Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 624 | | Number of Logic Elements/Cells | 4992 | | Total RAM Bits | 24576 | | Number of I/O | 189 | | Number of Gates | 158000 | | Voltage - Supply | 3V ~ 3.6V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 70°C (TA) | | Package / Case | 240-BFQFP Exposed Pad | | Supplier Device Package | 240-RQFP (32x32) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/epf10k100arc240-3n | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong - Flexible interconnect - FastTrack[®] Interconnect continuous routing structure for fast, predictable interconnect delays - Dedicated carry chain that implements arithmetic functions such as fast adders, counters, and comparators (automatically used by software tools and megafunctions) - Dedicated cascade chain that implements high-speed, high-fan-in logic functions (automatically used by software tools and megafunctions) - Tri-state emulation that implements internal tri-state buses - Up to six global clock signals and four global clear signals - Powerful I/O pins - Individual tri-state output enable control for each pin - Open-drain option on each I/O pin - Programmable output slew-rate control to reduce switching noise - FLEX 10KA devices support hot-socketing - Peripheral register for fast setup and clock-to-output delay - Flexible package options - Available in a variety of packages with 84 to 600 pins (see Tables 4 and 5) - Pin-compatibility with other FLEX 10K devices in the same package - FineLine BGATM packages maximize board space efficiency - Software design support and automatic place-and-route provided by Altera development systems for Windows-based PCs and Sun SPARCstation, HP 9000 Series 700/800 workstations - Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), DesignWare components, Verilog HDL, VHDL, and other interfaces to popular EDA tools from manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, Synplicity, VeriBest, and Viewlogic The logic array consists of logic array blocks (LABs). Each LAB contains eight LEs and a local interconnect. An LE consists of a 4-input look-up table (LUT), a programmable flipflop, and dedicated signal paths for carry and cascade functions. The eight LEs can be used to create medium-sized blocks of logic—8-bit counters, address decoders, or state machines—or combined across LABs to create larger logic blocks. Each LAB represents about 96 usable gates of logic. Signal interconnections within FLEX 10K devices and to and from device pins are provided by the FastTrack Interconnect, a series of fast, continuous row and column channels that run the entire length and width of the device. Each I/O pin is fed by an I/O element (IOE) located at the end of each row and column of the FastTrack Interconnect. Each IOE contains a bidirectional I/O buffer and a flipflop that can be used as either an output or input register to feed input, output, or bidirectional signals. When used with a dedicated clock pin, these registers provide exceptional performance. As inputs, they provide setup times as low as 1.6 ns and hold times of 0 ns; as outputs, these registers provide clock-to-output times as low as 5.3 ns. IOEs provide a variety of features, such as JTAG BST support, slew-rate control, tri-state buffers, and open-drain outputs. Figure 1 shows a block diagram of the FLEX 10K architecture. Each group of LEs is combined into an LAB; LABs are arranged into rows and columns. Each row also contains a single EAB. The LABs and EABs are interconnected by the FastTrack Interconnect. IOEs are located at the end of each row and column of the FastTrack Interconnect. Figure 7 shows how an n-bit full adder can be implemented in n+1 LEs with the carry chain. One portion of the LUT generates