Welcome to **E-XFL.COM** ## Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|-------------------------------------------------------------| | Product Status | Obsolete | | Number of LABs/CLBs | 72 | | Number of Logic Elements/Cells | 576 | | Total RAM Bits | 6144 | | Number of I/O | 102 | | Number of Gates | 31000 | | Voltage - Supply | 3V ~ 3.6V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 70°C (TA) | | Package / Case | 144-LQFP | | Supplier Device Package | 144-TQFP (20x20) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/epf10k10atc144-1 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong For more information, see the following documents: - Configuration Devices for APEX & FLEX Devices Data Sheet - BitBlaster Serial Download Cable Data Sheet - ByteBlasterMV Parallel Port Download Cable Data Sheet - Application Note 116 (Configuring APEX 20K, FLEX 10K & FLEX 6000 Devices) FLEX 10K devices are supported by Altera development systems; single, integrated packages that offer schematic, text (including AHDL), and waveform design entry, compilation and logic synthesis, full simulation and worst-case timing analysis, and device configuration. The Altera software provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and other interfaces for additional design entry and simulation support from other industry-standard PC- and UNIX workstation-based EDA tools. The Altera software works easily with common gate array EDA tools for synthesis and simulation. For example, the Altera software can generate Verilog HDL files for simulation with tools such as Cadence Verilog-XL. Additionally, the Altera software contains EDA libraries that use device-specific features such as carry chains which are used for fast counter and arithmetic functions. For instance, the Synopsys Design Compiler library supplied with the Altera development systems include DesignWare functions that are optimized for the FLEX 10K architecture. The Altera development systems run on Windows-based PCs and Sun SPARCstation, and HP 9000 Series 700/800 workstations. See the MAX+PLUS II Programmable Logic Development System & Software Data Sheet for more information. # Functional Description Each FLEX 10K device contains an embedded array to implement memory and specialized logic functions, and a logic array to implement general logic. The embedded array consists of a series of EABs. When implementing memory functions, each EAB provides 2,048 bits, which can be used to create RAM, ROM, dual-port RAM, or first-in first-out (FIFO) functions. When implementing logic, each EAB can contribute 100 to 600 gates towards complex logic functions, such as multipliers, microcontrollers, state machines, and DSP functions. EABs can be used independently, or multiple EABs can be combined to implement larger functions. Embedded Array Block (EAB) I/O Element IOE (10E) Column Logic Array Interconnect EAB Logic Array Block (LAB) Logic Element (LE) Row EAB Interconnect Local Interconnect Logic Array IOE IOE IOE IOE IOE IOE IOE Embedded Array Figure 1. FLEX 10K Device Block Diagram FLEX 10K devices provide six dedicated inputs that drive the flipflops' control inputs to ensure the efficient distribution