



Welcome to **E-XFL.COM** 

# Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

# **Applications of Embedded - FPGAs**

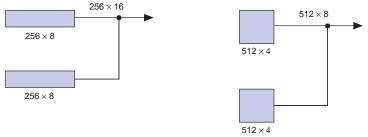
The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

| Details                        |                                                              |
|--------------------------------|--------------------------------------------------------------|
| Product Status                 | Obsolete                                                     |
| Number of LABs/CLBs            | 72                                                           |
| Number of Logic Elements/Cells | 576                                                          |
| Total RAM Bits                 | 6144                                                         |
| Number of I/O                  | 102                                                          |
| Number of Gates                | 31000                                                        |
| Voltage - Supply               | 3V ~ 3.6V                                                    |
| Mounting Type                  | Surface Mount                                                |
| Operating Temperature          | 0°C ~ 70°C (TA)                                              |
| Package / Case                 | 144-LQFP                                                     |
| Supplier Device Package        | 144-TQFP (20x20)                                             |
| Purchase URL                   | https://www.e-xfl.com/product-detail/intel/epf10k10atc144-3n |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The FLEX 10K architecture is similar to that of embedded gate arrays, the fastest-growing segment of the gate array market. As with standard gate arrays, embedded gate arrays implement general logic in a conventional "sea-of-gates" architecture. In addition, embedded gate arrays have dedicated die areas for implementing large, specialized functions. By embedding functions in silicon, embedded gate arrays provide reduced die area and increased speed compared to standard gate arrays. However, embedded megafunctions typically cannot be customized, limiting the designer's options. In contrast, FLEX 10K devices are programmable, providing the designer with full control over embedded megafunctions and general logic while facilitating iterative design changes during debugging.


Each FLEX 10K device contains an embedded array and a logic array. The embedded array is used to implement a variety of memory functions or complex logic functions, such as digital signal processing (DSP), microcontroller, wide-data-path manipulation, and data-transformation functions. The logic array performs the same function as the sea-of-gates in the gate array: it is used to implement general logic, such as counters, adders, state machines, and multiplexers. The combination of embedded and logic arrays provides the high performance and high density of embedded gate arrays, enabling designers to implement an entire system on a single device.

FLEX 10K devices are configured at system power-up with data stored in an Altera serial configuration device or provided by a system controller. Altera offers the EPC1, EPC2, EPC16, and EPC1441 configuration devices, which configure FLEX 10K devices via a serial data stream. Configuration data can also be downloaded from system RAM or from Altera's BitBlaster™ serial download cable or ByteBlasterMV™ parallel port download cable. After a FLEX 10K device has been configured, it can be reconfigured in-circuit by resetting the device and loading new data. Because reconfiguration requires less than 320 ms, real-time changes can be made during system operation.

FLEX 10K devices contain an optimized interface that permits microprocessors to configure FLEX 10K devices serially or in parallel, and synchronously or asynchronously. The interface also enables microprocessors to treat a FLEX 10K device as memory and configure the device by writing to a virtual memory location, making it very easy for the designer to reconfigure the device.

Larger blocks of RAM are created by combining multiple EABs. For example, two  $256 \times 8$  RAM blocks can be combined to form a  $256 \times 16$  RAM block; two  $512 \times 4$  blocks of RAM can be combined to form a  $512 \times 8$  RAM block. See Figure 3.

Figure 3. Examples of Combining EABs



If necessary, all EABs in a device can be cascaded to form a single RAM block. EABs can be cascaded to form RAM blocks of up to 2,048 words without impacting timing. Altera's software automatically combines EABs to meet a designer's RAM specifications.

EABs provide flexible options for driving and controlling clock signals. Different clocks can be used for the EAB inputs and outputs. Registers can be independently inserted on the data input, EAB output, or the address and WE inputs. The global signals and the EAB local interconnect can drive the WE signal. The global signals, dedicated clock pins, and EAB local interconnect can drive the EAB clock signals. Because the LEs drive the EAB local interconnect, the LEs can control the WE signal or the EAB clock signals.

Each EAB is fed by a row interconnect and can drive out to row and column interconnects. Each EAB output can drive up to two row channels and up to two column channels; the unused row channel can be driven by other LEs. This feature increases the routing resources available for EAB outputs. See Figure 4.

During compilation, the Compiler automatically selects the best control signal implementation. Because the clear and preset functions are active-low, the Compiler automatically assigns a logic high to an unused clear or preset.

The clear and preset logic is implemented in one of the following six modes chosen during design entry:

- Asynchronous clear
- Asynchronous preset
- Asynchronous clear and preset
- Asynchronous load with clear
- Asynchronous load with preset
- Asynchronous load without clear or preset

In addition to the six clear and preset modes, FLEX 10K devices provide a chip-wide reset pin that can reset all registers in the device. Use of this feature is set during design entry. In any of the clear and preset modes, the chip-wide reset overrides all other signals. Registers with asynchronous presets may be preset when the chip-wide reset is asserted. Inversion can be used to implement the asynchronous preset. Figure 10 shows examples of how to enter a section of a design for the desired functionality.