the sum of two bits using the input signals and the carry-in signal; the sum is routed to the output of the LE. The register can either be bypassed for simple adders or be used for an accumulator function. The carry chain logic generates the carry-out signal, which is routed directly to the carry-in signal of the next-higher-order bit. The final carry-out signal is routed to an LE, where it can be used as a general-purpose signal. Figure 7. Carry Chain Operation (n-bit Full Adder) #### Cascade Chain With the cascade chain, the FLEX 10K architecture can implement functions that have a very wide fan-in. Adjacent LUTs can be used to compute portions of the function in parallel; the cascade chain serially connects the intermediate values. The cascade chain can use a logical AND or logical OR (via De Morgan's inversion) to connect the outputs of adjacent LEs. Each additional LE provides four more inputs to the effective width of a function, with a delay as low as 0.7 ns per LE. Cascade chain logic can be created automatically by the Compiler during design processing, or manually by the designer during design entry. Cascade chains longer than eight bits are implemented automatically by linking several LABs together. For easier routing, a long cascade chain skips every other LAB in a row. A cascade chain longer than one LAB skips either from even-numbered LAB to even-numbered LAB, or from odd-numbered LAB to odd-numbered LAB (e.g., the last LE of the first LAB in a row cascades to the first LE of the third LAB). The cascade chain does not cross the center of the row (e.g., in the EPF10K50 device, the cascade chain stops at the eighteenth LAB and a new one begins at the nineteenth LAB). This break is due to the EAB's placement in the middle of the row. Figure 8 shows how the cascade function can connect adjacent LEs to form functions with a wide fan-in. These examples show functions of 4n variables implemented with n LEs. The LE delay is as low as 1.6 ns; the cascade chain delay is as low as 0.7 ns. With the cascade chain, 3.7 ns is needed to decode a 16-bit address. #### Asynchronous Preset An asynchronous preset is implemented as either an asynchronous load, or with an asynchronous clear. If DATA3 is tied to V_{CC} , asserting LABCTRL1 asynchronously loads a one into the register. Alternatively, the Altera software can provide preset control by using the clear and inverting the input and output of the register. Inversion control is available for the inputs to both LEs and IOEs. Therefore, if a register is preset by only one of the two LABCTRL signals, the DATA3 input is not needed and can be used for one of the LE operating modes. #### Asynchronous Preset & Clear When implementing asynchronous clear and preset, LABCTRL1 controls the preset and LABCTRL2 controls the clear. DATA3 is tied to V_{CC} , therefore, asserting LABCTRL1 asynchronously loads a one into the register, effectively presetting the register. Asserting LABCTRL2 clears the register. #### Asynchronous Load with Clear When implementing an asynchronous load in conjunction with the clear, LABCTRL1 implements the asynchronous load of DATA3 by controlling the register preset and clear. LABCTRL2 implements the clear by controlling the register clear; LABCTRL2 does not have to feed the preset circuits. #### Asynchronous Load with Preset When implementing an asynchronous load in conjunction with preset, the Altera software provides preset control by using the clear and inverting the input and output of the register. Asserting LABCTRL2 presets the register, while asserting LABCTRL1 loads the register. The Altera software inverts the signal that drives DATA3 to account for the inversion of the register's output. #### Asynchronous Load without Preset or Clear When implementing an asynchronous load without preset or clear, LABCTRL1 implements the asynchronous load of DATA3 by controlling the register preset and clear. Figure 13. Bidirectional I/O Registers | Table 8. EPF10K10, EPF10K20, | EPF10K30, EPF | 10K40 & EPF10 | K50 Periphera | l Bus Sources | | |------------------------------|-----------------------|---------------|-----------------------|---------------|-----------------------| | Peripheral