of high-speed, low-skew (less than 1.5 ns) control signals. These signals use dedicated routing channels that provide shorter delays and lower skews than the FastTrack Interconnect. Four of the dedicated inputs drive four global signals. These four global signals can also be driven by internal logic, providing an ideal solution for a clock divider or an internally generated asynchronous clear signal that clears many registers in the device. ## **Embedded Array Block** The EAB is a flexible block of RAM with registers on the input and output ports, and is used to implement common gate array megafunctions. The EAB is also suitable for functions such as multipliers, vector scalars, and error correction circuits, because it is large and flexible. These functions can be combined in applications such as digital filters and microcontrollers. ## **Logic Array Block** Each LAB consists of eight LEs, their associated carry and cascade chains, LAB control signals, and the LAB local interconnect. The LAB provides the coarse-grained structure to the FLEX 10K architecture, facilitating efficient routing with optimum device utilization and high performance. See Figure 5. Figure 5. FLEX 10K LAB #### Notes: - (1) EPF10K10, EPF10K10A, EPF10K20, EPF10K30, EPF10K30A, EPF10K40, EPF10K50, and EPF10K50V devices have 22 inputs to the LAB local interconnect channel from the row; EPF10K70, EPF10K100, EPF10K100A, EPF10K130V, and EPF10K250A devices have 26. - (2) EPF10K10, EPF10K10A, EPF10K20, EPF10K30, EPF10K30A, EPF10K40, EPF10K50, and EPF10K50V devices have 30 LAB local interconnect channels; EPF10K70, EPF10K100, EPF10K100A, EPF10K130V, and EPF10K250A devices have 34 LABs. Each LAB provides four control signals with programmable inversion that can be used in all eight LEs. Two of these signals can be used as clocks; the other two can be used for clear/preset control. The LAB clocks can be driven by the dedicated clock input pins, global signals, I/O signals, or internal signals via the LAB local interconnect. The LAB preset and clear control signals can be driven by the global signals, I/O signals, or internal signals via the LAB local interconnect. The global control signals are typically used for global clock, clear, or preset signals because they provide asynchronous control with very low skew across the device. If logic is required on a control signal, it can be generated in one or more LEs in any LAB and driven into the local interconnect of the target LAB. In addition, the global control signals can be generated from LE outputs. ## **Logic Element** The LE, the smallest unit of logic in the FLEX 10K architecture, has a compact size that provides efficient logic utilization. Each LE contains a four-input LUT, which is a function generator that can quickly compute any function of four variables. In addition, each LE contains a programmable flipflop with a synchronous enable, a carry chain, and a cascade chain. Each LE drives both the local and the FastTrack Interconnect. See Figure 6. Figure 6. FLEX 10K Logic Element #### Normal Mode The normal mode is suitable for general logic applications and wide decoding functions that can take advantage of a cascade chain. In normal