| Table 8. EPF10K10, EPF10K20, | Table 8. EPF10K10, EPF10K20, EPF10K30, EPF10K40 & EPF10K50 Peripheral Bus Sources |          |                       |          |                       |  |
|------------------------------|-----------------------------------------------------------------------------------|----------|-----------------------|----------|-----------------------|--|
| Peripheral<br>Control Signal | EPF10K10<br>EPF10K10A                                                             | EPF10K20 | EPF10K30<br>EPF10K30A | EPF10K40 | EPF10K50<br>EPF10K50V |  |
| OE0                          | Row A                                                                             | Row A    | Row A                 | Row A    | Row A                 |  |
| OE1                          | Row A                                                                             | Row B    | Row B                 | Row C    | Row B                 |  |
| OE2                          | Row B                                                                             | Row C    | Row C                 | Row D    | Row D                 |  |
| OE3                          | Row B                                                                             | Row D    | Row D                 | Row E    | Row F                 |  |
| OE4                          | Row C                                                                             | Row E    | Row E                 | Row F    | Row H                 |  |
| OE5                          | Row C                                                                             | Row F    | Row F                 | Row G    | Row J                 |  |
| CLKENA0/CLK0/GLOBAL0         | Row A                                                                             | Row A    | Row A                 | Row B    | Row A                 |  |
| CLKENA1/OE6/GLOBAL1          | Row A                                                                             | Row B    | Row B                 | Row C    | Row C                 |  |
| CLKENA2/CLR0                 | Row B                                                                             | Row C    | Row C                 | Row D    | Row E                 |  |
| CLKENA3/OE7/GLOBAL2          | Row B                                                                             | Row D    | Row D                 | Row E    | Row G                 |  |
| CLKENA4/CLR1                 | Row C                                                                             | Row E    | Row E                 | Row F    | Row I                 |  |
| CLKENA5/CLK1/GLOBAL3         | Row C                                                                             | Row F    | Row F                 | Row H    | Row J                 |  |

| Peripheral<br>Control Signal | EPF10K70 | EPF10K100<br>EPF10K100A | EPF10K130V | EPF10K250A |
|------------------------------|----------|-------------------------|------------|------------|
| OE 0                         | Row A    | Row A                   | Row C      | Row E      |
| OE1                          | Row B    | Row C                   | Row E      | Row G      |
| OE2                          | Row D    | Row E                   | Row G      | Row I      |
| OE3                          | Row I    | Row L                   | Row N      | Row P      |
| OE 4                         | Row G    | Row I                   | Row K      | Row M      |
| OE5                          | Row H    | Row K                   | Row M      | Row O      |
| CLKENA0/CLK0/GLOBAL0         | Row E    | Row F                   | Row H      | Row J      |
| CLKENA1/OE6/GLOBAL1          | Row C    | Row D                   | Row F      | Row H      |
| CLKENA2/CLR0                 | Row B    | Row B                   | Row D      | Row F      |
| CLKENA3/OE7/GLOBAL2          | Row F    | Row H                   | Row J      | Row L      |
| CLKENA4/CLR1                 | Row H    | Row J                   | Row L      | Row N      |
| CLKENA5/CLK1/GLOBAL3         | Row E    | Row G                   | Row I      | Row K      |

Table 12 describes the FLEX 10K device supply voltages and MultiVolt  $\rm I/O$  support levels.

| Devices       | Supply Vo          | oltage (V)        | MultiVolt I/O Sup | olt I/O Support Levels (V) |  |
|---------------|--------------------|-------------------|-------------------|----------------------------|--|
|               | V <sub>CCINT</sub> | V <sub>CCIO</sub> | Input             | Output                     |  |
| FLEX 10K (1)  | 5.0                | 5.0               | 3.3 or 5.0        | 5.0                        |  |
|               | 5.0                | 3.3               | 3.3 or 5.0        | 3.3 or 5.0                 |  |
| EPF10K50V (1) | 3.3                | 3.3               | 3.3 or 5.0        | 3.3 or 5.0                 |  |
| EPF10K130V    | 3.3                | 3.3               | 3.3 or 5.0        | 3.3 or 5.0                 |  |
| FLEX 10KA (1) | 3.3                | 3.3               | 2.5, 3.3, or 5.0  | 3.3 or 5.0                 |  |
|               | 3.3                | 2.5               | 2.5, 3.3, or 5.0  | 2.5                        |  |

#### Note

(1) 240-pin QFP packages do not support the MultiVolt I/O features, so they do not have separate V<sub>CCIO</sub> pins.

# Power Sequencing & Hot-Socketing

Because FLEX 10K devices can be used in a multi-voltage environment, they have been designed specifically to tolerate any possible power-up sequence. The  $V_{\rm CCIO}$  and  $V_{\rm CCINT}$  power supplies can be powered in any order.

Signals can be driven into FLEX 10KA devices before and during power up without damaging the device. Additionally, FLEX 10KA devices do not drive out during power up. Once operating conditions are reached, FLEX 10KA devices operate as specified by the user.

IEEE Std. 1149.1 (JTAG) Boundary-Scan Support All FLEX 10K devices provide JTAG BST circuitry that complies with the IEEE Std. 1149.1-1990 specification. All FLEX 10K devices can also be configured using the JTAG pins through the BitBlaster serial download cable, or ByteBlasterMV parallel port download cable, or via hardware that uses the Jam<sup>TM</sup> programming and test language. JTAG BST can be performed before or after configuration, but not during configuration. FLEX 10K devices support the JTAG instructions shown in Table 13.

| Table 1          | 9. FLEX 10K 5.0-V Devi                   | ce DC Operating Conditions No                                | tes (5), (6)            |     |                          |      |
|------------------|------------------------------------------|--------------------------------------------------------------|-------------------------|-----|--------------------------|------|
| Symbol           | Parameter                                | Conditions                                                   | Min                     | Тур | Max                      | Unit |
| V <sub>IH</sub>  | High-level input voltage                 |                                                              | 2.0                     |     | V <sub>CCINT</sub> + 0.5 | V    |
| V <sub>IL</sub>  | Low-level input voltage                  |                                                              | -0.5                    |     | 0.8                      | V    |
| V <sub>OH</sub>  | 5.0-V high-level TTL output voltage      | $I_{OH} = -4 \text{ mA DC}, V_{CCIO} = 4.75 \text{ V}$ (7)   | 2.4                     |     |                          | V    |
|                  | 3.3-V high-level TTL output voltage      | $I_{OH} = -4 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V}$ (7)   | 2.4                     |     |                          | V    |
|                  | 3.3-V high-level CMOS output voltage     | $I_{OH} = -0.1 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V}$ (7) | V <sub>CCIO</sub> - 0.2 |     |                          | V    |
| V <sub>OL</sub>  | 5.0-V low-level TTL output voltage       | $I_{OL}$ = 12 mA DC, $V_{CCIO}$ = 4.75 V (8)                 |                         |     | 0.45                     | V    |
|                  | 3.3-V low-level TTL output voltage       | $I_{OL}$ = 12 mA DC, $V_{CCIO}$ = 3.00 V (8)                 |                         |     | 0.45                     | V    |
|                  | 3.3-V low-level CMOS output voltage      | $I_{OL} = 0.1 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V}$ (8)  |                         |     | 0.2                      | V    |
| I <sub>I</sub>   | Input pin leakage current                | V <sub>I</sub> = V <sub>CC</sub> or ground<br>(9)            | -10                     |     | 10                       | μΑ   |
| I <sub>OZ</sub>  | Tri-stated I/O pin leakage current       | $V_O = V_{CC}$ or ground (9)                                 | -40                     |     | 40                       | μΑ   |
| I <sub>CC0</sub> | V <sub>CC</sub> supply current (standby) | V <sub>I</sub> = ground, no load                             |                         | 0.5 | 10                       | mA   |