Control Signal | EPF10K10
EPF10K10A | EPF10K20 | EPF10K30
EPF10K30A | EPF10K40 | EPF10K50
EPF10K50V | | OE0 | Row A | | OE1 | Row A | Row B | Row B | Row C | Row B | | OE2 | Row B | Row C | Row C | Row D | Row D | | OE3 | Row B | Row D | Row D | Row E | Row F | | OE4 | Row C | Row E | Row E | Row F | Row H | | OE5 | Row C | Row F | Row F | Row G | Row J | | CLKENA0/CLK0/GLOBAL0 | Row A | Row A | Row A | Row B | Row A | | CLKENA1/OE6/GLOBAL1 | Row A | Row B | Row B | Row C | Row C | | CLKENA2/CLR0 | Row B | Row C | Row C | Row D | Row E | | CLKENA3/OE7/GLOBAL2 | Row B | Row D | Row D | Row E | Row G | | CLKENA4/CLR1 | Row C | Row E | Row E | Row F | Row I | | CLKENA5/CLK1/GLOBAL3 | Row C | Row F | Row F | Row H | Row J | | Peripheral
Control Signal | EPF10K70 | EPF10K100
EPF10K100A | EPF10K130V | EPF10K250A | |------------------------------|----------|-------------------------|------------|------------| | OE 0 | Row A | Row A | Row C | Row E | | OE1 | Row B | Row C | Row E | Row G | | OE2 | Row D | Row E | Row G | Row I | | OE3 | Row I | Row L | Row N | Row P | | OE 4 | Row G | Row I | Row K | Row M | | OE5 | Row H | Row K | Row M | Row O | | CLKENA0/CLK0/GLOBAL0 | Row E | Row F | Row H | Row J | | CLKENA1/OE6/GLOBAL1 | Row C | Row D | Row F | Row H | | CLKENA2/CLR0 | Row B | Row B | Row D | Row F | | CLKENA3/OE7/GLOBAL2 | Row F | Row H | Row J | Row L | | CLKENA4/CLR1 | Row H | Row J | Row L | Row N | | CLKENA5/CLK1/GLOBAL3 | Row E | Row G | Row I | Row K | #### Slew-Rate Control The output buffer in each IOE has an adjustable output slew rate that can be configured for low-noise or high-speed performance. A slower slew rate reduces system noise and adds a maximum delay of approximately 2.9 ns. The fast slew rate should be used for speed-critical outputs in systems that are adequately protected against noise. Designers can specify the slew rate on a pin-by-pin basis during design entry or assign a default slew rate to all pins on a device-wide basis. The slow slew rate setting affects only the falling edge of the output. ### **Open-Drain Output Option** FLEX 10K devices provide an optional open-drain (electrically equivalent to an open-collector) output for each I/O pin. This open-drain output enables the device to provide system-level control signals (e.g., interrupt and write enable signals) that can be asserted by any of several devices. It can also provide an additional wired-OR plane. Additionally, the Altera software can convert tri-state buffers with grounded data inputs to open-drain pins automatically. Open-drain output pins on FLEX 10K devices (with a pull-up resistor to the 5.0-V supply) can drive 5.0-V CMOS input pins that require a $V_{\rm IH}$ of 3.5 V. When the open-drain pin is active, it will drive low. When the pin is inactive, the trace will be pulled up to 5.0 V by the resistor. The open-drain pin will only drive low or tri-state; it will never drive high. The rise time is dependent on the value of the pull-up resistor and load impedance. The $I_{\rm OL}$ current specification should be considered when selecting a pull-up resistor. Output pins on 5.0-V FLEX 10K devices with $V_{CCIO} = 3.3 \text{ V}$ or 5.0 V (with a pull-up resistor to the 5.0-V supply) can also drive 5.0-V CMOS input pins. In this case, the pull-up transistor