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Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
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offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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FLEX 10K Embedded Programmable Logic Device Family Data Sheet
Figure 1. FLEX 10K Device Block Diagram

FLEX 10K devices provide six dedicated inputs that drive the flipflops’ 
control inputs to ensure the efficient distribution of high-speed, low-skew 
(less than 1.5 ns) control signals. These signals use dedicated routing 
channels that provide shorter delays and lower skews than the FastTrack 
Interconnect. Four of the dedicated inputs drive four global signals. These 
four global signals can also be driven by internal logic, providing an ideal 
solution for a clock divider or an internally generated asynchronous clear 
signal that clears many registers in the device. 

Embedded Array Block

The EAB is a flexible block of RAM with registers on the input and output 
ports, and is used to implement common gate array megafunctions. The 
EAB is also suitable for functions such as multipliers, vector scalars, and 
error correction circuits, because it is large and flexible. These functions 
can be combined in applications such as digital filters and 
microcontrollers. 
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Larger blocks of RAM are created by combining multiple EABs. For 
example, two 256 × 8 RAM blocks can be combined to form a 
256 × 16 RAM block; two 512 × 4 blocks of RAM can be combined to form 
a 512 × 8 RAM block. See Figure 3.

Figure 3. Examples of Combining EABs

If necessary, all EABs in a device can be cascaded to form a single RAM 
block. EABs can be cascaded to form RAM blocks of up to 2,048 words 
without impacting timing. Altera’s software automatically combines 
EABs to meet a designer’s RAM specifications.

EABs provide flexible options for driving and controlling clock signals. 
Different clocks can be used for the EAB inputs and outputs. Registers can 
be independently inserted on the data input, EAB output, or the address 
and WE inputs. The global signals and the EAB local interconnect can drive 
the WE signal. The global signals, dedicated clock pins, and EAB local 
interconnect can drive the EAB clock signals. Because the LEs drive the 
EAB local interconnect, the LEs can control the WE signal or the EAB clock 
signals.

Each EAB is fed by a row interconnect and can drive out to row and 
column interconnects. Each EAB output can drive up to two row channels 
and up to two column channels; the unused row channel can be driven by 
other LEs. This feature increases the routing resources available for EAB 
outputs. See Figure 4.
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The programmable flipflop in the LE can be configured for D, T, JK, or SR 
operation. The clock, clear, and preset control signals on the flipflop can 
be driven by global signals, general-purpose I/O pins, or any internal 
logic. For combinatorial functions, the flipflop is bypassed and the output 
of the LUT drives the output of the LE. 

The LE has two outputs that drive the interconnect; one drives the local 
interconnect and the other drives either the row or column FastTrack 
Interconnect. The two outputs can be controlled independently. For 
example, the LUT can drive one output while the register drives the other 
output. This feature, called register packing, can improve LE utilization 
because the register and the LUT can be used for unrelated functions.

The FLEX 10K architecture provides two types of dedicated high-speed 
data paths that connect adjacent LEs without using local interconnect 
paths: carry chains and cascade chains. The carry chain supports high-
speed counters and adders; the cascade chain implements wide-input 
functions with minimum delay. Carry and cascade chains connect all LEs 
in an LAB and all LABs in the same row. Intensive use of carry and 
cascade chains can reduce routing flexibility. Therefore, the use of these 
chains should be limited to speed-critical portions of a design.

Carry Chain

The carry chain provides a very fast (as low as 0.2 ns) carry-forward 
function between LEs. The carry-in signal from a lower-order bit drives 
forward into the higher-order bit via the carry chain, and feeds into both 
the LUT and the next portion of the carry chain. This feature allows the 
FLEX 10K architecture to implement high-speed counters, adders, and 
comparators of arbitrary width efficiently. Carry chain logic can be 
created automatically by the Compiler during design processing, or 
manually by the designer during design entry. Parameterized functions 
such as LPM and DesignWare functions automatically take advantage of 
carry chains.

