Min	Max	Min	Max	
t _{EABAA}		13.7		17.0	ns
t _{EABRCCOMB}	13.7		17.0		ns
t _{EABRCREG}	9.7		11.9		ns
t _{EABWP}	5.8		7.2		ns
t _{EABWCCOMB}	7.3		9.0		ns
t _{EABWCREG}	13.0		16.0		ns
t _{EABDD}		10.0		12.5	ns
t _{EABDATACO}		2.0		3.4	ns
t _{EABDATASU}	5.3		5.6		ns
t _{EABDATAH}	0.0		0.0		ns
t _{EABWESU}	5.5		5.8		ns
t _{EABWEH}	0.0		0.0		ns
t _{EABWDSU}	5.5		5.8		ns
t _{EABWDH}	0.0		0.0		ns
t _{EABWASU}	2.1		2.7		ns
t _{EABWAH}	0.0		0.0		ns
t _{EABWO}		9.5		11.8	ns

Symbol	-2 Spee	d Grade	-3 Spee	ed Grade	-4 Spee	ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{IOD}		0.0		0.0		0.0	ns
t _{IOC}		0.4		0.5		0.7	ns
t _{IOCO}		0.4		0.4		0.9	ns
<i>t</i> IOCOMB		0.0		0.0		0.0	ns
t _{IOSU}	4.5		5.0		6.2		ns
t _{IOH}	0.4		0.5		0.7		ns
t _{IOCLR}		0.6		0.7		1.6	ns
t _{OD1}		3.6		4.0		5.0	ns
t _{OD2}		5.6		6.3		7.3	ns
t _{OD3}		6.9		7.7		8.7	ns
t _{XZ}		5.5		6.2		6.8	ns
t _{ZX1}		5.5		6.2		6.8	ns
t _{ZX2}		7.5		8.5		9.1	ns
t _{ZX3}		8.8		9.9		10.5	ns
t _{INREG}		8.0		9.0		10.2	ns
t _{IOFD}		7.2		8.1		10.3	ns
t _{INCOMB}		7.2		8.1		10.3	ns

FLEX 10K Embedded Programmable Logic Device Family Data Sheet

Symbol	-2 Spee	d Grade	-3 Spee	ed Grade	-4 Spee	ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{EABDATA1}		1.3		1.5		1.9	ns
t _{EABDATA2}		4.3		4.8		6.0	ns
t _{EABWE1}		0.9		1.0		1.2	ns
t _{EABWE2}		4.5		5.0		6.2	ns
t _{EABCLK}		0.9		1.0		2.2	ns
t _{EABCO}		0.4		0.5		0.6	ns
t _{EABBYPASS}		1.3		1.5		1.9	ns
t _{EABSU}	1.3		1.5		1.8		ns
t _{EABH}	1.8		2.0		2.5		ns
t _{AA}		7.8		8.7		10.7	ns
t _{WP}	5.2		5.8		7.2		ns
t _{WDSU}	1.4		1.6		2.0		ns
t _{WDH}	0.3		0.3		0.4		ns
t _{WASU}	0.4		0.5		0.6		ns
t _{WAH}	0.9		1.0		1.2		ns
t _{WO}		4.5		5.0		6.2	ns
t _{DD}		4.5		5.0		6.2	ns
t _{EABOUT}		0.4		0.5		0.6	ns
t _{EABCH}	4.0		4.0		4.0		ns
t _{EABCL}	5.2		5.8		7.2		ns

Symbol	-3DX Sp	eed Grade	-3 Spee	ed Grade	-4 Spee	-4 Speed Grade		
	Min	Max	Min	Max	Min	Max	1	
t _{DRR}		19.1		19.1		24.2	ns	
t _{INSU} (2), (3), (4)	7.8		7.8		8.5		ns	
t оитсо (3), (4)	2.0	11.1	2.0	11.1	2.0	14.3	ns	
t _{INH} (3)	0.0		0.0		0.0		ns	
t _{INSU} (2), (3), (5)	6.2		-		-		ns	
t_{оитсо} <i>(3), (5)</i>	2.0	6.7		-		-	ns	

