Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. # **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 144 | | Number of Logic Elements/Cells | 1152 | | Total RAM Bits | 12288 | | Number of I/O | 147 | | Number of Gates | 63000 | | Voltage - Supply | 4.5V ~ 5.5V | | Mounting Type | Surface Mount | | Operating Temperature | -40°C ~ 85°C (TA) | | Package / Case | 208-BFQFP Exposed Pad | | Supplier Device Package | 208-RQFP (28x28) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/epf10k20ri208-4 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong The FLEX 10K architecture is similar to that of embedded gate arrays, the fastest-growing segment of the gate array market. As with standard gate arrays, embedded gate arrays implement general logic in a conventional "sea-of-gates" architecture. In addition, embedded gate arrays have dedicated die areas for implementing large, specialized functions. By embedding functions in silicon, embedded gate arrays provide reduced die area and increased speed compared to standard gate arrays. However, embedded megafunctions typically cannot be customized, limiting the designer's options. In contrast, FLEX 10K devices are programmable, providing the designer with full control over embedded megafunctions and general logic while facilitating iterative design changes during debugging. Each FLEX 10K device contains an embedded array and a logic array. The embedded array is used to implement a variety of memory functions or complex logic functions, such as digital signal processing (DSP), microcontroller, wide-data-path manipulation, and data-transformation functions. The logic array performs the same function as the sea-of-gates in the gate array: it is used to implement general logic, such as counters, adders, state machines, and multiplexers. The combination of embedded and logic arrays provides the high performance and high density of embedded gate arrays, enabling designers to implement an entire system on a single device. FLEX 10K devices are configured at system power-up with data stored in an Altera serial configuration device or provided by a system controller. Altera offers the EPC1, EPC2, EPC16, and EPC1441 configuration devices, which configure FLEX 10K devices via a serial data stream. Configuration data can also be downloaded from system RAM or from Altera's BitBlaster™ serial download cable or ByteBlasterMV™ parallel port download cable. After a FLEX 10K device has been configured, it can be reconfigured in-circuit by resetting the device and loading new data. Because reconfiguration requires less than 320 ms, real-time changes can be made during system operation. FLEX 10K devices contain an optimized interface that permits microprocessors to configure FLEX 10K devices serially or in parallel, and synchronously or asynchronously. The interface also enables microprocessors to treat a FLEX 10K device as memory and configure the device by writing to a virtual memory location, making it very easy for the designer to reconfigure the device. For more information, see the following documents: - Configuration Devices for APEX & FLEX Devices Data Sheet - BitBlaster Serial Download Cable Data Sheet - ByteBlasterMV Parallel Port Download Cable Data Sheet - Application Note 116 (Configuring APEX 20K, FLEX 10K & FLEX 6000 Devices) FLEX 10K devices are supported by Altera development systems; single, integrated packages that offer schematic, text (including AHDL), and waveform design