will turn off when the pin voltage exceeds 3.3 V. Therefore, the pin does not have to be open-drain. #### MultiVolt I/O Interface The FLEX 10K device architecture supports the MultiVolt I/O interface feature, which allows FLEX 10K devices to interface with systems of differing supply voltages. These devices have one set of V_{CC} pins for internal operation and input buffers (VCCINT) and another set for I/O output drivers (VCCIO). | Table 1 | 9. FLEX 10K 5.0-V Devi | ce DC Operating Conditions No | tes (5), (6) | | | | |------------------|--|--|-------------------------|-----|--------------------------|------| | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | | V _{IH} | High-level input voltage | | 2.0 | | V _{CCINT} + 0.5 | V | | V _{IL} | Low-level input voltage | | -0.5 | | 0.8 | V | | V _{OH} | 5.0-V high-level TTL output voltage | $I_{OH} = -4 \text{ mA DC}, V_{CCIO} = 4.75 \text{ V}$ (7) | 2.4 | | | V | | | 3.3-V high-level TTL output voltage | $I_{OH} = -4 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V}$ (7) | 2.4 | | | V | | | 3.3-V high-level CMOS output voltage | $I_{OH} = -0.1 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V}$ (7) | V _{CCIO} - 0.2 | | | V | | V _{OL} | 5.0-V low-level TTL output voltage | I_{OL} = 12 mA DC, V_{CCIO} = 4.75 V (8) | | | 0.45 | V | | | 3.3-V low-level TTL output voltage | I_{OL} = 12 mA DC, V_{CCIO} = 3.00 V (8) | | | 0.45 | V | | | 3.3-V low-level CMOS output voltage | $I_{OL} = 0.1 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V}$ (8) | | | 0.2 | V | | I _I | Input pin leakage current | V _I = V _{CC} or ground
(9) | -10 | | 10 | μΑ | | I _{OZ} | Tri-stated I/O pin leakage current | $V_O = V_{CC}$ or ground (9) | -40 | | 40 | μΑ | | I _{CC0} | V _{CC} supply current (standby) | V _I = ground, no load | | 0.5 | 10 | mA | | Table 2 | Table 20. 5.0-V Device Capacitance of EPF10K10, EPF10K20 & EPF10K30 Devices Note (10) | | | | | |--------------------|---|-------------------------------------|-----|-----|------| | Symbol | Parameter | Conditions | Min | Max | Unit | | C _{IN} | Input capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 8 | pF | | C _{INCLK} | Input capacitance on dedicated clock pin | V _{IN} = 0 V, f = 1.0 MHz | | 12 | pF | | C _{OUT} | Output capacitance | V _{OUT} = 0 V, f = 1.0 MHz | | 8 | pF | | Table 2 | Table 21. 5.0-V Device Capacitance of EPF10K40, EPF10K50, EPF10K70 & EPF10K100 Devices Note (10) | | | | | |--------------------|--|-------------------------------------|-----|-----|------| | Symbol | Parameter | Conditions | Min | Max | Unit | | C _{IN} | Input capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 10 | pF | | C _{INCLK} | Input capacitance on dedicated clock pin | V _{IN} = 0 V, f = 1.0 MHz | | 15 | pF | | C _{OUT} | Output capacitance | V _{OUT} = 0 V, f = 1.0 MHz | | 10 | pF | Figure 28. Synchronous Bidirectional Pin External Timing Model Tables 32 through 36 describe the FLEX 10K device internal timing parameters. These internal timing parameters are expressed as worst-case values. Using hand calculations, these parameters can be used to estimate design performance. However, before committing designs to silicon, actual worst-case performance should be modeled using timing simulation and analysis. Tables 37 through 38 describe FLEX 10K external timing parameters. | Symbol | Parameter | Conditions | |---------------------|---|------------| | t_{LUT} | LUT delay for data-in | | | t _{CLUT} | LUT delay for carry-in | | | t _{RLUT} | LUT delay for LE register feedback | | | t _{PACKED} | Data-in to packed register delay | | | t _{EN} | LE register enable delay | | | t _{CICO} | Carry-in to carry-out delay | | | t _{CGEN} | Data-in to carry-out delay | | | t _{CGENR} | LE register feedback