 Table 70. EPF10K100 Device External Bidirectional Timing Parameters
 Note (1) -3DX Speed Grade -4 Speed Grade Unit Symbol -3 Speed Grade Min Max Min Max Min Max tinsubidir (4) 8.1 8.1 10.4 ns t_{INHBIDIR} (4) 0.0 0.0 0.0 ns toutcobidir (4) 2.0 11.1 2.0 11.1 2.0 14.3 ns 15.3 15.3 18.4 t_{XZBIDIR} (4) ns t_{ZXBIDIR} (4) 15.3 15.3 18.4 ns tinsubidir (5) 9.1 _ ns _ 0.0 t_{INHBIDIR} (5) _ _ ns toutcobidir (5) 2.0 7.2 _ _ _ _ ns t_{XZBIDIR} (5) 14.3 ns _ _ 14.3 t_{ZXBIDIR} (5) _ _ ns

Notes to tables:

(1) All timing parameters are described in Tables 32 through 38 in this data sheet.

(2) Using an LE to register the signal may provide a lower setup time.

(3) This parameter is specified by characterization.

(4) This parameter is measured without the use of the ClockLock or ClockBoost circuits.

(5) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

Symbol	-1 Speed Grade		-2 Spee	ed Grade	-3 Speed Grade		-4 Spee	d Grade	Unit
	Min	Max	Min	Max	Min	Max	Min	Max	
t _{DIN2IOE}		4.7		6.0		7.1		8.2	ns
t _{DIN2LE}		2.5		2.6		3.1		3.9	ns
t _{DIN2DATA}		4.4		5.9		6.8		7.7	ns
t _{DCLK2IOE}		2.5		3.9		4.7		5.5	ns
t _{DCLK2LE}		2.5		2.6		3.1		3.9	ns
t _{SAMELAB}		0.2		0.2		0.3		0.3	ns
t _{SAMEROW}		2.8		3.0		3.2		3.4	ns
t _{SAMECOLUMN}		3.0		3.2		3.4		3.6	ns
t _{DIFFROW}		5.8		6.2		6.6		7.0	ns
t _{TWOROWS}		8.6		9.2		9.8		10.4	ns
t _{LEPERIPH}		4.5		5.5		6.1		7.0	ns
t _{LABCARRY}		0.3		0.4		0.5		0.7	ns
t _{LABCASC}		0.0		1.3		1.6		2.0	ns

Table 76. EPF10K50V Device External Timing Parameters Note (1)

Symbol	-1 Speed Grade		-2 Spee	d Grade	-3 Spee	d Grade	-4 Spee	d Grade	Unit
	Min	Max	Min	Max	Min	Max	Min	Max	
t _{DRR}		11.2		14.0		17.2		21.1	ns
t _{INSU} (2), (3)	5.5		4.2		5.2		6.9		ns
t _{INH} (3)	0.0		0.0		0.0		0.0		ns
t оитсо (3)	2.0	5.9	2.0	7.8	2.0	9.5	2.0	11.1	ns

 Table 77. EPF10K50V Device External Bidirectional Timing Parameters
 No

Note (1)

Symbol	-1 Spee	-1 Speed Grade		d Grade	-3 Spee	ed Grade	-4 Spee	d Grade	Unit	
	Min	Max	Min	Max	Min	Max	Min	Max		
t _{INSUBIDIR}	2.0		2.8		3.5		4.1		ns	
t _{INHBIDIR}	0.0		0.0		0.0		0.0		ns	
t _{OUTCOBIDIR}	2.0	5.9	2.0	7.8	2.0	9.5	2.0	11.1	ns	
t _{XZBIDIR}		8.0		9.8		11.8		14.3	ns	
t _{ZXBIDIR}		8.0		9.8		11.8		14.3	ns	

Notes to tables:

- (1) All timing parameters are described in Tables 32 through 38 in this data sheet.
- (2) Using an LE to register the signal may provide a lower setup time.
- (3) This parameter is specified by characterization.