entry, compilation and logic synthesis, full simulation and worst-case timing analysis, and device configuration. The Altera software provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and other interfaces for additional design entry and simulation support from other industry-standard PC- and UNIX workstation-based EDA tools. The Altera software works easily with common gate array EDA tools for synthesis and simulation. For example, the Altera software can generate Verilog HDL files for simulation with tools such as Cadence Verilog-XL. Additionally, the Altera software contains EDA libraries that use device-specific features such as carry chains which are used for fast counter and arithmetic functions. For instance, the Synopsys Design Compiler library supplied with the Altera development systems include DesignWare functions that are optimized for the FLEX 10K architecture. The Altera development systems run on Windows-based PCs and Sun SPARCstation, and HP 9000 Series 700/800 workstations. See the MAX+PLUS II Programmable Logic Development System & Software Data Sheet for more information. # Functional Description Each FLEX 10K device contains an embedded array to implement memory and specialized logic functions, and a logic array to implement general logic. The embedded array consists of a series of EABs. When implementing memory functions, each EAB provides 2,048 bits, which can be used to create RAM, ROM, dual-port RAM, or first-in first-out (FIFO) functions. When implementing logic, each EAB can contribute 100 to 600 gates towards complex logic functions, such as multipliers, microcontrollers, state machines, and DSP functions. EABs can be used independently, or multiple EABs can be combined to implement larger functions. Figure 11. LAB Connections to Row & Column Interconnect Figure 12 shows the interconnection of adjacent LABs and EABs with row, column, and local interconnects, as well as the associated cascade and carry chains. Each LAB is labeled according to its location: a letter represents the row and a number represents the column. For example, LAB B3 is in row B, column 3. Figure 12. Interconnect Resources Each IOE selects the clock, clear, clock enable, and output enable controls from a network of I/O control signals called the peripheral control bus. The peripheral control bus uses high-speed drivers to minimize signal skew across devices; it provides up to 12 peripheral control signals that can be allocated as follows: - Up to eight output enable signals - Up to six clock enable signals - Up to two clock signals - Up to two clear signals If more than six clock enable or eight output enable signals are required, each IOE on the device can be controlled by clock enable and output enable signals driven by specific LEs. In addition to the two clock signals available on the peripheral control bus, each IOE can use one of two dedicated clock pins. Each peripheral control signal can be driven by any of the dedicated input pins or the first LE of each LAB in a particular row. In addition, an LE in a different row can drive a column interconnect, which causes a row interconnect to drive the peripheral control signal. The chip-wide reset signal will reset all IOE registers, overriding any other control signals. Tables 8 and 9 list the sources for each peripheral control signal, and the rows that can drive global signals. These tables also show how the output enable, clock enable, clock, and clear signals share 12 peripheral