| Table 2            | O. 5.0-V Device Capacitance of           | EPF10K10, EPF10K20 & EPF10K30       | O Devices | Note (10) |      |
|--------------------|------------------------------------------|-------------------------------------|-----------|-----------|------|
| Symbol             | Parameter                                | Conditions                          | Min       | Max       | Unit |
| C <sub>IN</sub>    | Input capacitance                        | V <sub>IN</sub> = 0 V, f = 1.0 MHz  |           | 8         | pF   |
| C <sub>INCLK</sub> | Input capacitance on dedicated clock pin | V <sub>IN</sub> = 0 V, f = 1.0 MHz  |           | 12        | pF   |
| C <sub>OUT</sub>   | Output capacitance                       | V <sub>OUT</sub> = 0 V, f = 1.0 MHz |           | 8         | pF   |

| Table 2            | 1. 5.0-V Device Capacitance of I         | EPF10K40, EPF10K50, EPF10K70 &      | EPF10K100 D | <b>Devices</b> Note | (10) |
|--------------------|------------------------------------------|-------------------------------------|-------------|---------------------|------|
| Symbol             | Parameter                                | Conditions                          | Min         | Max                 | Unit |
| C <sub>IN</sub>    | Input capacitance                        | V <sub>IN</sub> = 0 V, f = 1.0 MHz  |             | 10                  | pF   |
| C <sub>INCLK</sub> | Input capacitance on dedicated clock pin | V <sub>IN</sub> = 0 V, f = 1.0 MHz  |             | 15                  | pF   |
| C <sub>OUT</sub>   | Output capacitance                       | V <sub>OUT</sub> = 0 V, f = 1.0 MHz |             | 10                  | pF   |

Figure 21 shows the typical output drive characteristics of EPF10K50V and EPF10K130V devices.

Typical I<sub>O</sub>
Output
Current (mA)

40

V<sub>CC</sub> = 3.3 V
Room Temperature

1
2

V<sub>O</sub> Output Voltage (V)

Figure 21. Output Drive Characteristics of EPF10K50V & EPF10K130V Devices

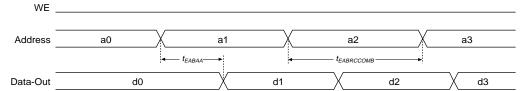
Tables 26 through 31 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for 3.3-V FLEX 10K devices.

| Table 2          | 6. FLEX 10KA 3.3-V Device A | bsolute Maximum Ratings Note ( | (1)  |      |      |
|------------------|-----------------------------|--------------------------------|------|------|------|
| Symbol           | Parameter                   | Conditions                     | Min  | Max  | Unit |
| V <sub>CC</sub>  | Supply voltage              | With respect to ground (2)     | -0.5 | 4.6  | V    |
| V <sub>I</sub>   | DC input voltage            |                                | -2.0 | 5.75 | V    |
| I <sub>OUT</sub> | DC output current, per pin  |                                | -25  | 25   | mA   |
| T <sub>STG</sub> | Storage temperature         | No bias                        | -65  | 150  | ° C  |
| T <sub>AMB</sub> | Ambient temperature         | Under bias                     | -65  | 135  | °C   |
| TJ               | Junction temperature        | Ceramic packages, under bias   |      | 150  | ° C  |
|                  |                             | PQFP, TQFP, RQFP, and BGA      |      | 135  | ° C  |
|                  |                             | packages, under bias           |      |      |      |

#### Notes to tables:

- Microparameters are timing delays contributed by individual architectural elements. These parameters cannot be measured explicitly.
- (2) Operating conditions:  $V_{CCIO} = 5.0 \text{ V} \pm 5\%$  for commercial use in FLEX 10K devices.

 $V_{CCIO}$  = 5.0 V ± 10% for industrial use in FLEX 10K devices.


 $V_{CCIO} = 3.3 \text{ V} \pm 10\%$  for commercial or industrial use in FLEX 10KA devices.

- (3) Operating conditions:  $V_{CCIO} = 3.3 \text{ V} \pm 10\%$  for commercial or industrial use in FLEX 10K devices.
  - $V_{CCIO}$  = 2.5 V ± 0.2 V for commercial or industrial use in FLEX 10KA devices.
- (4) Operating conditions:  $V_{CCIO} = 2.5 \text{ V}$ , 3.3 V, or 5.0 V.
- (5) Because the RAM in the EAB is self-timed, this parameter can be ignored when the WE signal is registered.
- (6) EAB macroparameters are internal parameters that can simplify predicting the behavior of an EAB at its boundary; these parameters are calculated by summing selected microparameters.
- (7) These parameters are worst-case values for typical applications. Post-compilation timing simulation and timing analysis are required to determine actual worst-case performance.
- (8) External reference timing parameters are factory-tested, worst-case values specified by Altera. A representative subset of signal paths is tested to approximate typical device applications.
- (9) Contact Altera Applications for test circuit specifications and test conditions.
- (10) These timing parameters are sample-tested only.