Tables 85 through 91 show EPF10K10A device internal and external timing parameters.

Symbol	-1 Spee	d Grade	-2 Spee	ed Grade	-3 Spee	d Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{LUT}		0.9		1.2		1.6	ns
t _{CLUT}		1.2		1.4		1.9	ns
t _{RLUT}		1.9		2.3		3.0	ns
t _{PACKED}		0.6		0.7		0.9	ns
t _{EN}		0.5		0.6		0.8	ns
t _{CICO}		02		0.3		0.4	ns
t _{CGEN}		0.7		0.9		1.1	ns
t _{CGENR}		0.7		0.9		1.1	ns
t _{CASC}		1.0		1.2		1.7	ns
t _C		1.2		1.4		1.9	ns
t _{CO}		0.5		0.6		0.8	ns
t _{COMB}		0.5		0.6		0.8	ns
t _{SU}	1.1		1.3		1.7		ns
t _H	0.6		0.7		0.9		ns
t _{PRE}		0.5		0.6		0.9	ns
t _{CLR}		0.5		0.6		0.9	ns
t _{CH}	3.0		3.5		4.0		ns
t _{CL}	3.0		3.5		4.0		ns

 Table 86. EPF10K10A Device IOE Timing Microparameters
 Note (1) (Part 1 of 2)

Symbol	-1 Spee	ed Grade	-2 Spee	d Grade	-3 Spee	d Grade	Unit
	Min	Max	Min	Max	Min	Max	
		1.3		1.5		2.0	ns
t _{IOC}		0.2		0.3		0.3	ns
t _{IOCO}		0.2		0.3		0.4	ns
t _{IOCOMB}		0.6		0.7		0.9	ns
t _{IOSU}	0.8		1.0		1.3		ns

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	1
t _{IOD}		1.2		1.3		1.6	ns
t _{IOC}		0.4		0.4		0.5	ns
t _{IOCO}		0.8		0.9		1.1	ns
t _{IOCOMB}		0.7		0.7		0.8	ns
t _{IOSU}	2.7		3.1		3.6		ns
t _{IOH}	0.2		0.3		0.3		ns
t _{IOCLR}		1.2		1.3		1.6	ns
t _{OD1}		3.2		3.6		4.2	ns
t _{OD2}		5.9		6.7		7.8	ns
t _{OD3}		8.7		9.8		11.5	ns
t _{XZ}		3.8		4.3		5.0	ns
t _{ZX1}		3.8		4.3		5.0	ns
t _{ZX2}		6.5		7.4		8.6	ns
t _{ZX3}		9.3		10.5		12.3	ns
t _{INREG}		8.2		9.3		10.9	ns
t _{IOFD}		9.0		10.2		12.0	ns
t _{INCOMB}		9.0		10.2		12.0	ns

Table 109. EPF10K250A Device EAB Internal Timing Macroparameters Note (1)										
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit			
	Min	Max	Min	Max	Min	Max	1			
t _{EABAA}		6.1		6.8		8.2	ns			
t _{EABRCCOMB}	6.1		6.8		8.2		ns			
t _{EABRCREG}	4.6		5.1		6.1		ns			
t _{EABWP}	5.6		6.4		7.5		ns			
t _{EABWCCOMB}	5.8		6.6		7.9		ns			
t _{EABWCREG}	15.8		17.8		21.0		ns			
t _{EABDD}		5.7		6.4		7.8	ns			
t _{EABDATACO}		0.7		0.8		1.0	ns			
t _{EABDATASU}	4.5		5.1		5.9		ns			
t _{EABDATAH}	0.0		0.0		0.0		ns			
t _{EABWESU}	8.2		9.3		10.9		ns			
t _{EABWEH}	0.0		0.0		0.0		ns			
t _{EABWDSU}	1.7		1.8		2.1		ns			
t _{EABWDH}	0.0		0.0		0.0		ns			
t _{EABWASU}	0.9		0.9		1.0		ns			
t _{EABWAH}	0.0		0.0		0.0		ns			
t _{EABWO}		5.3		6.0		7.4	ns			