control signals. ## Slew-Rate Control The output buffer in each IOE has an adjustable output slew rate that can be configured for low-noise or high-speed performance. A slower slew rate reduces system noise and adds a maximum delay of approximately 2.9 ns. The fast slew rate should be used for speed-critical outputs in systems that are adequately protected against noise. Designers can specify the slew rate on a pin-by-pin basis during design entry or assign a default slew rate to all pins on a device-wide basis. The slow slew rate setting affects only the falling edge of the output. # **Open-Drain Output Option** FLEX 10K devices provide an optional open-drain (electrically equivalent to an open-collector) output for each I/O pin. This open-drain output enables the device to provide system-level control signals (e.g., interrupt and write enable signals) that can be asserted by any of several devices. It can also provide an additional wired-OR plane. Additionally, the Altera software can convert tri-state buffers with grounded data inputs to open-drain pins automatically. Open-drain output pins on FLEX 10K devices (with a pull-up resistor to the 5.0-V supply) can drive 5.0-V CMOS input pins that require a $V_{\rm IH}$ of 3.5 V. When the open-drain pin is active, it will drive low. When the pin is inactive, the trace will be pulled up to 5.0 V by the resistor. The open-drain pin will only drive low or tri-state; it will never drive high. The rise time is dependent on the value of the pull-up resistor and load impedance. The $I_{\rm OL}$ current specification should be considered when selecting a pull-up resistor. Output pins on 5.0-V FLEX 10K devices with $V_{CCIO} = 3.3 \text{ V}$ or 5.0 V (with a pull-up resistor to the 5.0-V supply) can also drive 5.0-V CMOS input pins. In this case, the pull-up transistor will turn off when the pin voltage exceeds 3.3 V. Therefore, the pin does not have to be open-drain. #### MultiVolt I/O Interface The FLEX 10K device architecture supports the MultiVolt I/O interface feature, which allows FLEX 10K devices to interface with systems of differing supply voltages. These devices have one set of V_{CC} pins for internal operation and input buffers (VCCINT) and another set for I/O output drivers (VCCIO). Table 12 describes the FLEX 10K device supply voltages and MultiVolt $\rm I/O$ support levels. | Devices | Supply Vo | oltage (V) | MultiVolt I/O Sup | MultiVolt I/O Support Levels (V) | | | |---------------|--------------------|-------------------|-------------------|----------------------------------|--|--| | | V _{CCINT} | V _{CCIO} | Input | Output | | | | FLEX 10K (1) | 5.0 | 5.0 | 3.3 or 5.0 | 5.0 | | | | | 5.0 | 3.3 | 3.3 or 5.0 | 3.3 or 5.0 | | | | EPF10K50V (1) | 3.3 | 3.3 | 3.3 or 5.0 | 3.3 or 5.0 | | | | EPF10K130V | 3.3 | 3.3 | 3.3 or 5.0 | 3.3 or 5.0 | | | | FLEX 10KA (1) | 3.3 | 3.3 | 2.5, 3.3, or 5.0 | 3.3 or 5.0 | | | | | 3.3 | 2.5 | 2.5, 3.3, or 5.0 | 2.5 | | | #### Note (1) 240-pin QFP packages do not support the MultiVolt I/O features, so they do not have separate V_{CCIO} pins. # Power Sequencing & Hot-Socketing Because FLEX 10K devices can be used in a multi-voltage environment, they have been designed specifically to tolerate any possible power-up sequence. The $V_{\rm CCIO}$ and $V_{\rm CCINT}$ power supplies can be powered in any order. Signals can be driven into FLEX 10KA devices before and during power up without damaging the device. Additionally, FLEX 10KA devices do not drive