Carry chains longer than eight LEs are automatically implemented by 
linking LABs together. For enhanced fitting, a long carry chain skips 
alternate LABs in a row. A carry chain longer than one LAB skips either 
from even-numbered LAB to even-numbered LAB, or from odd-
numbered LAB to odd-numbered LAB. For example, the last LE of the 
first LAB in a row carries to the first LE of the third LAB in the row. The 
carry chain does not cross the EAB at the middle of the row. For instance, 
in the EPF10K50 device, the carry chain stops at the eighteenth LAB and a 
new one begins at the nineteenth LAB.
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Cascade Chain

With the cascade chain, the FLEX 10K architecture can implement 
functions that have a very wide fan-in. Adjacent LUTs can be used to 
compute portions of the function in parallel; the cascade chain serially 
connects the intermediate values. The cascade chain can use a logical AND 
or logical OR (via De Morgan’s inversion) to connect the outputs of 
adjacent LEs. Each additional LE provides four more inputs to the 
effective width of a function, with a delay as low as 0.7 ns per LE. Cascade 
chain logic can be created automatically by the Compiler during design 
processing, or manually by the designer during design entry.

Cascade chains longer than eight bits are implemented automatically by 
linking several LABs together. For easier routing, a long cascade chain 
skips every other LAB in a row. A cascade chain longer than one LAB 
skips either from even-numbered LAB to even-numbered LAB, or from 
odd-numbered LAB to odd-numbered LAB (e.g., the last LE of the first 
LAB in a row cascades to the first LE of the third LAB). The cascade chain 
does not cross the center of the row (e.g., in the EPF10K50 device, the 
cascade chain stops at the eighteenth LAB and a new one begins at the 
nineteenth LAB). This break is due to the EAB’s placement in the middle 
of the row.

Figure 8 shows how the cascade function can connect adjacent LEs to form 
functions with a wide fan-in. These examples show functions of 4n 
variables implemented with n LEs. The LE delay is as low as 1.6 ns; the 
cascade chain delay is as low as 0.7 ns. With the cascade chain, 3.7 ns is 
needed to decode a 16-bit address.

Figure 8. Cascade Chain Operation
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Normal Mode

The normal mode is suitable for general logic applications and wide 
decoding functions that can take advantage of a cascade chain. In normal 
mode, four data inputs from the LAB local interconnect and the carry-in 
are inputs to a four-input LUT. The Compiler automatically selects the 
carry-in or the DATA3 signal as one of the inputs to the LUT. The LUT 
output can be combined with the cascade-in signal to form a cascade chain 
through the cascade-out signal. Either the register or the LUT can be used 
to drive both the local interconnect and the FastTrack Interconnect at the 
same time. 

The LUT and the register in the LE can be used independently; this feature 
is known as register packing. To support register packing, the LE has two 
outputs; one drives the local interconnect and the other drives the 
FastTrack Interconnect. The DATA4 signal can drive the register directly, 
allowing the LUT to compute a function that is independent of the 
registered signal; a three-input function can be computed in the LUT, and 
a fourth independent signal can be registered. Alternatively, a four-input 
function can be generated, and one of the inputs to this function can be 
used to drive the register. The register in a packed LE can still use the clock 
enable, clear, and preset signals in the LE. In a packed LE, the register can 
drive the FastTrack Interconnect while the LUT drives the local 
interconnect, or vice versa.

Arithmetic Mode

The arithmetic mode offers 2 three-input LUTs that are ideal for 
implementing adders, accumulators, and comparators. One LUT 
computes a three-input function, and the other generates a carry output. 
As shown in Figure 9 on page 19, the first LUT uses the carry-in signal and 
two data inputs from the LAB local interconnect to generate a 
combinatorial or registered output. For example, in an adder, this output 
is the sum of three signals: a, b, and carry-in. The second LUT uses the 
same three signals to generate a carry-out signal, thereby creating a carry 
chain. The arithmetic mode also supports simultaneous use of the cascade 
chain.
20 Altera Corporation
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Up/Down Counter Mode

The up/down counter mode offers counter enable, clock enable, 
synchronous up/down control, and data loading options. These control 
signals are generated by the data inputs from the LAB local interconnect, 
the carry-in signal, and output feedback from the programmable register. 
The Up/down counter mode uses 2 three-input LUTs: one generates the 
counter data, and the other generates the fast carry bit. A 2-to-1 
multiplexer provides synchronous loading. Data can also be loaded 
asynchronously with the clear and preset register control signals, without 
using the LUT resources.