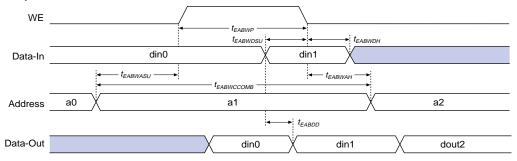

Figures 29 and 30 show the asynchronous and synchronous timing waveforms, respectively, for the EAB macroparameters in Table 34.

Figure 29. EAB Asynchronous Timing Waveforms

## **EAB Asynchronous Read**



# **EAB Asynchronous Write**



Tables 39 through 47 show EPF10K10 and EPF10K20 device internal and external timing parameters.

| Symbol              | -3 Speed Grade |     | -4 Spee | d Grade | Unit |
|---------------------|----------------|-----|---------|---------|------|
|                     | Min            | Max | Min     | Max     |      |
| $t_{LUT}$           |                | 1.4 |         | 1.7     | ns   |
| t <sub>CLUT</sub>   |                | 0.6 |         | 0.7     | ns   |
| t <sub>RLUT</sub>   |                | 1.5 |         | 1.9     | ns   |
| t <sub>PACKED</sub> |                | 0.6 |         | 0.9     | ns   |
| $t_{EN}$            |                | 1.0 |         | 1.2     | ns   |
| t <sub>CICO</sub>   |                | 0.2 |         | 0.3     | ns   |
| t <sub>CGEN</sub>   |                | 0.9 |         | 1.2     | ns   |
| t <sub>CGENR</sub>  |                | 0.9 |         | 1.2     | ns   |
| t <sub>CASC</sub>   |                | 0.8 |         | 0.9     | ns   |
| $t_{\mathbb{C}}$    |                | 1.3 |         | 1.5     | ns   |
| $t_{CO}$            |                | 0.9 |         | 1.1     | ns   |
| $t_{\text{COMB}}$   |                | 0.5 |         | 0.6     | ns   |
| t <sub>SU</sub>     | 1.3            |     | 2.5     |         | ns   |
| $t_H$               | 1.4            |     | 1.6     |         | ns   |
| t <sub>PRE</sub>    |                | 1.0 |         | 1.2     | ns   |
| t <sub>CLR</sub>    |                | 1.0 |         | 1.2     | ns   |
| t <sub>CH</sub>     | 4.0            |     | 4.0     |         | ns   |
| $t_{CL}$            | 4.0            |     | 4.0     |         | ns   |

| Symbol              | -3 Speed Grade |     | -4 Spee | d Grade | Unit |
|---------------------|----------------|-----|---------|---------|------|
|                     | Min            | Max | Min     | Max     | 1    |
| $t_{IOD}$           |                | 1.3 |         | 1.6     | ns   |
| t <sub>IOC</sub>    |                | 0.5 |         | 0.7     | ns   |
| t <sub>IOCO</sub>   |                | 0.2 |         | 0.2     | ns   |
| t <sub>IOCOMB</sub> |                | 0.0 |         | 0.0     | ns   |
| t <sub>IOSU</sub>   | 2.8            |     | 3.2     |         | ns   |
| t <sub>IOH</sub>    | 1.0            |     | 1.2     |         | ns   |
| t <sub>IOCLR</sub>  |                | 1.0 |         | 1.2     | ns   |
| t <sub>OD1</sub>    |                | 2.6 |         | 3.5     | ns   |
| $t_{\text{OD2}}$    |                | 4.9 |         | 6.4     | ns   |
| $t_{OD3}$           |                | 6.3 |         | 8.2     | ns   |
| $t_{XZ}$            |                | 4.5 |         | 5.4     | ns   |
| t <sub>ZX1</sub>    |                | 4.5 |         | 5.4     | ns   |
| t <sub>ZX2</sub>    |                | 6.8 |         | 8.3     | ns   |
| t <sub>ZX3</sub>    |                | 8.2 |         | 10.1    | ns   |
| t <sub>INREG</sub>  |                | 6.0 |         | 7.5     | ns   |
| t <sub>IOFD</sub>   |                | 3.1 |         | 3.5     | ns   |
| t <sub>INCOMB</sub> |                | 3.1 |         | 3.5     | ns   |

| Symbol                   | -3 Spee | d Grade | -4 Spee | d Grade | Unit |
|--------------------------|---------|---------|---------|---------|------|
|                          | Min     | Max     | Min     | Max     |      |
| t <sub>DIN2IOE</sub>     |         | 4.8     |         | 6.2     | ns   |
| t <sub>DIN2LE</sub>      |         | 2.6     |         | 3.8     | ns   |
| t <sub>DIN2DATA</sub>    |         | 4.3     |         | 5.2     | ns   |
| t <sub>DCLK2IOE</sub>    |         | 3.4     |         | 4.0     | ns   |
| t <sub>DCLK2LE</sub>     |         | 2.6     |         | 3.8     | ns   |
| t <sub>SAMELAB</sub>     |         | 0.6     |         | 0.6     | ns   |
| t <sub>SAMEROW</sub>     |         | 3.6     |         | 3.8     | ns   |
| t <sub>SAME</sub> COLUMN |         | 0.9     |         | 1.1     | ns   |
| t <sub>DIFFROW</sub>     |         | 4.5     |         | 4.9     | ns   |
| t <sub>TWOROWS</sub>     |         | 8.1     |         | 8.7     | ns   |
| t <sub>LEPERIPH</sub>    |         | 3.3     |         | 3.9     | ns   |
| t <sub>LABCARRY</sub>    |         | 0.5     |         | 0.8     | ns   |
| t <sub>LABCASC</sub>     |         | 2.7     |         | 3.0     | ns   |