out during power up. Once operating conditions are reached, FLEX 10KA devices operate as specified by the user. IEEE Std. 1149.1 (JTAG) Boundary-Scan Support All FLEX 10K devices provide JTAG BST circuitry that complies with the IEEE Std. 1149.1-1990 specification. All FLEX 10K devices can also be configured using the JTAG pins through the BitBlaster serial download cable, or ByteBlasterMV parallel port download cable, or via hardware that uses the JamTM programming and test language. JTAG BST can be performed before or after configuration, but not during configuration. FLEX 10K devices support the JTAG instructions shown in Table 13. | Table 1 | 8. FLEX 10K 5.0-V Device Reco | mmended Operating Conditions | | | | |--------------------|---|------------------------------|-------------|--------------------------|------| | Symbol | Parameter | Conditions | Min | Max | Unit | | V _{CCINT} | Supply voltage for internal logic and input buffers | (3), (4) | 4.75 (4.50) | 5.25 (5.50) | V | | V _{CCIO} | Supply voltage for output buffers, 5.0-V operation | (3), (4) | 4.75 (4.50) | 5.25 (5.50) | V | | | Supply voltage for output buffers, 3.3-V operation | (3), (4) | 3.00 (3.00) | 3.60 (3.60) | V | | VI | Input voltage | | -0.5 | V _{CCINT} + 0.5 | V | | Vo | Output voltage | | 0 | V _{CCIO} | V | | T _A | Ambient temperature | For commercial use | 0 | 70 | °C | | | | For industrial use | -40 | 85 | °C | | T _J | Operating temperature | For commercial use | 0 | 85 | °C | | | | For industrial use | -40 | 100 | °C | | t _R | Input rise time | | | 40 | ns | | t _F | Input fall time | | | 40 | ns | #### Notes to tables: - (1) See the Operating Requirements for Altera Devices Data Sheet. - (2) Minimum DC input voltage is -0.5 V. During transitions, the inputs may undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns. - (3) Numbers in parentheses are for industrial-temperature-range devices. - (4) Maximum V_{CC} rise time is 100 ms. V_{CC} must rise monotonically. - (5) Typical values are for $T_A = 25^{\circ}$ C and $V_{CC} = 5.0$ V. - (6) These values are specified under the Recommended Operation Condition shown in Table 18 on page 45. - (7) The I_{OH} parameter refers to high-level TTL or CMOS output current. - (8) The I_{OL} parameter refers to low-level TTL or CMOS output current. This parameter applies to open-drain pins as well as output pins. - (9) This value is specified for normal device operation. The value may vary during power-up. - (10) Capacitance is sample-tested only. Figure 20 shows the typical output drive characteristics of FLEX 10K devices with 5.0-V and 3.3-V $V_{\rm CCIO}$. The output driver is compliant with the 5.0-V *PCI Local Bus Specification, Revision 2.2* (for 5.0-V $V_{\rm CCIO}$). Figure 20. Output Drive Characteristics of FLEX 10K Devices | Table 2 | 77. FLEX 10KA 3.3-V Device Rec | ommended Operating Conditions | | | | |--------------------|---|-------------------------------|-------------|-------------------|------| | Symbol | Parameter | Conditions | Min | Max | Unit | | V _{CCINT} | Supply voltage for internal logic and input buffers | (3), (4) | 3.00 (3.00) | 3.60 (3.60) | V | | V _{CCIO} | Supply voltage for output buffers, 3.3-V operation | (3), (4) | 3.00 (3.00) | 3.60 (3.60) | ٧ | | | Supply voltage for output buffers, 2.5-V operation | (3), (4) | 2.30 (2.30) | 2.70 (2.70) | ٧ | | VI | Input voltage | (5) | -0.5 | 5.75 | V | | Vo | Output voltage | | 0 | V _{CCIO} | V | | T _A | Ambient temperature | For commercial use | 0 | 70 | ° C | | | | For industrial use | -40 | 85 | °C | | T _J | Operating temperature | For commercial use | 0 | 85 | °C | | | | For industrial use | -40 | 100 | °C | | t _R | Input rise time | | | 40 | ns | | t _F | Input fall time | | | 40 | ns | Figure 23. Output Drive Characteristics for EPF10K250A Device # **Timing Model** The continuous, high-performance FastTrack Interconnect routing resources ensure predictable performance and accurate simulation and timing analysis. This predictable performance contrasts with that of FPGAs, which use a segmented connection scheme and therefore have unpredictable performance. Device performance can be estimated by following the signal path from a source, through the interconnect, to the destination. For example, the registered performance between two LEs on the same row can be calculated by adding the following parameters: - LE register clock-to-output delay (t_{CO}) - Interconnect delay ($t_{SAMEROW}$) - LE look-up table delay (t_{LIIT}) - LE register setup time (t_{SU}) The routing delay depends on the placement of the source and destination LEs. A more complex registered path may involve multiple combinatorial LEs between the source and destination LEs. Timing simulation and delay prediction are available with the MAX+PLUS II Simulator and Timing Analyzer, or with industry-standard EDA tools. The Simulator offers both pre-synthesis functional simulation to evaluate logic design accuracy and post-synthesis timing simulation with 0.1-ns resolution. The Timing Analyzer provides point-to-point timing delay information, setup and hold time analysis, and device-wide performance analysis. Figure 24 shows the overall timing model, which maps the possible paths to and from the various elements of the FLEX 10K device. Figure 24. FLEX 10K Device Timing Model | Symbol | -2 Speed | l Grade | -3 Spee | d Grade | -4 Spec | Unit | | |------------------------|----------|---------|---------|---------|---------|------|----| | | Min | Max | Min | Max | Min | Max | | | t _{EABAA} | | 12.1 | | 13.7 | | 17.0 | ns | | t _{EABRCCOMB} | 12.1 | | 13.7 | | 17.0 | | ns | | t _{EABRCREG} | 8.6 | | 9.7 | | 11.9 | | ns | | t _{EABWP} | 5.2 | | 5.8 | | 7.2 | | ns | | t _{EABWCCOMB} | 6.5 | | 7.3 | | 9.0 | | ns | | t _{EABWCREG} | 11.6 | | 13.0 | | 16.0 | | ns | | t _{EABDD} | | 8.8 | | 10.0 | | 12.5 | ns | | t _{EABDATACO} | | 1.7 | | 2.0 | | 3.4 | ns | | t _{EABDATASU} | 4.7 | | 5.3 | | 5.6 | | ns | | t _{EABDATAH} | 0.0 | | 0.0 | | 0.0 | | ns | | t _{EABWESU} | 4.9 | | 5.5 | | 5.8 | | ns | | t _{EABWEH} | 0.0 | | 0.0 | | 0.0 | | ns | | t _{EABWDSU} | 1.8 | | 2.1 | | 2.7 | | ns | | t _{EABWDH} | 0.0 | | 0.0 | | 0.0 | | ns | | t _{EABWASU} | 4.1 | | 4.7 | | 5.8 | | ns | | t _{EABWAH} | 0.0 | | 0.0 | | 0.0 | | ns | | t _{EABWO} | | 8.4 | | 9.5 | | 11.8 | ns | | Symbol | -3DX Sp | -3DX Speed Grade | | d Grade | -4 Spee | Unit | | |---------------------------------|---------|------------------|-----|---------|---------|------|----| | | Min | Max | Min | Max | Min | Max | 1 | | t _{DRR} | | 19.1 | | 19.1 | | 24.2 | ns | | t _{INSU} (2), (3), (4) | 7.8 | | 7.8 | | 8.5 | | ns | | t _{OUTCO} (3), (4) | 2.0 | 11.1 | 2.0 | 11.1 | 2.0 | 14.3 | ns | | t _{INH} (3) | 0.0 | | 0.0 | | 0.0 | | ns | | t _{INSU} (2), (3), (5) | 6.2 | | - | | - | | ns | | t _{OUTCO} (3), (5) | 2.0 | 6.7 | | _ | | _ | ns | | Symbol | -3DX Sp | -3DX Speed Grade | | d Grade | -4 Spee | Unit | | |----------------------------|---------|------------------|-----|---------|---------|------|----| | | Min | Max | Min | Max | Min | Max | | | t _{INSUBIDIR} (4) | 8.1 | | 8.1 | | 10.4 | | ns | | t _{INHBIDIR} (4) | 0.0 | | 0.0 | | 0.0 | | ns | | toutcobidir (4) | 2.0 | 11.1 | 2.0 | 11.1 | 2.0 | 14.3 | ns | | t _{XZBIDIR} (4) | | 15.3 | | 15.3 | | 18.4 | ns | | t _{ZXBIDIR} (4) | | 15.3 | | 15.3 | | 18.4 | ns | | t _{INSUBIDIR} (5) | 9.1 | | - | | - | | ns | | t _{INHBIDIR} (5) | 0.0 | | _ | | - | | ns | | toutcobidir (5) | 2.0 | 7.2 | - | - | _ | _ | ns | | t _{XZBIDIR} (5) | | 14.3 | | - | | - | ns | | t _{ZXBIDIR} (5) | | 14.3 | | - | | _ | ns | #### Notes to tables: - (1) All timing parameters are described in Tables 32 through 38 in this data sheet. - (2) Using an LE to register the signal may provide a lower setup time. - (3) This parameter is specified by characterization. - (4) This parameter is measured without the use of the ClockLock or ClockBoost circuits. - (5) This parameter is measured with the use of the ClockLock or ClockBoost circuits. | Table 75. EPF | ı | | 1 | | ·
 | | 1 | | l | |--------------------------|--------|---------|----------------|-----|----------------|-----|----------------|------|------| | Symbol | -1 Spe | d Grade | -2 Speed Grade | | -3 Speed Grade | | -4 Speed Grade | | Unit | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t _{DIN2IOE} | | 4.7 | | 6.0 | | 7.1 | | 8.2 | ns | | t _{DIN2LE} | | 2.5 | | 2.6 | | 3.1 | | 3.9 | ns | | t _{DIN2DATA} | | 4.4 | | 5.9 | | 6.8 | | 7.7 | ns | | t _{DCLK2IOE} | | 2.5 | | 3.9 | | 4.7 | | 5.5 | ns | | t _{DCLK2LE} | | 2.5 | | 2.6 | | 3.1 | | 3.9 | ns | | t _{SAMELAB} | | 0.2 | | 0.2 | | 0.3 | | 0.3 | ns | | t _{SAMEROW} | | 2.8 | | 3.0 | | 3.2 | | 3.4 | ns | | t _{SAME} COLUMN | | 3.0 | | 3.2 | | 3.4 | | 3.6 | ns | | t _{DIFFROW} | | 5.8 | | 6.2 | | 6.6 | | 7.0 | ns | | t _{TWOROWS} | | 8.6 | | 9.2 | | 9.8 | | 10.4 | ns | | t _{LEPERIPH} | | 4.5 | | 5.5 | | 6.1 | | 7.0 | ns | | t _{LABCARRY} | | 0.3 | | 0.4 | | 0.5 | | 0.7 | ns | | t _{LABCASC} | | 0.0 | | 1.3 | | 1.6 | | 2.0 | ns | | Table 76. EPF | 10K50V De | vice Exter | nal Timing | Paramete | ers Not | e (1) | | | | |----------------------------|-----------|------------|----------------|----------|----------------|-------|----------------|------|------| | Symbol | -1 Spee | d Grade | -2 Speed Grade | | -3 Speed Grade | | -4 Speed Grade | | Unit | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t _{DRR} | | 11.2 | | 14.0 | | 17.2 | | 21.1 | ns | | t _{INSU} (2), (3) | 5.5 | | 4.2 | | 5.2 | | 6.9 | | ns | | t _{INH} (3) | 0.0 | | 0.0 | | 0.0 | | 0.0 | | ns | | t _{оитсо} (3) | 2.0 | 5.9 | 2.0 | 7.8 | 2.0 | 9.5 | 2.0 | 11.1 | ns | | Table 77. EPF | Table 77. EPF10K50V Device External Bidirectional Timing Parameters Note (1) | | | | | | | | | | | | | | |-------------------------|--|-----|----------------|-----|----------------|------|----------------|------|------|--|--|--|--|--| | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | -4 Speed Grade | | Unit | | | | | | | | Min | Max | Min | Max | Min | Max | Min | Max |] | | | | | | | t _{INSUBIDIR} | 2.0 | | 2.8 | | 3.5 | | 4.1 | | ns | | | | | | | t _{INHBIDIR} | 0.0 | | 0.0 | | 0.0 | | 0.0 | | ns | | | | | | | t _{OUTCOBIDIR} | 2.0 | 5.9 | 2.0 | 7.8 | 2.0 | 9.5 | 2.0 | 11.1 | ns | | | | | | | t _{XZBIDIR} | | 8.0 | | 9.8 | | 11.8 | | 14.3 | ns | | | | | | | t _{ZXBIDIR} | | 8.0 | | 9.8 | | 11.8 | | 14.3 | ns | | | | | | | Symbol | -1 Spee | d Grade | -2 Spee | d Grade | -3 Spee | d