Clearable Counter Mode

The clearable counter mode is similar to the up/down counter mode, but 
supports a synchronous clear instead of the up/down control. The clear 
function is substituted for the cascade-in signal in the up/down counter 
mode. Clearable counter mode uses 2 three-input LUTs: one generates the 
counter data, and the other generates the fast carry bit. Synchronous 
loading is provided by a 2-to-1 multiplexer. The output of this multiplexer 
is ANDed with a synchronous clear signal. 

Internal Tri-State Emulation 

Internal tri-state emulation provides internal tri-stating without the 
limitations of a physical tri-state bus. In a physical tri-state bus, the 
tri-state buffers’ output enable (OE) signals select which signal drives the 
bus. However, if multiple OE signals are active, contending signals can be 
driven onto the bus. Conversely, if no OE signals are active, the bus will 
float. Internal tri-state emulation resolves contending tri-state buffers to a 
low value and floating buses to a high value, thereby eliminating these 
problems. The Altera software automatically implements tri-state bus 
functionality with a multiplexer. 

Clear & Preset Logic Control

Logic for the programmable register’s clear and preset functions is 
controlled by the DATA3, LABCTRL1, and LABCTRL2 inputs to the LE. The 
clear and preset control structure of the LE asynchronously loads signals 
into a register. Either LABCTRL1 or LABCTRL2 can control the 
asynchronous clear. Alternatively, the register can be set up so that 
LABCTRL1 implements an asynchronous load. The data to be loaded is 
driven to DATA3; when LABCTRL1 is asserted, DATA3 is loaded into the 
register.
Altera Corporation  21
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During compilation, the Compiler automatically selects the best control 
signal implementation. Because the clear and preset functions are active-
low, the Compiler automatically assigns a logic high to an unused clear or 
preset. 

The clear and preset logic is implemented in one of the following six 
modes chosen during design entry: 

■ Asynchronous clear
■ Asynchronous preset
■ Asynchronous clear and preset
■ Asynchronous load with clear
■ Asynchronous load with preset
■ Asynchronous load without clear or preset

In addition to the six clear and preset modes, FLEX 10K devices provide a 
chip-wide reset pin that can reset all registers in the device. Use of this 
feature is set during design entry. In any of the clear and preset modes, the 
chip-wide reset overrides all other signals. Registers with asynchronous 
presets may be preset when the chip-wide reset is asserted. Inversion can 
be used to implement the asynchronous preset. Figure 10 shows examples 
of how to enter a section of a design for the desired functionality.
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Figure 15. FLEX 10K Column-to-IOE Connections

Table 11 lists the FLEX 10K column-to-IOE interconnect resources. 

Each IOE is driven by
an m-to-1 multiplexer. 

Each IOE can drive up to
two column channels.
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The values for m and n are provided in Table 11.

Table 11. FLEX 10K Column-to-IOE Interconnect Resources

Device Channels per Column (n) Column Channel per Pin (m)

EPF10K10
EPF10K10A

24 16

EPF10K20 24 16

EPF10K30
EPF10K30A

24 16

EPF10K40 24 16

EPF10K50
EPF10K50V

24 16

EPF10K70 24 16

EPF10K100
EPF10K100A

24 16

EPF10K130V 32 24

EPF10K250A 40 32
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Table 27. FLEX 10KA 3.3-V Device Recommended Operating Conditions

Symbol Parameter Conditions Min Max Unit

VCCINT Supply voltage for internal logic 
and input buffers

(3), (4) 3.00 (3.00) 3.60 (3.60) V

VCCIO Supply voltage for output 
buffers, 3.3-V operation

(3), (4) 3.00 (3.00) 3.60 (3.60) V

Supply voltage for output 
buffers, 2.5-V operation

(3), (4) 2.30 (2.30) 2.70 (2.70) V

VI Input voltage (5) –0.5 5.75 V

VO Output voltage 0 VCCIO V

TA Ambient temperature For commercial use 0 70 ° C

For industrial use –40 85 ° C

TJ Operating temperature For commercial use 0 85 ° C

For industrial use –40 100 ° C

tR Input rise time 40 ns

tF Input fall time 40 ns
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Figure 22 shows the typical output drive characteristics of EPF10K10A, 
EPF10K30A, EPF10K100A, and EPF10K250A devices with 3.3-V and 2.5-V 
VCCIO. The output driver is compliant with the 3.3-V PCI Local Bus 
Specification, Revision 2.2 (with 3.3-V VCCIO). Moreover, device analysis 
shows that the EPF10K10A, EPF10K30A, and EPF 10K100A devices can 
drive a 5.0-V PCI bus with eight or fewer loads.

Figure 22. Output Drive Characteristics for EPF10K10A, EPF10K30A & EPF10K100A Devices

Figure 23 shows the typical output drive characteristics of the 
EPF10K250A device with 3.3-V and 2.5-V VCCIO.
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Table 34. EAB Timing Microparameters Note (1)

Symbol Parameter Conditions

tEABDATA1 Data or address delay to EAB for combinatorial input

tEABDATA2 Data or address delay to EAB for registered input

tEABWE1 Write enable delay to EAB for combinatorial input

tEABWE2 Write enable delay to EAB for registered input

tEABCLK EAB register clock delay

tEABCO EAB register clock-to-output delay

tEABBYPASS Bypass register delay

tEABSU EAB register setup time before clock

tEABH EAB register hold time after clock

tAA Address access delay

tWP Write pulse width

tWDSU Data setup time before falling edge of write pulse (5)

tWDH Data hold time after falling edge of write pulse (5)

tWASU Address setup time before rising edge of write pulse (5)

tWAH Address hold time after falling edge of write pulse (5)

tWO Write enable to data output valid delay

tDD Data-in to data-out valid delay

tEABOUT Data-out delay

tEABCH Clock high time

tEABCL Clock low time
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Table 35. EAB Timing Macroparameters Notes (1), (6)

Symbol Parameter Conditions

tEABAA EAB address access delay

tEABRCCOMB EAB asynchronous read cycle time

tEABRCREG EAB synchronous read cycle time

tEABWP EAB write pulse width

tEABWCCOMB EAB asynchronous write cycle time

tEABWCREG EAB synchronous write cycle time

tEABDD EAB data-in to data-out valid delay

tEABDATACO EAB clock-to-output delay when using output registers

tEABDATASU EAB data/address setup time before clock when using input register

tEABDATAH EAB data/address hold time after clock when using input register

tEABWESU EAB WE setup time before clock when using input register

tEABWEH EAB WE hold time after clock when using input register

tEABWDSU EAB data setup time before falling edge of write pulse when not using input 
registers

tEABWDH EAB data hold time after falling edge of write pulse when not using input 
registers

tEABWASU EAB address setup time before rising edge of write pulse when not using 
input registers

tEABWAH EAB address hold time after falling edge of write pulse when not using input 
registers

tEABWO EAB write enable to data output valid delay
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Notes to tables:
(1) Microparameters are timing delays contributed by individual architectural elements. These parameters cannot be 

measured explicitly.
(2) Operating conditions: VCCIO = 5.0 V ± 5% for commercial use in FLEX 10K devices.

VCCIO = 5.0 V ± 10% for industrial use in FLEX 10K devices.
VCCIO = 3.3 V ± 10% for commercial or industrial use in FLEX 10KA devices.

(3) Operating conditions: VCCIO = 3.3 V ± 10% for commercial or industrial use in FLEX 10K devices.
VCCIO = 2.5 V ± 0.2 V for commercial or industrial use in FLEX 10KA devices.

(4) Operating conditions: VCCIO = 2.5 V, 3.3 V, or 5.0 V.
(5) Because the RAM in the EAB is self-timed, this parameter can be ignored when the WE signal is registered. 
(6) EAB macroparameters are internal parameters that can simplify predicting the behavior of an EAB at its boundary; 

these parameters are calculated by summing selected microparameters. 
(7) These parameters are worst-case values for typical applications. Post-compilation timing simulation and timing 

analysis are required to determine actual worst-case performance.
(8) External reference timing parameters are factory-tested, worst-case values specified by Altera. A representative 

subset of signal paths is tested to approximate typical device applications.
(9) Contact Altera Applications for test circuit specifications and test conditions.
(10) These timing parameters are sample-tested only. 

Figures 29 and 30 show the asynchronous and synchronous timing 
waveforms, respectively, for the EAB macroparameters in Table 34. 

Figure 29. EAB Asynchronous Timing Waveforms
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Table 58. EPF10K70 Device IOE Timing Microparameters Note (1)

Symbol -2 Speed Grade -3 Speed Grade -4 Speed Grade Unit

Min Max Min Max Min Max

tIOD 0.0 0.0 0.0 ns

tIOC 0.4 0.5 0.7 ns

tIOCO 0.4 0.4 0.9 ns

tIOCOMB 0.0 0.0 0.0 ns

tIOSU 4.5 5.0 6.2 ns

tIOH 0.4 0.5 0.7 ns

tIOCLR 0.6 0.7 1.6 ns

tOD1 3.6 4.0 5.0 ns

tOD2 5.6 6.3 7.3 ns

tOD3 6.9 7.7 8.7 ns

tXZ 5.5 6.2 6.8 ns

tZX1 5.5 6.2 6.8 ns

tZX2 7.5 8.5 9.1 ns

tZX3 8.8 9.9 10.5 ns

tINREG 8.0 9.0 10.2 ns

tIOFD 7.2 8.1 10.3 ns

tINCOMB 7.2 8.1 10.3 ns
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Table 87. EPF10K10A Device EAB Internal Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tEABDATA1 3.3 3.9 5.2 ns

tEABDATA2 1.0 1.3 1.7 ns

tEABWE1 2.6 3.1 4.1 ns

tEABWE2 2.7 3.2 4.3 ns

tEABCLK 0.0 0.0 0.0 ns

tEABCO 1.2 1.4 1.8 ns

tEABBYPASS 0.1 0.2 0.2 ns

tEABSU 1.4 1.7 2.2 ns

tEABH 0.1 0.1 0.1 ns

tAA 4.5 5.4 7.3 ns

tWP 2.0 2.4 3.2 ns

tWDSU 0.7 0.8 1.1 ns

tWDH 0.5 0.6 0.7 ns

tWASU 0.6 0.7 0.9 ns

tWAH 0.9 1.1 1.5 ns

tWO 3.3 3.9 5.2 ns

tDD 3.3 3.9 5.2 ns

tEABOUT 0.1 0.1 0.2 ns

tEABCH 3.0 3.5 4.0 ns

tEABCL 3.03 3.5 4.0 ns
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Table 95. EPF10K30A Device EAB Internal Timing Macroparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tEABAA 9.7 11.6 16.2 ns

tEABRCCOMB 9.7 11.6 16.2 ns

tEABRCREG 5.9 7.1 9.7 ns

tEABWP 3.8 4.5 5.9 ns

tEABWCCOMB 4.0 4.7 6.3 ns

tEABWCREG 9.8 11.6 16.6 ns

tEABDD 9.2 11.0 16.1 ns

tEABDATACO 1.7 2.1 3.4 ns

tEABDATASU 2.3 2.7 3.5 ns

tEABDATAH 0.0 0.0 0.0 ns

tEABWESU 3.3 3.9 4.9 ns

tEABWEH 0.0 0.0 0.0 ns

tEABWDSU 3.2 3.8 5.0 ns

tEABWDH 0.0 0.0 0.0 ns

tEABWASU 3.7 4.4 5.1 ns

tEABWAH 0.0 0.0 0.0 ns

tEABWO 6.1 7.3 11.3 ns
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Table 96. EPF10K30A Device Interconnect Timing Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tDIN2IOE 3.9 4.4 5.1 ns

tDIN2LE 1.2 1.5 1.9 ns

tDIN2DATA 3.2 3.6 4.5 ns

tDCLK2IOE 3.0 3.5 4.6 ns

tDCLK2LE 1.2 1.5 1.9 ns

tSAMELAB 0.1 0.1 0.2 ns

tSAMEROW 2.3 2.4 2.7 ns

tSAMECOLUMN 1.3 1.4 1.9 ns

tDIFFROW 3.6 3.8 4.6 ns

tTWOROWS 5.9 6.2 7.3 ns

tLEPERIPH 3.5 3.8 4.1 ns

tLABCARRY 0.3 0.4 0.5 ns

tLABCASC 0.9 1.1 1.4 ns

Table 97. EPF10K30A External Reference Timing Parameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tDRR 11.0 13.0 17.0 ns

tINSU (2), (3) 2.5 3.1 3.9 ns

tINH (3) 0.0 0.0 0.0 ns

tOUTCO (3) 2.0 5.4 2.0 6.2 2.0 8.3 ns

Table 98. EPF10K30A Device External Bidirectional Timing Parameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tINSUBIDIR 4.2 4.9 6.8 ns

tINHBIDIR 0.0 0.0 0.0 ns

tOUTCOBIDIR 2.0 5.4 2.0 6.2 2.0 8.3 ns

tXZBIDIR 6.2 7.5 9.8 ns

tZXBIDIR 6.2 7.5 9.8 ns
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Notes to tables:
(1) All timing parameters are described in Tables 32 through 38 in this data sheet.
(2) Using an LE to register the signal may provide a lower setup time.
(3) This parameter is specified by characterization.

Tables 99 through 105 show EPF10K100A device internal and external 
timing parameters.

Table 99. EPF10K100A Device LE Timing Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tLUT 1.0 1.2 1.4 ns

tCLUT 0.8 0.9 1.1 ns

tRLUT 1.4 1.6 1.9 ns

tPACKED 0.4 0.5 0.5 ns

tEN 0.6 0.7 0.8 ns

tCICO 0.2 0.2 0.3 ns

tCGEN 0.4 0.4 0.6 ns

tCGENR 0.6 0.7 0.8 ns

tCASC 0.7 0.9 1.0 ns

tC 0.9 1.0 1.2 ns

tCO 0.2 0.3 0.3 ns

tCOMB 0.6 0.7 0.8 ns

tSU 0.8 1.0 1.2 ns

tH 0.3 0.5 0.5 ns

tPRE 0.3 0.3 0.4 ns

tCLR 0.3 0.3 0.4 ns

tCH 2.5 3.5 4.0 ns

tCL 2.5 3.5 4.0 ns
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Figure 32. ICCACTIVE vs. Operating Frequency (Part 3 of 3)

Configuration & 
Operation

The FLEX 10K architecture supports several configuration schemes. This 
section summarizes the device operating modes and available device 
configuration schemes. 

f See Application Note 116 (Configuring APEX 20K, FLEX 10K & FLEX 6000 
Devices) for detailed descriptions of device configuration options, device 
configuration pins, and for information on configuring FLEX 10K devices, 
including sample schematics, timing diagrams, and configuration 
parameters.

Operating Modes

The FLEX 10K architecture uses SRAM configuration elements that 
require configuration data to be loaded every time the circuit powers up. 
The process of physically loading the SRAM data into the device is called 
configuration. Before configuration, as VCC rises, the device initiates a 
Power-On Reset (POR). This POR event clears the device and prepares it 
for configuration. The FLEX 10K POR time does not exceed 50 µs.

During initialization, which occurs immediately after configuration, the 
device resets registers, enables I/O pins, and begins to operate as a logic 
device. The I/O pins are tri-stated during power-up, and before and 
during configuration. Together, the configuration and initialization 
processes are called command mode; normal device operation is called user 
mode.
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