mode, four data inputs from the LAB local interconnect and the carry-in are inputs to a four-input LUT. The Compiler automatically selects the carry-in or the DATA3 signal as one of the inputs to the LUT. The LUT output can be combined with the cascade-in signal to form a cascade chain through the cascade-out signal. Either the register or the LUT can be used to drive both the local interconnect and the FastTrack Interconnect at the same time. The LUT and the register in the LE can be used independently; this feature is known as register packing. To support register packing, the LE has two outputs; one drives the local interconnect and the other drives the FastTrack Interconnect. The DATA4 signal can drive the register directly, allowing the LUT to compute a function that is independent of the registered signal; a three-input function can be computed in the LUT, and a fourth independent signal can be registered. Alternatively, a four-input function can be generated, and one of the inputs to this function can be used to drive the register. The register in a packed LE can still use the clock enable, clear, and preset signals in the LE. In a packed LE, the register can drive the FastTrack Interconnect while the LUT drives the local interconnect, or vice versa. #### Arithmetic Mode The arithmetic mode offers 2 three-input LUTs that are ideal for implementing adders, accumulators, and comparators. One LUT computes a three-input function, and the other generates a carry output. As shown in Figure 9 on page 19, the first LUT uses the carry-in signal and two data inputs from the LAB local interconnect to generate a combinatorial or registered output. For example, in an adder, this output is the sum of three signals: a, b, and carry-in. The second LUT uses the same three signals to generate a carry-out signal, thereby creating a carry chain. The arithmetic mode also supports simultaneous use of the cascade chain. Figure 12 shows the interconnection of adjacent LABs and EABs with row, column, and local interconnects, as well as the associated cascade and carry chains. Each LAB is labeled according to its location: a letter represents the row and a number represents the column. For example, LAB B3 is in row B, column 3. Figure 12. Interconnect Resources Table 12 describes the FLEX 10K device supply voltages and MultiVolt $\rm I/O$ support levels. | Devices | Supply Vo | oltage (V) | MultiVolt I/O Sup | MultiVolt I/O Support Levels (V) | | | |---------------|--------------------|-------------------|-------------------|----------------------------------|--|--| | | V _{CCINT} | V _{CCIO} | Input | Output | | | | FLEX 10K (1) | 5.0 | 5.0 | 3.3 or 5.0 | 5.0 | | | | | 5.0 | 3.3 | 3.3 or 5.0 | 3.3 or 5.0 | | | | EPF10K50V (1) | 3.3 | 3.3 | 3.3 or 5.0 | 3.3 or 5.0 | | | | EPF10K130V | 3.3 | 3.3 | 3.3 or 5.0 | 3.3 or 5.0 | | | | FLEX 10KA (1) | 3.3 | 3.3 | 2.5, 3.3, or 5.0 | 3.3 or 5.0 | | | | | 3.3 | 2.5 | 2.5, 3.3, or 5.0 | 2.5 | | | #### Note (1) 240-pin QFP packages do not support the MultiVolt I/O features, so they do not have separate V_{CCIO} pins. ### Power Sequencing & Hot-Socketing Because FLEX 10K devices can be used in a multi-voltage environment, they have been