Grade | Unit | |--------------------------|---------|---------|---------|---------|---------|---------|------| | | Min | Max | Min | Max | Min | Max | | | t _{DIN2IOE} | | 4.2 | | 5.0 | | 6.5 | ns | | t _{DIN2LE} | | 2.2 | | 2.6 | | 3.4 | ns | | t _{DIN2DATA} | | 4.3 | | 5.2 | | 7.1 | ns | | t _{DCLK2IOE} | | 4.2 | | 4.9 | | 6.6 | ns | | t _{DCLK2LE} | | 2.2 | | 2.6 | | 3.4 | ns | | t _{SAMELAB} | | 0.1 | | 0.1 | | 0.2 | ns | | t _{SAMEROW} | | 2.2 | | 2.4 | | 2.9 | ns | | t _{SAME} COLUMN | | 0.8 | | 1.0 | | 1.4 | ns | | t _{DIFFROW} | | 3.0 | | 3.4 | | 4.3 | ns | | t _{TWOROWS} | | 5.2 | | 5.8 | | 7.2 | ns | | t _{LEPERIPH} | | 1.8 | | 2.2 | | 2.8 | ns | | t _{LABCARRY} | | 0.5 | | 0.5 | | 0.7 | ns | | t _{LABCASC} | | 0.9 | | 1.0 | | 1.5 | ns | | Table 90. EPF10 | K10A Externa | al Reference 1 | Timing Parai | neters No | nte (1) | | | |----------------------------|--------------|----------------|--------------|------------------|---------|------|----| | Symbol | -1 Spec | ed Grade | -2 Spec | ed Grade | -3 Spee | Unit | | | | Min | Max | Min | Max | Min | Max | | | t _{DRR} | | 10.0 | | 12.0 | | 16.0 | ns | | t _{INSU} (2), (3) | 1.6 | | 2.1 | | 2.8 | | ns | | t _{INH} (3) | 0.0 | | 0.0 | | 0.0 | | ns | | t _{outco} (3) | 2.0 | 5.8 | 2.0 | 6.9 | 2.0 | 9.2 | ns | | Table 91. EPF10K10A Device External Bidirectional Timing Parameters Note (1) | | | | | | | | | | |--|---------|---------|---------|----------|---------|------|----|--|--| | Symbol | -2 Spee | d Grade | -3 Spec | ed Grade | -4 Spee | Unit | | | | | | Min | Max | Min | Max | Min | Max | 1 | | | | tINSUBIDIR | 2.4 | | 3.3 | | 4.5 | | ns | | | | t _{INHBIDIR} | 0.0 | | 0.0 | | 0.0 | | ns | | | | toutcobidir | 2.0 | 5.8 | 2.0 | 6.9 | 2.0 | 9.2 | ns | | | | t _{XZBIDIR} | | 6.3 | | 7.5 | | 9.9 | ns | | | | t _{ZXBIDIR} | | 6.3 | | 7.5 | | 9.9 | ns | | | | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Spee | Unit | | |------------------------|----------------|-----|----------------|-----|---------|------|----| | | Min | Max | Min | Max | Min | Max | | | t _{EABAA} | | 6.8 | | 7.8 | | 9.2 | ns | | t _{EABRCCOMB} | 6.8 | | 7.8 | | 9.2 | | ns | | t _{EABRCREG} | 5.4 | | 6.2 | | 7.4 | | ns | | t _{EABWP} | 3.2 | | 3.7 | | 4.4 | | ns | | t _{EABWCCOMB} | 3.4 | | 3.9 | | 4.7 | | ns | | t _{EABWCREG} | 9.4 | | 10.8 | | 12.8 | | ns | | t _{EABDD} | | 6.1 | | 6.9 | | 8.2 | ns | | t _{EABDATACO} | | 2.1 | | 2.3 | | 2.9 | ns | | t _{EABDATASU} | 3.7 | | 4.3 | | 5.1 | | ns | | t _{EABDATAH} | 0.0 | | 0.0 | | 0.0 | | ns | | t _{EABWESU} | 2.8 | | 3.3 | | 3.8 | | ns | | t _{EABWEH} | 0.0 | | 0.0 | | 0.0 | | ns | | t _{EABWDSU} | 3.4 | | 4.0 | | 4.6 | | ns | | t _{EABWDH} | 0.0 | | 0.0 | | 0.0 | | ns | | t _{EABWASU} | 1.9 | | 2.3 | | 2.6 | | ns | | t _{EABWAH} | 0.0 | | 0.0 | | 0.0 | | ns | | t _{EABWO} | | 5.1 | | 5.7 | | 6.9 | ns | | Symbol | -1 Speed Grade | | -2 Spee | d Grade | -3 Spee | Unit | | |--------------------------|----------------|-----|---------|---------|---------|------|----| | | Min | Max | Min | Max | Min | Max | | | t _{DIN2IOE} | | 4.8 | | 5.4 | | 6.0 | ns | | t _{DIN2LE} | | 2.0 | | 2.4 | | 2.7 | ns | | t _{DIN2DATA} | | 2.4 | | 2.7 | | 2.9 | ns | | t _{DCLK2IOE} | | 2.6 | | 3.0 | | 3.5 | ns | | t _{DCLK2LE} | | 2.0 | | 2.4 | | 2.7 | ns | | t _{SAMELAB} | | 0.1 | | 0.1 | | 0.1 | ns | | t _{SAMEROW} | | 1.5 | | 1.7 | | 1.9 | ns | | t _{SAME} COLUMN | | 5.5 | | 6.5 | | 7.4 | ns | | t _{DIFFROW} | | 7.0 | | 8.2 | | 9.3 | ns | | t _{TWOROWS} | | 8.5 | | 9.9 | | 11.2 | ns | | t _{LEPERIPH} | | 3.9 | | 4.2 | | 4.5 | ns | | t _{LABCARRY} | | 0.2 | | 0.2 | | 0.3 | ns | | t _{LABCASC} | | 0.4 | | 0.5 | | 0.6 | ns | | Table 104. EPF10K100A Device External Timing Parameters Note (1) | | | | | | | | | | |--|---------|----------|---------|----------|---------|------|----|--|--| | Symbol | -1 Spee | ed Grade | -2 Spec | ed Grade | -3 Spee | Unit | | | | | | Min | Max | Min | Max | Min | Max | | | | | t _{DRR} | | 12.5 | | 14.5 | | 17.0 | ns | | | | t _{INSU} (2), (3) | 3.7 | | 4.5 | | 5.1 | | ns | | | | t _{INH} (3) | 0.0 | | 0.0 | | 0.0 | | ns | | | | t _{оитсо} (3) | 2.0 | 5.3 | 2.0 | 6.1 | 2.0 | 7.2 | ns | | | | Table 105. EPF10K100A Device External Bidirectional Timing Parameters Note (1) | | | | | | | | | | |--|---------|----------|--------|----------|---------|------|----|--|--| | Symbol | -1 Spee | ed Grade | -2 Spe | ed Grade | -3 Spee | Unit | | | | | | Min | Max | Min | Max | Min | Max | | | | | t _{INSUBIDIR} | 4.9 | | 5.8 | | 6.8 | | ns | | | | t _{INHBIDIR} | 0.0 | | 0.0 | | 0.0 | | ns | | | | toutcobidir | 2.0 | 5.3 | 2.0 | 6.1 | 2.0 | 7.2 | ns | | | | t _{XZBIDIR} | | 7.4 | | 8.6 | | 10.1 | ns | | | | t _{ZXBIDIR} | | 7.4 | | 8.6 | | 10.1 | ns | | | #### Notes to tables: - (1) All timing parameters are described in Tables 32 through 37 in this data sheet. - (2) Using an LE to register the signal may provide a lower setup time. - (3) This parameter is specified by characterization. # ClockLock & ClockBoost Timing Parameters For the ClockLock and ClockBoost circuitry to function properly, the incoming clock must meet certain requirements. If these specifications are not met, the circuitry may not lock onto the incoming clock, which generates an erroneous clock within the device. The clock generated by the ClockLock and ClockBoost circuitry must also meet certain specifications. If the incoming clock meets these requirements during configuration, the ClockLock and ClockBoost circuitry will lock onto the clock during configuration. The circuit will be ready for use immediately after configuration. Figure 31 illustrates the incoming and generated clock specifications. ## Figure 31. Specifications for the Incoming & Generated Clocks The t_l parameter refers to the nominal input clock period; the t_0 parameter refers to the nominal output clock period. Table 113 summarizes the ClockLock and ClockBoost parameters. | Table 1 | Table 113. ClockLock & ClockBoost Parameters (Part 1 of 2) | | | | | | | | | | |---------------------|---|------|-----|------|------|--|--|--|--|--| | Symbol | Parameter | Min | Тур | Max | Unit | | | | | | | t_R | Input rise time | | | 2 | ns | | | | | | | t _F | Input fall time | | | 2 | ns | | | | | | | t _{INDUTY} | Input duty cycle | 45 | | 55 | % | | | | | | | f _{CLK1} | Input clock frequency (ClockBoost clock multiplication factor equals 1) | 30 | | 80 | MHz | | | | | | | t _{CLK1} | Input clock period (ClockBoost clock multiplication factor equals 1) | 12.5 | | 33.3 | ns | | | | | | | f _{CLK2} | Input clock frequency (ClockBoost clock multiplication factor equals 2) | 16 | | 50 | MHz | | | | | | | t _{CLK2} | Input clock period (ClockBoost clock multiplication factor equals 2) | 20 | | 62.5 | ns | | | | | | 101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com Applications Hotline: (800) 800-EPLD Customer Marketing: (408) 544-7104 Literature Services: lit_req@altera.com Copyright © 2003 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. I.S. EN ISO 9001