| Symbol                  | -3 Spee | d Grade | -4 Spee | d Grade | Unit |
|-------------------------|---------|---------|---------|---------|------|
|                         | Min     | Max     | Min     | Max     |      |
| t <sub>DIN2IOE</sub>    |         | 5.2     |         | 6.6     | ns   |
| t <sub>DIN2LE</sub>     |         | 2.6     |         | 3.8     | ns   |
| t <sub>DIN2DATA</sub>   |         | 4.3     |         | 5.2     | ns   |
| t <sub>DCLK2IOE</sub>   |         | 4.3     |         | 4.0     | ns   |
| t <sub>DCLK2LE</sub>    |         | 2.6     |         | 3.8     | ns   |
| t <sub>SAMELAB</sub>    |         | 0.6     |         | 0.6     | ns   |
| t <sub>SAMEROW</sub>    |         | 3.7     |         | 3.9     | ns   |
| t <sub>SAMECOLUMN</sub> |         | 1.4     |         | 1.6     | ns   |
| t <sub>DIFFROW</sub>    |         | 5.1     |         | 5.5     | ns   |
| t <sub>TWOROWS</sub>    |         | 8.8     |         | 9.4     | ns   |
| t <sub>LEPERIPH</sub>   |         | 4.7     |         | 5.6     | ns   |
| t <sub>LABCARRY</sub>   |         | 0.5     |         | 0.8     | ns   |
| t <sub>LABCASC</sub>    |         | 2.7     |         | 3.0     | ns   |

| Symbol                 | -2 Spee | d Grade | -3 Spee | ed Grade | -4 Spe | ed Grade | Unit |
|------------------------|---------|---------|---------|----------|--------|----------|------|
|                        | Min     | Max     | Min     | Max      | Min    | Max      |      |
| t <sub>EABDATA1</sub>  |         | 1.3     |         | 1.5      |        | 1.9      | ns   |
| t <sub>EABDATA2</sub>  |         | 4.3     |         | 4.8      |        | 6.0      | ns   |
| t <sub>EABWE1</sub>    |         | 0.9     |         | 1.0      |        | 1.2      | ns   |
| t <sub>EABWE2</sub>    |         | 4.5     |         | 5.0      |        | 6.2      | ns   |
| t <sub>EABCLK</sub>    |         | 0.9     |         | 1.0      |        | 2.2      | ns   |
| t <sub>EABCO</sub>     |         | 0.4     |         | 0.5      |        | 0.6      | ns   |
| t <sub>EABBYPASS</sub> |         | 1.3     |         | 1.5      |        | 1.9      | ns   |
| t <sub>EABSU</sub>     | 1.3     |         | 1.5     |          | 1.8    |          | ns   |
| t <sub>EABH</sub>      | 1.8     |         | 2.0     |          | 2.5    |          | ns   |
| $t_{AA}$               |         | 7.8     |         | 8.7      |        | 10.7     | ns   |
| $t_{WP}$               | 5.2     |         | 5.8     |          | 7.2    |          | ns   |
| t <sub>WDSU</sub>      | 1.4     |         | 1.6     |          | 2.0    |          | ns   |
| t <sub>WDH</sub>       | 0.3     |         | 0.3     |          | 0.4    |          | ns   |
| t <sub>WASU</sub>      | 0.4     |         | 0.5     |          | 0.6    |          | ns   |
| t <sub>WAH</sub>       | 0.9     |         | 1.0     |          | 1.2    |          | ns   |
| $t_{WO}$               |         | 4.5     |         | 5.0      |        | 6.2      | ns   |
| $t_{DD}$               |         | 4.5     |         | 5.0      |        | 6.2      | ns   |
| t <sub>EABOUT</sub>    |         | 0.4     |         | 0.5      |        | 0.6      | ns   |
| t <sub>EABCH</sub>     | 4.0     |         | 4.0     |          | 4.0    |          | ns   |
| t <sub>EABCL</sub>     | 5.2     |         | 5.8     |          | 7.2    |          | ns   |

## Notes to tables:

- (1) All timing parameters are described in Tables 32 through 38 in this data sheet.
- (2) Using an LE to register the signal may provide a lower setup time.
- (3) This parameter is specified by characterization.

Tables  $64\,\mathrm{through}\,70\,\mathrm{show}\,EPF10K100\,\mathrm{device}$  internal and external timing parameters.

| Table 64. EPF10K10  | 0 Device LE Ti | ming Microp | arameters | Note (1) | )      |                |    |  |
|---------------------|----------------|-------------|-----------|----------|--------|----------------|----|--|
| Symbol              | -3DX Sp        | eed Grade   | -3 Spe    | ed Grade | -4 Spe | -4 Speed Grade |    |  |
|                     | Min            | Max         | Min       | Max      | Min    | Max            |    |  |
| $t_{LUT}$           |                | 1.5         |           | 1.5      |        | 2.0            | ns |  |
| t <sub>CLUT</sub>   |                | 0.4         |           | 0.4      |        | 0.5            | ns |  |
| t <sub>RLUT</sub>   |                | 1.6         |           | 1.6      |        | 2.0            | ns |  |
| t <sub>PACKED</sub> |                | 0.9         |           | 0.9      |        | 1.3            | ns |  |
| $t_{EN}$            |                | 0.9         |           | 0.9      |        | 1.2            | ns |  |
| tcico               |                | 0.2         |           | 0.2      |        | 0.3            | ns |  |
| t <sub>CGEN</sub>   |                | 1.1         |           | 1.1      |        | 1.4            | ns |  |
| t <sub>CGENR</sub>  |                | 1.2         |           | 1.2      |        | 1.5            | ns |  |
| t <sub>CASC</sub>   |                | 1.1         |           | 1.1      |        | 1.3            | ns |  |
| $t_{\mathbb{C}}$    |                | 0.8         |           | 0.8      |        | 1.0            | ns |  |
| $t_{\rm CO}$        |                | 1.0         |           | 1.0      |        | 1.4            | ns |  |
| t <sub>COMB</sub>   |                | 0.5         |           | 0.5      |        | 0.7            | ns |  |
| $t_{SU}$            | 2.1            |             | 2.1       |          | 2.6    |                | ns |  |
| t <sub>H</sub>      | 2.3            |             | 2.3       |          | 3.1    |                | ns |  |
| t <sub>PRE</sub>    |                | 1.0         |           | 1.0      |        | 1.4            | ns |  |
| t <sub>CLR</sub>    |                | 1.0         |           | 1.0      |        | 1.4            | ns |  |
| t <sub>CH</sub>     | 4.0            |             | 4.0       |          | 4.0    |                | ns |  |
| $t_{CL}$            | 4.0            |             | 4.0       |          | 4.0    |                | ns |  |