designed specifically to tolerate any possible power-up sequence. The $V_{\rm CCIO}$ and $V_{\rm CCINT}$ power supplies can be powered in any order. Signals can be driven into FLEX 10KA devices before and during power up without damaging the device. Additionally, FLEX 10KA devices do not drive out during power up. Once operating conditions are reached, FLEX 10KA devices operate as specified by the user. IEEE Std. 1149.1 (JTAG) Boundary-Scan Support All FLEX 10K devices provide JTAG BST circuitry that complies with the IEEE Std. 1149.1-1990 specification. All FLEX 10K devices can also be configured using the JTAG pins through the BitBlaster serial download cable, or ByteBlasterMV parallel port download cable, or via hardware that uses the JamTM programming and test language. JTAG BST can be performed before or after configuration, but not during configuration. FLEX 10K devices support the JTAG instructions shown in Table 13. Tables 22 through 25 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for EPF10K50V and EPF10K130V devices. | Table 2 | 2. EPF10K50V & EPF10K130V | Device Absolute Maximum Ratings | Note (1) | | | |------------------|----------------------------|-----------------------------------|----------|------|------| | Symbol | Parameter | Conditions | Min | Max | Unit | | V _{CC} | Supply voltage | With respect to ground (2) | -0.5 | 4.6 | V | | VI | DC input voltage | | -2.0 | 5.75 | V | | I _{OUT} | DC output current, per pin | | -25 | 25 | mA | | T _{STG} | Storage temperature | No bias | -65 | 150 | ° C | | T _{AMB} | Ambient temperature | Under bias | -65 | 135 | ° C | | TJ | Junction temperature | Ceramic packages, under bias | | 150 | ° C | | | | RQFP and BGA packages, under bias | | 135 | ° C | | Symbol | Parameter | Conditions | Min | Max | Unit | |--------------------|-----------------------------------------------------|--------------------|-------------|-------------------|------| | V _{CCINT} | Supply voltage for internal logic and input buffers | (3), (4) | 3.00 (3.00) | 3.60 (3.60) | V | | V _{CCIO} | Supply voltage for output buffers | (3), (4) | 3.00 (3.00) | 3.60 (3.60) | V | | V _I | Input voltage | (5) | -0.5 | 5.75 | V | | Vo | Output voltage | | 0 | V _{CCIO} | V | | T _A | Ambient temperature | For commercial use | 0 | 70 | °C | | | | For industrial use | -40 | 85 | ° C | | TJ | Operating temperature | For commercial use | 0 | 85 | ° C | | | | For industrial use | -40 | 100 | ° C | | t _R | Input rise time | | | 40 | ns | | t _F | Input fall time | | | 40 | ns | Timing simulation and delay prediction are available with the MAX+PLUS II Simulator and Timing Analyzer, or with industry-standard EDA tools. The Simulator offers both pre-synthesis functional simulation to evaluate logic design accuracy and post-synthesis timing simulation with 0.1-ns resolution. The Timing Analyzer provides point-to-point timing delay information, setup and hold time analysis, and device-wide performance analysis. Figure 24 shows the overall timing model, which maps the possible paths to and from the various elements of the FLEX 10K device. Figure 24. FLEX 10K Device Timing Model #### Notes to tables: - Microparameters are timing delays contributed