to carry-out delay | | | t _{CASC} | Cascade-in to cascade-out delay | | | $t_{\rm C}$ | LE register control signal delay | | | $t_{\rm CO}$ | LE register clock-to-output delay | | | t _{COMB} | Combinatorial delay | | | Symbol | Parameter | | | | | | |--------------------------|--|-----|--|--|--|--| | t _{DIN2IOE} | Delay from dedicated input pin to IOE control input | (7) | | | | | | t _{DCLK2LE} | Delay from dedicated clock pin to LE or EAB clock | (7) | | | | | | t _{DIN2DATA} | Delay from dedicated input or clock to LE or EAB data | (7) | | | | | | t _{DCLK2IOE} | Delay from dedicated clock pin to IOE clock | (7) | | | | | | t _{DIN2LE} | Delay from dedicated input pin to LE or EAB control input | (7) | | | | | | t _{SAMELAB} | Routing delay for an LE driving another LE in the same LAB | | | | | | | t _{SAMEROW} | Routing delay for a row IOE, LE, or EAB driving a row IOE, LE, or EAB in the same row | (7) | | | | | | t _{SAME} COLUMN | Routing delay for an LE driving an IOE in the same column | (7) | | | | | | t _{DIFFROW} | Routing delay for a column IOE, LE, or EAB driving an LE or EAB in a different row | (7) | | | | | | t _{TWOROWS} | Routing delay for a row IOE or EAB driving an LE or EAB in a different row | (7) | | | | | | t _{LEPERIPH} | Routing delay for an LE driving a control signal of an IOE via the peripheral control bus | (7) | | | | | | t _{LABCARRY} | Routing delay for the carry-out signal of an LE driving the carry-in signal of a different LE in a different LAB | | | | | | | t _{LABCASC} | Routing delay for the cascade-out signal of an LE driving the cascade-in signal of a different LE in a different LAB | | | | | | | Table 37. Ex | ternal Timing Parameters Notes (8), (10) | | |--------------------|--|------------| | Symbol | Parameter | Conditions | | t _{DRR} | Register-to-register delay via four LEs, three row interconnects, and four local interconnects | (9) | | t _{INSU} | Setup time with global clock at IOE register | | | t _{INH} | Hold time with global clock at IOE register | | | t _{OUTCO} | Clock-to-output delay with global clock at IOE register | | | Table 38. Ext | ternal Bidirectional Timing Parameters Note (10) | | |-------------------------|--|-----------| | Symbol | Parameter | Condition | | t _{INSUBIDIR} | Setup time for bidirectional pins with global clock at adjacent LE register | | | t _{INHBIDIR} | Hold time for bidirectional pins with global clock at adjacent LE register | | | t _{OUTCOBIDIR} | Clock-to-output delay for bidirectional pins with global clock at IOE register | | | t _{XZBIDIR} | Synchronous IOE output buffer disable delay | | | t _{ZXBIDIR} | Synchronous IOE output buffer enable delay, slow slew rate = off | | #### Notes to tables: - Microparameters are timing delays contributed by individual architectural elements. These parameters cannot be measured explicitly. - (2) Operating conditions: $V_{CCIO} = 5.0 \text{ V} \pm 5\%$ for commercial use in FLEX 10K devices. V_{CCIO} = 5.0 V ± 10% for industrial use in FLEX 10K devices. $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial or industrial use in FLEX 10KA devices. - (3) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial or industrial use in FLEX 10K devices. - V_{CCIO} = 2.5 V ± 0.2 V for commercial or industrial use in FLEX 10KA devices. - (4) Operating conditions: $V_{CCIO} = 2.5 \text{ V}$, 3.3 V, or 5.0 V. - (5) Because the RAM in the EAB is self-timed, this parameter can be ignored when the WE signal is registered. - (6) EAB macroparameters are internal parameters that can simplify predicting the behavior of an EAB at its boundary; these parameters are calculated by summing selected microparameters. - (7) These parameters are worst-case values for typical applications. Post-compilation