Tables 71 through 77 show EPF10K50V device internal and external timing parameters.

| Symbol              | -1 Spee | ed Grade | -2 Spee | -2 Speed Grade |     | -3 Speed Grade |     | -4 Speed Grade |    |
|---------------------|---------|----------|---------|----------------|-----|----------------|-----|----------------|----|
|                     | Min     | Max      | Min     | Max            | Min | Max            | Min | Max            |    |
| $t_{LUT}$           |         | 0.9      |         | 1.0            |     | 1.3            |     | 1.6            | ns |
| t <sub>CLUT</sub>   |         | 0.1      |         | 0.5            |     | 0.6            |     | 0.6            | ns |
| t <sub>RLUT</sub>   |         | 0.5      |         | 8.0            |     | 0.9            |     | 1.0            | ns |
| t <sub>PACKED</sub> |         | 0.4      |         | 0.4            |     | 0.5            |     | 0.7            | ns |
| $t_{EN}$            |         | 0.7      |         | 0.9            |     | 1.1            |     | 1.4            | ns |
| t <sub>CICO</sub>   |         | 0.2      |         | 0.2            |     | 0.2            |     | 0.3            | ns |
| t <sub>CGEN</sub>   |         | 0.8      |         | 0.7            |     | 8.0            |     | 1.2            | ns |
| t <sub>CGENR</sub>  |         | 0.4      |         | 0.3            |     | 0.3            |     | 0.4            | ns |
| t <sub>CASC</sub>   |         | 0.7      |         | 0.7            |     | 8.0            |     | 0.9            | ns |
| $t_{C}$             |         | 0.3      |         | 1.0            |     | 1.3            |     | 1.5            | ns |
| $t_{CO}$            |         | 0.5      |         | 0.7            |     | 0.9            |     | 1.0            | ns |
| $t_{\text{COMB}}$   |         | 0.4      |         | 0.4            |     | 0.5            |     | 0.6            | ns |
| t <sub>SU</sub>     | 0.8     |          | 1.6     |                | 2.2 |                | 2.5 |                | ns |
| t <sub>H</sub>      | 0.5     |          | 0.8     |                | 1.0 |                | 1.4 |                | ns |
| t <sub>PRE</sub>    |         | 0.8      |         | 0.4            |     | 0.5            |     | 0.5            | ns |
| t <sub>CLR</sub>    |         | 0.8      |         | 0.4            |     | 0.5            |     | 0.5            | ns |
| t <sub>CH</sub>     | 2.0     |          | 4.0     |                | 4.0 |                | 4.0 |                | ns |
| t <sub>CL</sub>     | 2.0     |          | 4.0     |                | 4.0 |                | 4.0 |                | ns |

| Table 72. EPI       | F10K50V D | evice IOE T | iming Mic | roparamet | ers No  | ote (1)  |         |         |      |
|---------------------|-----------|-------------|-----------|-----------|---------|----------|---------|---------|------|
| Symbol              | -1 Spec   | ed Grade    | -2 Spee   | d Grade   | -3 Spee | ed Grade | -4 Spee | d Grade | Unit |
|                     | Min       | Max         | Min       | Max       | Min     | Max      | Min     | Max     |      |
| $t_{IOD}$           |           | 1.2         |           | 1.6       |         | 1.9      |         | 2.1     | ns   |
| $t_{IOC}$           |           | 0.3         |           | 0.4       |         | 0.5      |         | 0.5     | ns   |
| t <sub>IOCO</sub>   |           | 0.3         |           | 0.3       |         | 0.4      |         | 0.4     | ns   |
| t <sub>IOCOMB</sub> |           | 0.0         |           | 0.0       |         | 0.0      |         | 0.0     | ns   |
| $t_{IOSU}$          | 2.8       |             | 2.8       |           | 3.4     |          | 3.9     |         | ns   |
| t <sub>IOH</sub>    | 0.7       |             | 0.8       |           | 1.0     |          | 1.4     |         | ns   |
| t <sub>IOCLR</sub>  |           | 0.5         |           | 0.6       |         | 0.7      |         | 0.7     | ns   |
| t <sub>OD1</sub>    |           | 2.8         |           | 3.2       |         | 3.9      |         | 4.7     | ns   |
| t <sub>OD2</sub>    |           | _           |           | _         |         | _        |         | _       | ns   |
| t <sub>OD3</sub>    |           | 6.5         |           | 6.9       |         | 7.6      |         | 8.4     | ns   |
| $t_{XZ}$            |           | 2.8         |           | 3.1       |         | 3.8      |         | 4.6     | ns   |
| $t_{ZX1}$           |           | 2.8         |           | 3.1       |         | 3.8      |         | 4.6     | ns   |
| $t_{ZX2}$           |           | _           |           | _         |         | _        |         | _       | ns   |
| $t_{ZX3}$           |           | 6.5         |           | 6.8       |         | 7.5      |         | 8.3     | ns   |
| t <sub>INREG</sub>  |           | 5.0         |           | 5.7       |         | 7.0      |         | 9.0     | ns   |
| t <sub>IOFD</sub>   |           | 1.5         |           | 1.9       |         | 2.3      |         | 2.7     | ns   |
| t <sub>INCOMB</sub> |           | 1.5         |           | 1.9       |         | 2.3      |         | 2.7     | ns   |