by individual architectural elements. These parameters cannot be measured explicitly. - (2) Operating conditions: $V_{CCIO} = 5.0 \text{ V} \pm 5\%$ for commercial use in FLEX 10K devices. V_{CCIO} = 5.0 V ± 10% for industrial use in FLEX 10K devices. $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial or industrial use in FLEX 10KA devices. - (3) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial or industrial use in FLEX 10K devices. - V_{CCIO} = 2.5 V ± 0.2 V for commercial or industrial use in FLEX 10KA devices. - (4) Operating conditions: $V_{CCIO} = 2.5 \text{ V}$, 3.3 V, or 5.0 V. - (5) Because the RAM in the EAB is self-timed, this parameter can be ignored when the WE signal is registered. - (6) EAB macroparameters are internal parameters that can simplify predicting the behavior of an EAB at its boundary; these parameters are calculated by summing selected microparameters. - (7) These parameters are worst-case values for typical applications. Post-compilation timing simulation and timing analysis are required to determine actual worst-case performance. - (8) External reference timing parameters are factory-tested, worst-case values specified by Altera. A representative subset of signal paths is tested to approximate typical device applications. - (9) Contact Altera Applications for test circuit specifications and test conditions. - (10) These timing parameters are sample-tested only. Figures 29 and 30 show the asynchronous and synchronous timing waveforms, respectively, for the EAB macroparameters in Table 34. Figure 29. EAB Asynchronous Timing Waveforms #### **EAB Asynchronous Read** #### **EAB Asynchronous Write** | Symbol | -3 Spee | d Grade | -4 Spee | d Grade | Unit | |---------------------|---------|---------|---------|---------|------| | | Min | Max | Min | Max | | | t_{IOD} | | 1.3 | | 1.6 | ns | | t _{IOC} | | 0.5 | | 0.7 | ns | | t _{IOCO} | | 0.2 | | 0.2 | ns | | t _{IOCOMB} | | 0.0 | | 0.0 | ns | | t _{IOSU} | 2.8 | | 3.2 | | ns | | t _{IOH} | 1.0 | | 1.2 | | ns | | t _{IOCLR} | | 1.0 | | 1.2 | ns | | t _{OD1} | | 2.6 | | 3.5 | ns | | t_{OD2} | | 4.9 | | 6.4 | ns | | t_{OD3} | | 6.3 | | 8.2 | ns | | t_{XZ} | | 4.5 | | 5.4 | ns | | t _{ZX1} | | 4.5 | | 5.4 | ns | | t _{ZX2} | | 6.8 | | 8.3 | ns | | t _{ZX3} | | 8.2 | | 10.1 | ns | | t _{INREG} | | 6.0 | | 7.5 | ns | | t _{IOFD} | | 3.1 | | 3.5 | ns | | t _{INCOMB} | | 3.1 | | 3.5 | ns | | Symbol | -3 Snee | d Grade | -4 Snee | -4 Speed Grade | | | |------------------------|---------|---------|---------|----------------|------|--| | Symbol | - | | | | Unit | | | | Min | Max | Min | Max | | | | t _{EABAA} | | 13.7 | | 17.0 | ns | | | t _{EABRCCOMB} | 13.7 | | 17.0 | | ns | | | t _{EABRCREG} | 9.7 | | 11.9 | | ns | | | t _{EABWP} | 5.8 | | 7.2 | | ns | | | t _{EABWCCOMB} | 7.3 | | 9.0 | | ns | | | t _{EABWCREG} | 13.0 | | 16.0 | | ns | | | t _{EABDD} | | 10.0 | | 12.5 | ns | | | t _{EABDATACO} | | 2.0 | | 3.4 | ns | | | t _{EABDATASU} | 5.3 | | 5.6 | | ns | | | t _{EABDATAH} | 0.0 | | 0.0 | | ns | | | t _{EABWESU} | 5.5 | | 5.8 | | ns | | | t _{EABWEH} | 0.0 | | 0.0 | | ns | | | t _{EABWDSU} | 5.5 | | 5.8 | | ns | | | t _{EABWDH} | 0.0 | | 0.0 | | ns | | | t _{EABWASU} | 2.1 | | 2.7 | | ns | | | t _{EABWAH} | 0.0 | | 0.0 | | ns | | | t_{EABWO} | | 9.5 | | 11.8 | ns | | #### Notes to tables: - (1) All timing parameters are described in Tables 32 through 38 in this data sheet. - (2) Using an LE to register the signal may provide a lower setup time. - (3) This parameter is specified by characterization. Tables 57 through 63 show EPF10K70 device internal and external timing parameters. | Symbol | -2 Speed Grade | | -3 Spee | d Grade | -4 Spee | Unit | | |---------------------|----------------|-----|---------|---------|---------|------|----| | | Min | Max | Min | Max | Min | Max | | | t_{LUT} | | 1.3 | | 1.5 | | 2.0 | ns | | t _{CLUT} | | 0.4 | | 0.4 | | 0.5 | ns | | t _{RLUT} | | 1.5 | | 1.6 | | 2.0 | ns | | t _{PACKED} | | 0.8 | | 0.9 | | 1.3 | ns | | t _{EN} | | 0.8 | | 0.9 | | 1.2 | ns | | t _{CICO} | | 0.2 | | 0.2 | | 0.3 | ns | | t _{CGEN} | | 1.0 | | 1.1 | | 1.4 | ns | | t _{CGENR} | | 1.1 | | 1.2 | | 1.5 | ns | | t _{CASC} | | 1.0 | | 1.1 | | 1.3 | ns | | $t_{\mathbb{C}}$ | | 0.7 | | 0.8 | | 1.0 | ns | | t_{CO} | | 0.9 | | 1.0 | | 1.4 | ns | | t _{COMB} | | 0.4 | | 0.5 | | 0.7 | ns | | t _{SU} | 1.9 | | 2.1 | | 2.6 | | ns | | t _H | 2.1 | | 2.3 | | 3.1 | | ns | | t _{PRE} | | 0.9 | | 1.0 | | 1.4 | ns | | t _{CLR} | | 0.9 | | 1.0 | | 1.4 | ns | | t _{CH} | 4.0 | | 4.0 | | 4.0 | | ns | | t_{CL} | 4.0 | | 4.0 | | 4.0 | | ns | #### Notes to tables: - (1) All timing parameters are described in Tables 32 through 38 in this data sheet. - (2) Using an LE to register the signal may provide a lower setup time. - (3) This parameter is specified by characterization. Tables $64\,\mathrm{through}\,70\,\mathrm{show}\,EPF10K100\,\mathrm{device}$ internal and external timing parameters. | Table 64. EPF10K100 Device LE Timing Microparameters Note (1) | | | | | | | | | | |---------------------------------------------------------------|---------|-----------|--------|----------|---------|------|----|--|--| | Symbol | -3DX Sp | eed Grade | -3 Spe | ed Grade | -4 Spee | Unit | | | | | | Min | Max | Min | Max | Min | Max | | | | | t_{LUT} | | 1.5 | | 1.5 | | 2.0 | ns | | | | t _{CLUT} | | 0.4 | | 0.4 | | 0.5 | ns | | | | t _{RLUT} | | 1.6 | | 1.6 | | 2.0 | ns | | | | t _{PACKED} | | 0.9 | | 0.9 | | 1.3 | ns | | | | t _{EN} | | 0.9 | | 0.9 | | 1.2 | ns | | | | t _{CICO} | | 0.2 | | 0.2 | | 0.3 | ns | | | | t _{CGEN} | | 1.1 | | 1.1 | | 1.4 | ns | | | | t _{CGENR} | | 1.2 | | 1.2 | | 1.5 | ns | | | | t _{CASC} | | 1.1 | | 1.1 | | 1.3 | ns | | | | t_{C} | | 0.8 | | 0.8 | | 1.0 | ns | | | | t _{CO} | | 1.0 | | 1.0 | | 1.4 | ns | | | | t _{COMB} | | 0.5 | | 0.5 | | 0.7 | ns | | | | t _{SU} | 2.1 | | 2.1 | | 2.6 | | ns | | | | t _H | 2.3 | | 2.3 | | 3.1 | | ns | | | | t _{PRE} | | 1.0 | | 1.0 | | 1.4 | ns | | | | t _{CLR} | | 1.0 | | 1.0 | | 1.4 | ns | | | | t _{CH} | 4.0 | | 4.0 | | 4.0 | | ns | | | | t _{CL} | 4.0 | | 4.0 | | 4.0 | | ns | | | | Table 72. EPI | F10K50V D | evice IOE T | iming Mic | roparamet | ers No | ote (1) | | | | | |---------------------|-----------|-------------|-----------|-----------|---------|----------|---------|---------|------|--| | Symbol | -1 Spec | ed Grade | -2 Spee | d Grade | -3 Spee | ed Grade | -4 Spee | d Grade | Unit | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | | t_{IOD} | | 1.2 | | 1.6 | | 1.9 | | 2.1 | ns | | | t_{IOC} | | 0.3 | | 0.4 | | 0.5 | | 0.5 | ns | | | t _{IOCO} | | 0.3 | | 0.3 | | 0.4 | | 0.4 | ns | | | t _{IOCOMB} | | 0.0 | | 0.0 | | 0.0 | | 0.0 | ns | | | t_{IOSU} | 2.8 | | 2.8 | | 3.4 | | 3.9 | | ns | | | t _{IOH} | 0.7 | | 0.8 | | 1.0 | | 1.4 | | ns | | | t _{IOCLR} | | 0.5 | | 0.6 | | 0.7 | | 0.7 | ns | | | t _{OD1} | | 2.8 | | 3.2 | | 3.9 | | 4.7 | ns | | | t _{OD2} | | _ | | _ | | _ | | _ | ns | | | t _{OD3} | | 6.5 | | 6.9 | | 7.6 | | 8.4 | ns | | | t_{XZ} | | 2.8 | | 3.1 | | 3.8 | | 4.6 | ns | | | t_{ZX1} | | 2.8 | | 3.1 | | 3.8 | | 4.6 | ns | | | t_{ZX2} | | _ | | _ | | _ | | _ | ns | | | t_{ZX3} | | 6.5 | | 6.8 | | 7.5 | | 8.3 | ns | | | t _{INREG} | | 5.0 | | 5.7 | | 7.0 | | 9.0 | ns | | | t _{IOFD} | | 1.5 | | 1.9 | | 2.3 | | 2.7 | ns | | | t _{INCOMB} | | 1.5 | | 1.9 | | 2.3 | | 2.7 | ns | | #### Notes to tables: - (1) All timing parameters are described in Tables 32 through 38 in this data sheet. - (2) Using an LE to register the signal may provide a lower setup time. - (3) This parameter is specified by characterization. Tables 78 through 84 show EPF10K130V device internal and external timing parameters. | Symbol | -2 Speed Grade | | -3 Spee | ed Grade | -4 Spee | Unit | | |---------------------|----------------|-----|---------|----------|---------|------|----| | | Min | Max | Min | Max | Min | Max | | | t_{LUT} | | 1.3 | | 1.8 | | 2.3 | ns | | t _{CLUT} | | 0.5 | | 0.7 | | 0.9 | ns | | t_{RLUT} | | 1.2 | | 1.7 | | 2.2 | ns | | t _{PACKED} | | 0.5 | | 0.6 | | 0.7 | ns | | t_{EN} | | 0.6 | | 0.8 | | 1.0 | ns | | t_{CICO} | | 0.2 | | 0.3 | | 0.4 | ns | | t _{CGEN} | | 0.3 | | 0.4 | | 0.5 | ns | | t _{CGENR} | | 0.7 | | 1.0 | | 1.3 | ns | | t_{CASC} | | 0.9 | | 1.2 | | 1.5 | ns | | $t_{\rm C}$ | | 1.9 | | 2.4 | | 3.0 | ns | | t_{CO} | | 0.6 | | 0.9 | | 1.1 | ns | | t _{COMB} | | 0.5 | | 0.7 | | 0.9 | ns | | t _{SU} | 0.2 | | 0.2 | | 0.3 | | ns | | t _H | 0.0 | | 0.0 | | 0.0 | | ns | | t _{PRE} | | 2.4 | | 3.1 | | 3.9 | ns | | t _{CLR} | | 2.4 | | 3.1 | | 3.9 | ns | | t _{CH} | 4.0 | | 4.0 | | 4.0 | | ns | | t_{CL} | 4.0 | | 4.0 | | 4.0 | | ns | | Symbol | -1 Snee | -1 Speed Grade | | d Grade | -3 Spee | Unit | | |------------------------|---------|----------------|------|---------|---------|------|-----------| | oy | Min | Max | Min | Max | Min | Max | · · · · · | | t _{EABAA} | | 8.1 | | 9.8 | | 13.1 | ns | | t _{EABRCCOMB} | 8.1 | | 9.8 | | 13.1 | | ns | | t _{EABRCREG} | 5.8 | | 6.9 | | 9.3 | | ns | | t _{EABWP} | 2.0 | | 2.4 | | 3.2 | | ns | | t _{EABWCCOMB} | 3.5 | | 4.2 | | 5.6 | | ns | | t _{EABWCREG} | 9.4 | | 11.2 | | 14.8 | | ns | | t _{EABDD} | | 6.9 | | 8.3 | | 11.0 | ns | | t _{EABDATACO} | | 1.3 | | 1.5 | | 2.0 | ns | | t _{EABDATASU} | 2.4 | | 3.0 | | 3.9 | | ns | | t _{EABDATAH} | 0.0 | | 0.0 | | 0.0 | | ns | | t _{EABWESU} | 4.1 | | 4.9 | | 6.5 | | ns | | t _{EABWEH} | 0.0 | | 0.0 | | 0.0 | | ns | | t _{EABWDSU} | 1.4 | | 1.6 | | 2.2 | | ns | | t _{EABWDH} | 0.0 | | 0.0 | _ | 0.0 | | ns | | t _{EABWASU} | 2.5 | | 3.0 | _ | 4.1 | | ns | | t _{EABWAH} | 0.0 | | 0.0 | | 0.0 | | ns | | t _{EABWO} | | 6.2 | | 7.5 | | 