timing simulation and timing analysis are required to determine actual worst-case performance. - (8) External reference timing parameters are factory-tested, worst-case values specified by Altera. A representative subset of signal paths is tested to approximate typical device applications. - (9) Contact Altera Applications for test circuit specifications and test conditions. - (10) These timing parameters are sample-tested only. Figures 29 and 30 show the asynchronous and synchronous timing waveforms, respectively, for the EAB macroparameters in Table 34. Figure 29. EAB Asynchronous Timing Waveforms #### **EAB Asynchronous Read** #### **EAB Asynchronous Write** | Symbol | -3 Speed Grade | | -4 Spee | d Grade | Unit | |-------------------------|----------------|-----|---------|---------|------| | | Min | Max | Min | Max | | | t _{DIN2IOE} | | 6.9 | | 8.7 | ns | | t _{DIN2LE} | | 3.6 | | 4.8 | ns | | t _{DIN2DATA} | | 5.5 | | 7.2 | ns | | t _{DCLK2IOE} | | 4.6 | _ | 6.2 | ns | | t _{DCLK2LE} | | 3.6 | | 4.8 | ns | | t _{SAMELAB} | | 0.3 | | 0.3 | ns | | t _{SAMEROW} | | 3.3 | | 3.7 | ns | | t _{SAMECOLUMN} | | 2.5 | | 2.7 | ns | | t _{DIFFROW} | | 5.8 | | 6.4 | ns | | t _{TWOROWS} | | 9.1 | | 10.1 | ns | | t _{LEPERIPH} | | 6.2 | | 7.1 | ns | | t _{LABCARRY} | | 0.4 | | 0.6 | ns | | t _{LABCASC} | | 2.4 | | 3.0 | ns | | Symbol | -3 Speed Grade | | -4 Spee | d Grade | Unit | |-------------------------|----------------|-----|---------|---------|------| | | Min | Max | Min | Max | | | t _{DIN2IOE} | | 7.6 | | 9.4 | ns | | t _{DIN2LE} | | 3.6 | | 4.8 | ns | | t _{DIN2DATA} | | 5.5 | | 7.2 | ns | | t _{DCLK2IOE} | | 4.6 | | 6.2 | ns | | t _{DCLK2LE} | | 3.6 | | 4.8 | ns | | t _{SAMELAB} | | 0.3 | | 0.3 | ns | | t _{SAMEROW} | | 3.3 | | 3.7 | ns | | t _{SAMECOLUMN} | | 3.1 | | 3.2 | ns | | t _{DIFFROW} | | 6.4 | | 6.4 | ns | | t _{TWOROWS} | | 9.7 | | 10.6 | ns | | t _{LEPERIPH} | | 6.4 | | 7.1 | ns | | t _{LABCARRY} | | 0.4 | | 0.6 | ns | | t _{LABCASC} | | 2.4 | | 3.0 | ns | | Symbol | -3 Spee | d Grade | -4 Spee | Unit | | |--------------------------|---------|---------|---------|------|----| | | Min | Max | Min | Max | | | t _{DIN2IOE} | | 8.4 | | 10.2 | ns | | t _{DIN2LE} | | 3.6 | | 4.8 | ns | | t _{DIN2DATA} | | 5.5 | | 7.2 | ns | | t _{DCLK2IOE} | | 4.6 | | 6.2 | ns | | t _{DCLK2LE} | | 3.6 | | 4.8 | ns | | t _{SAMELAB} | | 0.3 | | 0.3 | ns | | t _{SAMEROW} | | 3.3 | | 3.7 | ns | | t _{SAME} COLUMN | | 3.9 | | 4.1 | ns | | ^t DIFFROW | | 7.2 | | 7.8 | ns | | t _{TWOROWS} | | 10.5 | | 11.5 | ns | | t _{LEPERIPH} | | 7.5 | | 8.2 | ns | | t _{LABCARRY} | | 0.4 | | 0.6 | ns | | t _{LABCASC} | | 2.4 | | 3.0 | ns | | Table 55. EPF10K30, EPF10K40 & EPF10K50 Device External Timing Parameters Note (1) | | | | | | | | | |--|---------|------|-----|------|----|--|--|--| | Symbol | -3 Spee | Unit | | | | | | | | | Min | Max | Min | Max | | | | | | t _{DRR} | | 17.2 | | 21.1 | ns | | | | | t _{INSU} (2), (3) | 5.7 | | 6.4 | | ns | | | | | t _{INH} (3) | 0.0 | | 0.0 | | ns | | | | | t _{outco} (3) | 2.0 | 8.8 | 2.0 | 11.2 | ns | | | | | Table 56. EPF10K30, EPF10K40 & EPF10K50 Device External Bidirectional Timing Parameters | | | | | | | | |---|--------|----------|---------|------|----|--|--| | Symbol | -3 Spe | ed Grade | -4 Spec | Unit | | | | | | Min | Max | Min | Max | | | | | t _{INSUBIDIR} | 4.1 | | 4.6 | | ns | | | | t _{INHBIDIR} | 0.0 | | 0.0 | | ns | | | | toutcobidir | 2.0 | 8.8 | 2.0 | 11.2 | ns | | | | t _{XZBIDIR} | | 12.3 | | 15.0 | ns | | | | t _{ZXBIDIR} | | 12.3 | | 15.0 | ns | | | | Symbol | -3DX Spe | -3DX Speed Grade | | -3 Speed Grade | | d Grade | Unit | | |-------------------------|----------|------------------|------|----------------|------|---------|------|--| | | Min | Max | Min | Max | Min | Max | | | | t _{EABAA} | | 13.7 | | 13.7 | | 17.0 | ns | | | t _{EABRCCOMB} | 13.7 | | 13.7 | | 17.0 | | ns | | | t _{EABRCREG} | 9.7 | | 9.7 | | 11.9 | | ns | | | t _{EABWP} | 5.8 | | 5.8 | | 7.2 | | ns | | | t _{EABWCCOMB} | 7.3 | | 7.3 | | 9.0 | | ns | | | t _{EABWCREG} | 13.0 | | 13.0 | | 16.0 | | ns | | | t _{EABDD} | | 10.0 | | 10.0 | | 12.5 | ns | | | t _{EABDATA} CO | | 2.0 | | 2.0 | | 3.4 | ns | | | t _{EABDATASU} | 5.3 | | 5.3 | | 5.6 | | ns | | | t _{EABDATAH} | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{EABWESU} | 5.5 | | 5.5 | | 5.8 | | ns | | | t _{EABWEH} | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{EABWDSU} | 5.5 | | 5.5 | | 5.8 | | ns | | | t _{EABWDH} | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{EABWASU} | 2.1 | | 2.1 | | 2.7 | | ns | | | t _{EABWAH} | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{EABWO} | | 9.5 | | 9.5 | | 11.8 | ns | | | Symbol | -3DX Speed Grade | | -3 Speed Grade | | -4 Speed Grade | | Unit | |---|------------------|------|----------------|------|----------------|------|------| | | Min | Max | Min | Max | Min | Max | | | t _{DIN2IOE} | | 10.3 | | 10.3 | | 12.2 | ns | | t _{DIN2LE} | | 4.8 | | 4.8 | | 6.0 | ns | | t _{DIN2DATA} | | 7.3 | | 7.3 | | 11.0 | ns | | t _{DCLK2IOE} without ClockLock or ClockBoost circuitry | | 6.2 | | 6.2 | | 7.7 | ns | | $t_{DCLK2IOE}$ with ClockLock or ClockBoost circuitry | | 2.3 | | _ | | _ | ns | | t _{DCLK2LE} without ClockLock or
ClockBoost circuitry | | 4.8 | | 4.8 | | 6.0 | ns | | $t_{DCLK2LE}$ with ClockLock or ClockBoost circuitry | | 2.3 | | _ | | _ | ns | | ^t SAMELAB | | 0.4 | | 0.4 | | 0.5 | ns | | ^t SAMEROW | | 4.9 | | 4.9 | | 5.5 | ns | | ^t SAMECOLUMN | | 5.1 | | 5.1 | | 5.4 | ns | | t _{DIFFROW} | | 10.0 | | 10.0 | | 10.9 | ns | | t _{TWOROWS} | | 14.9 | | 14.9 | | 16.4 | ns | | t _{LEPERIPH} | | 6.9 | | 6.9 | | 8.1 | ns | | t _{LABCARRY} | | 0.9 | | 0.9 | | 1.1 | ns | | t _{LABCASC} | | 3.0 | | 3.0 | | 3.2 | ns | | Symbol | -2 Spee | -2 Speed Grade | | -3 Speed Grade | | ed Grade | Unit | | |-------------------------|---------|----------------|------|----------------|------|----------|------|--| | | Min | Max | Min | Max | Min | Max | | | | t _{EABAA} | | 11.2 | | 14.2 | | 14.2 | ns | | | t _{EABRCCOMB} | 11.1 | | 14.2 | | 14.2 | | ns | | | t _{EABRCREG} | 8.5 | | 10.8 | | 10.8 | | ns | | | t _{EABWP} | 3.7 | | 4.7 | | 4.7 | | ns | | | t _{EABWCCOMB} | 7.6 | | 9.7 | | 9.7 | | ns | | | t _{EABWCREG} | 14.0 | | 17.8 | | 17.8 | | ns | | | t _{EABDD} | | 11.1 | | 14.2 | | 14.2 | ns | | | t _{EABDATA} CO | | 3.6 | | 4.6 | | 4.6 | ns | | | t _{EABDATASU} | 4.4 | | 5.6 | | 5.6 | | ns | | | t _{EABDATAH} | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{EABWESU} | 4.4 | | 5.6 | | 5.6 | | ns | | | t _{EABWEH} | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{EABWDSU} | 4.6 | | 5.9 | | 5.9 | | ns | | | t _{EABWDH} | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{EABWASU} | 3.9 | | 5.0 | | 5.0 | | ns | | | t _{EABWAH} | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{EABWO} | | 11.1 | | 14.2 | | 14.2 | ns | | | Symbol | -1 Spee | -1 Speed Grade | | d Grade | -3 Spee | Unit | | |---------------------|---------|----------------|-----|---------|---------|------|----| | | Min | Max | Min | Max | Min | Max | | | t _{IOH} | 0.9 | | 1.1 | | 1.4 | | ns | | t _{IOCLR} | | 0.7 | | 0.8 | | 1.0 | ns | | t _{OD1} | | 1.9 | | 2.2 | | 2.9 | ns | | tOD2 | | 4.8 | | 5.6 | | 7.3 | ns | | t _{OD3} | | 7.0 | | 8.2 | | 10.8 | ns | | XZ | | 2.2 | | 2.6 | | 3.4 | ns | | ZX1 | | 2.2 | | 2.6 | | 3.4 | ns | | ZX2 | | 5.1 | | 6.0 | | 7.8 | ns | | ZX3 | | 7.3 | | 8.6 | | 11.3 | ns | | INREG | | 4.4 | | 5.2 | | 6.8 | ns | | IOFD | | 3.8 | | 4.5 | | 5.9 | ns | | t _{INCOMB} | | 3.8 | | 