| Symbol                   | -1 Speed Grade |     | -2 Spee | d Grade | -3 Spee | ed Grade | -4 Spee | d Grade | Unit |
|--------------------------|----------------|-----|---------|---------|---------|----------|---------|---------|------|
| •,                       | Min            | Max | Min     | Max     | Min     | Max      | Min     | Max     | -    |
| t <sub>DIN2IOE</sub>     |                | 4.7 |         | 6.0     |         | 7.1      |         | 8.2     | ns   |
| t <sub>DIN2LE</sub>      |                | 2.5 |         | 2.6     |         | 3.1      |         | 3.9     | ns   |
| t <sub>DIN2DATA</sub>    |                | 4.4 |         | 5.9     |         | 6.8      |         | 7.7     | ns   |
| t <sub>DCLK2IOE</sub>    |                | 2.5 |         | 3.9     |         | 4.7      |         | 5.5     | ns   |
| t <sub>DCLK2LE</sub>     |                | 2.5 |         | 2.6     |         | 3.1      |         | 3.9     | ns   |
| t <sub>SAMELAB</sub>     |                | 0.2 |         | 0.2     |         | 0.3      |         | 0.3     | ns   |
| t <sub>SAMEROW</sub>     |                | 2.8 |         | 3.0     |         | 3.2      |         | 3.4     | ns   |
| t <sub>SAME</sub> COLUMN |                | 3.0 |         | 3.2     |         | 3.4      |         | 3.6     | ns   |
| t <sub>DIFFROW</sub>     |                | 5.8 |         | 6.2     |         | 6.6      |         | 7.0     | ns   |
| t <sub>TWOROWS</sub>     |                | 8.6 |         | 9.2     |         | 9.8      |         | 10.4    | ns   |
| t <sub>LEPERIPH</sub>    |                | 4.5 |         | 5.5     |         | 6.1      |         | 7.0     | ns   |
| t <sub>LABCARRY</sub>    |                | 0.3 |         | 0.4     |         | 0.5      |         | 0.7     | ns   |
| t <sub>LABCASC</sub>     |                | 0.0 |         | 1.3     |         | 1.6      |         | 2.0     | ns   |

| Table 76. EPF              | 10K50V De | vice Exter | nal Timing | Paramete | ers Not | e (1)   |         |         |      |
|----------------------------|-----------|------------|------------|----------|---------|---------|---------|---------|------|
| Symbol                     | -1 Spee   | d Grade    | -2 Spee    | d Grade  | -3 Spee | d Grade | -4 Spee | d Grade | Unit |
|                            | Min       | Max        | Min        | Max      | Min     | Max     | Min     | Max     |      |
| t <sub>DRR</sub>           |           | 11.2       |            | 14.0     |         | 17.2    |         | 21.1    | ns   |
| t <sub>INSU</sub> (2), (3) | 5.5       |            | 4.2        |          | 5.2     |         | 6.9     |         | ns   |
| t <sub>INH</sub> (3)       | 0.0       |            | 0.0        |          | 0.0     |         | 0.0     |         | ns   |
| t <sub>оитсо</sub> (3)     | 2.0       | 5.9        | 2.0        | 7.8      | 2.0     | 9.5     | 2.0     | 11.1    | ns   |

| Table 77. EPF           | 10K50V De | vice Exter    | nal Bidired | ctional Tim | ing Param      | neters | Vote (1) |                |    |
|-------------------------|-----------|---------------|-------------|-------------|----------------|--------|----------|----------------|----|
| Symbol                  | -1 Spee   | 1 Speed Grade |             | d Grade     | -3 Speed Grade |        | -4 Spee  | -4 Speed Grade |    |
|                         | Min       | Max           | Min         | Max         | Min            | Max    | Min      | Max            |    |
| t <sub>INSUBIDIR</sub>  | 2.0       |               | 2.8         |             | 3.5            |        | 4.1      |                | ns |
| t <sub>INHBIDIR</sub>   | 0.0       |               | 0.0         |             | 0.0            |        | 0.0      |                | ns |
| t <sub>OUTCOBIDIR</sub> | 2.0       | 5.9           | 2.0         | 7.8         | 2.0            | 9.5    | 2.0      | 11.1           | ns |
| t <sub>XZBIDIR</sub>    |           | 8.0           |             | 9.8         |                | 11.8   |          | 14.3           | ns |
| t <sub>ZXBIDIR</sub>    |           | 8.0           |             | 9.8         |                | 11.8   |          | 14.3           | ns |

| Symbol                 | -2 Spee | d Grade | -3 Spee | ed Grade | -4 Spec | Unit |    |
|------------------------|---------|---------|---------|----------|---------|------|----|
|                        | Min     | Max     | Min     | Max      | Min     | Max  |    |
| t <sub>EABAA</sub>     |         | 11.2    |         | 14.2     |         | 14.2 | ns |
| t <sub>EABRCCOMB</sub> | 11.1    |         | 14.2    |          | 14.2    |      | ns |
| t <sub>EABRCREG</sub>  | 8.5     |         | 10.8    |          | 10.8    |      | ns |
| t <sub>EABWP</sub>     | 3.7     |         | 4.7     |          | 4.7     |      | ns |
| t <sub>EABWCCOMB</sub> | 7.6     |         | 9.7     |          | 9.7     |      | ns |
| t <sub>EABWCREG</sub>  | 14.0    |         | 17.8    |          | 17.8    |      | ns |
| t <sub>EABDD</sub>     |         | 11.1    |         | 14.2     |         | 14.2 | ns |
| t <sub>EABDATACO</sub> |         | 3.6     |         | 4.6      |         | 4.6  | ns |
| t <sub>EABDATASU</sub> | 4.4     |         | 5.6     |          | 5.6     |      | ns |
| t <sub>EABDATAH</sub>  | 0.0     |         | 0.0     |          | 0.0     |      | ns |
| t <sub>EABWESU</sub>   | 4.4     |         | 5.6     |          | 5.6     |      | ns |
| t <sub>EABWEH</sub>    | 0.0     |         | 0.0     |          | 0.0     |      | ns |
| t <sub>EABWDSU</sub>   | 4.6     |         | 5.9     |          | 5.9     |      | ns |
| t <sub>EABWDH</sub>    | 0.0     |         | 0.0     |          | 0.0     |      | ns |
| t <sub>EABWASU</sub>   | 3.9     |         | 5.0     |          | 5.0     |      | ns |
| t <sub>EABWAH</sub>    | 0.0     |         | 0.0     |          | 0.0     |      | ns |
| t <sub>EABWO</sub>     |         | 11.1    |         | 14.2     |         | 14.2 | ns |

### Notes to tables:

- (1) All timing parameters are described in Tables 32 through 38 in this data sheet.
- (2) Using an LE to register the signal may provide a lower setup time.
- (3) This parameter is specified by characterization.

Tables 85 through 91 show EPF10K10A device internal and external timing parameters.

| Cumbal              | 1 Snoo  | d Grade | 2 Snoo  | d Grado | 2 Snor  | ed Grade | Unit  |
|---------------------|---------|---------|---------|---------|---------|----------|-------|
| Symbol              | -1 Shee | u Graue | -2 Spec | d Grade | -o oper | eu Graue | UIIII |
|                     | Min     | Max     | Min     | Max     | Min     | Max      |       |
| t <sub>LUT</sub>    |         | 0.9     |         | 1.2     |         | 1.6      | ns    |
| t <sub>CLUT</sub>   |         | 1.2     |         | 1.4     |         | 1.9      | ns    |
| t <sub>RLUT</sub>   |         | 1.9     |         | 2.3     |         | 3.0      | ns    |
| t <sub>PACKED</sub> |         | 0.6     |         | 0.7     |         | 0.9      | ns    |
| t <sub>EN</sub>     |         | 0.5     |         | 0.6     |         | 0.8      | ns    |
| t <sub>CICO</sub>   | _       | 02      |         | 0.3     |         | 0.4      | ns    |
| t <sub>CGEN</sub>   | _       | 0.7     |         | 0.9     |         | 1.1      | ns    |
| t <sub>CGENR</sub>  |         | 0.7     |         | 0.9     |         | 1.1      | ns    |
| t <sub>CASC</sub>   |         | 1.0     |         | 1.2     |         | 1.7      | ns    |
| t <sub>C</sub>      |         | 1.2     |         | 1.4     |         | 1.9      | ns    |
| $t_{\rm CO}$        |         | 0.5     |         | 0.6     |         | 0.8      | ns    |
| t <sub>COMB</sub>   |         | 0.5     |         | 0.6     |         | 0.8      | ns    |
| t <sub>SU</sub>     | 1.1     |         | 1.3     |         | 1.7     |          | ns    |
| t <sub>H</sub>      | 0.6     |         | 0.7     |         | 0.9     |          | ns    |
| t <sub>PRE</sub>    |         | 0.5     |         | 0.6     | _       | 0.9      | ns    |
| t <sub>CLR</sub>    |         | 0.5     |         | 0.6     |         | 0.9      | ns    |
| t <sub>CH</sub>     | 3.0     |         | 3.5     |         | 4.0     |          | ns    |
| t <sub>CL</sub>     | 3.0     |         | 3.5     |         | 4.0     |          | ns    |

| Symbol              | -1 Spee | d Grade | -2 Spee | d Grade | -3 Spee | Unit |    |
|---------------------|---------|---------|---------|---------|---------|------|----|
|                     | Min     | Max     | Min     | Max     | Min     | Max  |    |
|                     |         | 1.3     |         | 1.5     |         | 2.0  | ns |
| ioc                 |         | 0.2     |         | 0.3     |         | 0.3  | ns |
| ioco                |         | 0.2     |         | 0.3     |         | 0.4  | ns |
| <sup>t</sup> іосомв |         | 0.6     |         | 0.7     |         | 0.9  | ns |
| t <sub>iosu</sub>   | 0.8     |         | 1.0     |         | 1.3     |      | ns |

| Symbol              | -1 Spee | d Grade | -2 Spee | d Grade | -3 Spee | ed Grade | Unit |
|---------------------|---------|---------|---------|---------|---------|----------|------|
|                     | Min     | Max     | Min     | Max     | Min     | Max      |      |
| $t_{IOD}$           |         | 2.5     |         | 2.9     |         | 3.4      | ns   |
| $t_{IOC}$           |         | 0.3     |         | 0.3     |         | 0.4      | ns   |
| $t_{IOCO}$          |         | 0.2     |         | 0.2     |         | 0.3      | ns   |
| $t_{IOCOMB}$        |         | 0.5     |         | 0.6     |         | 0.7      | ns   |
| $t_{IOSU}$          | 1.3     |         | 1.7     |         | 1.8     |          | ns   |
| $t_{IOH}$           | 0.2     |         | 0.2     |         | 0.3     |          | ns   |
| $t_{IOCLR}$         |         | 1.0     |         | 1.2     |         | 1.4      | ns   |
| $t_{OD1}$           |         | 2.2     |         | 2.6     |         | 3.0      | ns   |
| $t_{OD2}$           |         | 4.5     |         | 5.3     |         | 6.1      | ns   |
| t <sub>OD3</sub>    |         | 6.8     |         | 7.9     |         | 9.3      | ns   |
| $t_{XZ}$            |         | 2.7     |         | 3.1     |         | 3.7      | ns   |
| t <sub>ZX1</sub>    |         | 2.7     |         | 3.1     |         | 3.7      | ns   |
| $t_{ZX2}$           |         | 5.0     |         | 5.8     |         | 6.8      | ns   |
| $t_{ZX3}$           |         | 7.3     |         | 8.4     |         | 10.0     | ns   |
| t <sub>INREG</sub>  |         | 5.3     |         | 6.1     |         | 7.2      | ns   |
| t <sub>IOFD</sub>   |         | 4.7     |         | 5.5     |         | 6.4      | ns   |
| t <sub>INCOMB</sub> |         | 4.7     |         | 5.5     |         | 6.4      | ns   |