9.9 | ns | | Symbol | -1 Spee | -1 Speed Grade | | d Grade | -3 Spee | d Grade | Unit | |------------------------|---------|----------------|-----|---------|---------|---------|------| | | Min | Max | Min | Max | Min | Max | | | t _{EABDATA1} | | 5.5 | | 6.5 | | 8.5 | ns | | t _{EABDATA2} | | 1.1 | | 1.3 | | 1.8 | ns | | t _{EABWE1} | | 2.4 | | 2.8 | | 3.7 | ns | | t _{EABWE2} | | 2.1 | | 2.5 | | 3.2 | ns | | t _{EABCLK} | | 0.0 | | 0.0 | | 0.2 | ns | | t _{EABCO} | | 1.7 | | 2.0 | | 2.6 | ns | | t _{EABBYPASS} | | 0.0 | | 0.0 | | 0.3 | ns | | t _{EABSU} | 1.2 | | 1.4 | | 1.9 | | ns | | t _{EABH} | 0.1 | | 0.1 | | 0.3 | | ns | | t_{AA} | | 4.2 | | 5.0 | | 6.5 | ns | | t_{WP} | 3.8 | | 4.5 | | 5.9 | | ns | | t _{WDSU} | 0.1 | | 0.1 | | 0.2 | | ns | | t_{WDH} | 0.1 | | 0.1 | | 0.2 | | ns | | t _{WASU} | 0.1 | | 0.1 | | 0.2 | | ns | | t _{WAH} | 0.1 | | 0.1 | | 0.2 | | ns | | t_{WO} | | 3.7 | | 4.4 | | 6.4 | ns | | t_{DD} | | 3.7 | | 4.4 | | 6.4 | ns | | t _{EABOUT} | | 0.0 | | 0.1 | | 0.6 | ns | | t _{EABCH} | 3.0 | | 3.5 | | 4.0 | | ns | | t _{EABCL} | 3.8 | | 4.5 | | 5.9 | | ns | | Symbol | -1 Speed Grade | | -2 Spee | d Grade | -3 Spee | Unit | | |--------------------------|----------------|------|---------|---------|---------|------|----| | | Min | Max | Min | Max | Min | Max | 1 | | t _{DIN2IOE} | | 7.8 | | 8.5 | | 9.4 | ns | | t _{DIN2LE} | | 2.7 | | 3.1 | | 3.5 | ns | | t _{DIN2DATA} | | 1.6 | | 1.6 | | 1.7 | ns | | t _{DCLK2IOE} | | 3.6 | | 4.0 | | 4.6 | ns | | t _{DCLK2LE} | | 2.7 | | 3.1 | | 3.5 | ns | | t _{SAMELAB} | | 0.2 | | 0.3 | | 0.3 | ns | | t _{SAMEROW} | | 6.7 | | 7.3 | | 8.2 | ns | | t _{SAME} COLUMN | | 2.5 | | 2.7 | | 3.0 | ns | | t _{DIFFROW} | | 9.2 | | 10.0 | | 11.2 | ns | | t _{TWOROWS} | | 15.9 | | 17.3 | | 19.4 | ns | | t _{LEPERIPH} | | 7.5 | | 8.1 | | 8.9 | ns | | t _{LABCARRY} | | 0.3 | | 0.4 | | 0.5 | ns | | t _{LABCASC} | | 0.4 | | 0.4 | | 0.5 | ns | | Table 111. EPF10K250A Device External Reference Timing Parameters Note (1) | | | | | | | | | | |----------------------------------------------------------------------------|----------------|------|----------------|------|----------------|------|------|--|--| | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | | | | | Min | Max | Min | Max | Min | Max | | | | | t _{DRR} | | 15.0 | | 17.0 | | 20.0 | ns | | | | t _{INSU} (2), (3) | 6.9 | | 8.0 | | 9.4 | | ns | | | | t _{INH} (3) | 0.0 | | 0.0 | | 0.0 | | ns | | | | t _{оитсо} (3) | 2.0 | 8.0 | 2.0 | 8.9 | 2.0 | 10.4 | ns | | | | Table 112. EPF10K250A Device External Bidirectional Timing Parameters Note (1) | | | | | | | | | |--------------------------------------------------------------------------------|----------------|------|----------------|------|----------------|------|------|--| | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | | | | Min | Max | Min | Max | Min | Max | | | | t _{INSUBIDIR} | 9.3 | | 10.6 | | 12.7 | | ns | | | t _{INHBIDIR} | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{OUTCOBIDIR} | 2.0 | 8.0 | 2.0 | 8.9 | 2.0 | 10.4 | ns | | | t _{XZBIDIR} | | 10.8 | | 12.2 | | 14.2 | ns | | | t _{ZXBIDIR} | | 10.8 | | 12.2 | | 14.2 | ns | | Figure 32. I_{CCACTIVE} vs. Operating Frequency (Part 2 of 3)