4.5 | | 5.9 | ns | | Symbol | -1 Speed Grade | | -2 Spee | d Grade | -3 Spee | ed Grade | Unit | |---------------------|----------------|-----|---------|---------|---------|----------|------| | | Min | Max | Min | Max | Min | Max | | | t_{IOD} | | 2.5 | | 2.9 | | 3.4 | ns | | t _{IOC} | | 0.3 | | 0.3 | | 0.4 | ns | | t_{IOCO} | | 0.2 | | 0.2 | | 0.3 | ns | | t_{IOCOMB} | | 0.5 | | 0.6 | | 0.7 | ns | | t _{IOSU} | 1.3 | | 1.7 | | 1.8 | | ns | | t_{IOH} | 0.2 | | 0.2 | | 0.3 | | ns | | t _{IOCLR} | | 1.0 | | 1.2 | | 1.4 | ns | | t _{OD1} | | 2.2 | | 2.6 | | 3.0 | ns | | t _{OD2} | | 4.5 | | 5.3 | | 6.1 | ns | | t_{OD3} | | 6.8 | | 7.9 | | 9.3 | ns | | t_{XZ} | | 2.7 | | 3.1 | | 3.7 | ns | | t_{ZX1} | | 2.7 | | 3.1 | | 3.7 | ns | | t_{ZX2} | | 5.0 | | 5.8 | | 6.8 | ns | | t_{ZX3} | | 7.3 | | 8.4 | | 10.0 | ns | | t _{INREG} | | 5.3 | | 6.1 | | 7.2 | ns | | t _{IOFD} | | 4.7 | | 5.5 | | 6.4 | ns | | t _{INCOMB} | | 4.7 | | 5.5 | | 6.4 | ns | | Table 113. ClockLock & ClockBoost Parameters (Part 2 of 2) | | | | | | | | | | |--|--|-----|-----|------|------|--|--|--|--| | Symbol | Parameter | Min | Тур | Max | Unit | | | | | | f _{CLKDEV1} | Input deviation from user specification in MAX+PLUS II (ClockBoost clock multiplication factor equals 1) (1) | | | ±1 | MHz | | | | | | f _{CLKDEV2} | Input deviation from user specification in MAX+PLUS II (ClockBoost clock multiplication factor equals 2) (1) | | | ±0.5 | MHz | | | | | | t _{INCLKSTB} | Input clock stability (measured between adjacent clocks) | | | 100 | ps | | | | | | t _{LOCK} | Time required for ClockLock or ClockBoost to acquire lock (2) | | | 10 | μs | | | | | | t _{JITTER} | Jitter on ClockLock or ClockBoost-generated clock (3) | | | 1 | ns | | | | | | $t_{OUTDUTY}$ | Duty cycle for ClockLock or ClockBoost-generated clock | 40 | 50 | 60 | % | | | | | #### Notes: - (1) To implement the ClockLock and ClockBoost circuitry with the MAX+PLUS II software, designers must specify the input frequency. The MAX+PLUS II software tunes the PLL in the ClockLock and ClockBoost circuitry to this frequency. The f_{CLKDEV} parameter specifies how much the incoming clock can differ from the specified frequency during device operation. Simulation does not reflect this parameter. - (2) During device configuration, the ClockLock and ClockBoost circuitry is configured before the rest of the device. If the incoming clock is supplied during configuration, the ClockLock and ClockBoost circuitry locks during configuration, because the t_{LOCK} value is less than the time required for configuration. - (3) The t_{IITTER} specification is measured under long-term observation. # Power Consumption The supply power (P) for FLEX 10K devices can be calculated with the following equation: $$P = P_{INT} + P_{IO} = (I_{CCSTANDBY} + I_{CCACTIVE}) \times V_{CC} + P_{IO}$$ Typical $I_{CCSTANDBY}$ values are shown as I_{CC0} in the FLEX 10K device DC operating conditions tables on pages 46, 49, and 52 of this data sheet. The $I_{CCACTIVE}$ value depends on the switching frequency and the application logic. This value is calculated based on the amount of current that each LE typically consumes. The P_{IO} value, which depends on the device output load characteristics and switching frequency, can be calculated using the guidelines given in *Application Note 74 (Evaluating Power for Altera Devices)*. Compared to the rest of the device, the embedded array consumes a negligible amount of power. Therefore, the embedded array can be ignored when calculating supply current. The I_{CCACTIVE} value is calculated with the following equation: $$I_{CCACTIVE} = K \times \mathbf{f_{MAX}} \times N \times \mathbf{tog_{LC}} \times \frac{\mu A}{MHz \times LE}$$ The parameters in this equation are shown below: