

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	144
Number of Logic Elements/Cells	1152
Total RAM Bits	12288
Number of I/O	189
Number of Gates	63000
Voltage - Supply	4.5V ~ 5.5V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	240-BFQFP Exposed Pad
Supplier Device Package	240-RQFP (32x32)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epf10k20ri240-4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2. FLEX 10K Device Features							
Feature	EPF10K70	EPF10K100 EPF10K100A	EPF10K130V	EPF10K250A			
Typical gates (logic and RAM) (1)	70,000	100,000	130,000	250,000			
Maximum system gates	118,000	158,000	211,000	310,000			
LEs	3,744	4,992	6,656	12,160			
LABs	468	624	832	1,520			
EABs	9	12	16	20			
Total RAM bits	18,432	24,576	32,768	40,960			
Maximum user I/O pins	358	406	470	470			

Note to tables:

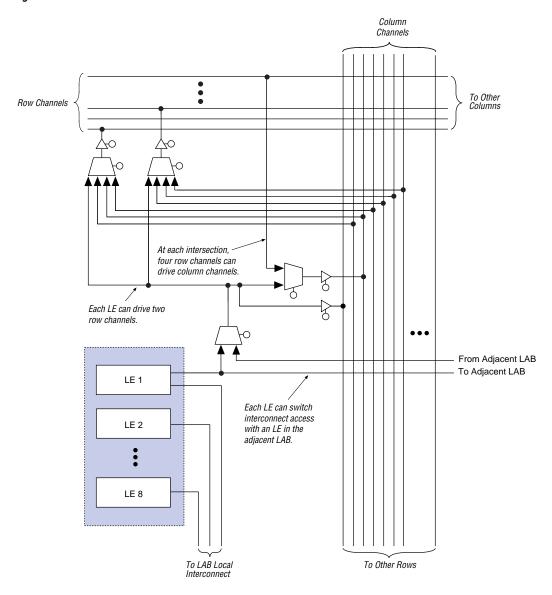
 The embedded IEEE Std. 1149.1 JTAG circuitry adds up to 31,250 gates in addition to the listed typical or maximum system gates.

...and More Features

- Devices are fabricated on advanced processes and operate with a 3.3-V or 5.0-V supply voltage (see Table 3
- In-circuit reconfigurability (ICR) via external configuration device, intelligent controller, or JTAG port
- ClockLockTM and ClockBoostTM options for reduced clock delay/skew and clock multiplication
- Built-in low-skew clock distribution trees
- 100% functional testing of all devices; test vectors or scan chains are not required

Table 3. Supply Voltages for FLEX 10K & FLEX 10KA Devices					
5.0-V Devices	3.3-V Devices				
EPF10K10	EPF10K10A				
EPF10K20	EPF10K30A				
EPF10K30	EPF10K50V				
EPF10K40	EPF10K100A				
EPF10K50	EPF10K130V				
EPF10K70	EPF10K250A				
EPF10K100					

Dedicated Inputs & Global Signals Chip-Wide Reset Row Interconnect 2, 4, 8, 16 Data Data Out 8, 4, 2, 1 2, 4, 8, 16 Address D 8, 9, 10, 11 RAM/ROM 256×8 512 × 4 $1,024 \times 2$ Column 2,048 × 1 Interconnect WE D


Figure 4. FLEX 10K Embedded Array Block

Note:

EAB Local Interconnect (1)

(1) EPF10K10, EPF10K10A, EPF10K20, EPF10K30, EPF10K30A, EPF10K40, EPF10K50, and EPF10K50V devices have 22 EAB local interconnect channels; EPF10K70, EPF10K100, EPF10K100A, EPF10K130V, and EPF10K250A devices have 26.

Figure 11. LAB Connections to Row & Column Interconnect

Each IOE selects the clock, clear, clock enable, and output enable controls from a network of I/O control signals called the peripheral control bus. The peripheral control bus uses high-speed drivers to minimize signal skew across devices; it provides up to 12 peripheral control signals that can be allocated as follows:

- Up to eight output enable signals
- Up to six clock enable signals
- Up to two clock signals
- Up to two clear signals

If more than six clock enable or eight output enable signals are required, each IOE on the device can be controlled by clock enable and output enable signals driven by specific LEs. In addition to the two clock signals available on the peripheral control bus, each IOE can use one of two dedicated clock pins. Each peripheral control signal can be driven by any of the dedicated input pins or the first LE of each LAB in a particular row. In addition, an LE in a different row can drive a column interconnect, which causes a row interconnect to drive the peripheral control signal. The chip-wide reset signal will reset all IOE registers, overriding any other control signals.

Tables 8 and 9 list the sources for each peripheral control signal, and the rows that can drive global signals. These tables also show how the output enable, clock enable, clock, and clear signals share 12 peripheral control signals.

Figure 15. FLEX 10K Column-to-IOE Connections

The values for m and n are provided in Table 11.

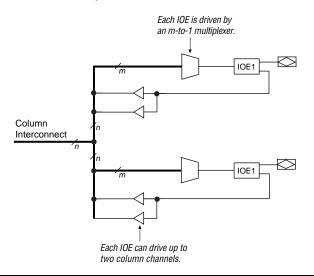


Table 11 lists the FLEX 10K column-to-IOE interconnect resources.

Table 11. FLEX 10K Column-to-IOE Interconnect Resources						
Device	Channels per Column (n)	Column Channel per Pin (m)				
EPF10K10 EPF10K10A	24	16				
EPF10K20	24	16				
EPF10K30 EPF10K30A	24	16				
EPF10K40	24	16				
EPF10K50 EPF10K50V	24	16				
EPF10K70	24	16				
EPF10K100 EPF10K100A	24	16				
EPF10K130V	32	24				
EPF10K250A	40	32				

Slew-Rate Control

The output buffer in each IOE has an adjustable output slew rate that can be configured for low-noise or high-speed performance. A slower slew rate reduces system noise and adds a maximum delay of approximately 2.9 ns. The fast slew rate should be used for speed-critical outputs in systems that are adequately protected against noise. Designers can specify the slew rate on a pin-by-pin basis during design entry or assign a default slew rate to all pins on a device-wide basis. The slow slew rate setting affects only the falling edge of the output.

Open-Drain Output Option

FLEX 10K devices provide an optional open-drain (electrically equivalent to an open-collector) output for each I/O pin. This open-drain output enables the device to provide system-level control signals (e.g., interrupt and write enable signals) that can be asserted by any of several devices. It can also provide an additional wired-OR plane. Additionally, the Altera software can convert tri-state buffers with grounded data inputs to open-drain pins automatically.

Open-drain output pins on FLEX 10K devices (with a pull-up resistor to the 5.0-V supply) can drive 5.0-V CMOS input pins that require a $V_{\rm IH}$ of 3.5 V. When the open-drain pin is active, it will drive low. When the pin is inactive, the trace will be pulled up to 5.0 V by the resistor. The open-drain pin will only drive low or tri-state; it will never drive high. The rise time is dependent on the value of the pull-up resistor and load impedance. The $I_{\rm OL}$ current specification should be considered when selecting a pull-up resistor.

Output pins on 5.0-V FLEX 10K devices with $V_{CCIO} = 3.3 \text{ V}$ or 5.0 V (with a pull-up resistor to the 5.0-V supply) can also drive 5.0-V CMOS input pins. In this case, the pull-up transistor will turn off when the pin voltage exceeds 3.3 V. Therefore, the pin does not have to be open-drain.

MultiVolt I/O Interface

The FLEX 10K device architecture supports the MultiVolt I/O interface feature, which allows FLEX 10K devices to interface with systems of differing supply voltages. These devices have one set of V_{CC} pins for internal operation and input buffers (VCCINT) and another set for I/O output drivers (VCCIO).

Table 13. FLEX 10K	JTAG Instructions
JTAG Instruction	Description
SAMPLE/PRELOAD	Allows a snapshot of signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern output at the device pins.
EXTEST	Allows the external circuitry and board-level interconnections to be tested by forcing a test pattern at the output pins and capturing test results at the input pins.
BYPASS	Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through a selected device to adjacent devices during normal device operation.
USERCODE	Selects the user electronic signature (USERCODE) register and places it between the TDI and TDO pins, allowing the USERCODE to be serially shifted out of TDO.
IDCODE	Selects the IDCODE register and places it between TDI and TDO, allowing the IDCODE to be serially shifted out of TDO.
ICR Instructions	These instructions are used when configuring a FLEX 10K device via JTAG ports with a BitBlaster, or ByteBlasterMV or MasterBlaster download cable, or using a Jam File (.jam) or Jam Byte-Code File (.jbc) via an embedded processor.

The instruction register length of FLEX 10K devices is 10 bits. The USERCODE register length in FLEX 10K devices is 32 bits; 7 bits are determined by the user, and 25 bits are predetermined. Tables 14 and 15 show the boundary-scan register length and device IDCODE information for FLEX 10K devices.

Device	Boundary-Scan Register Length
EPF10K10, EPF10K10A	480
EPF10K20	624
EPF10K30, EPF10K30A	768
EPF10K40	864
EPF10K50, EPF10K50V	960
EPF10K70	1,104
EPF10K100, EPF10K100A	1,248
EPF10K130V	1,440
EPF10K250A	1,440

Figure 18 shows the timing requirements for the JTAG signals.

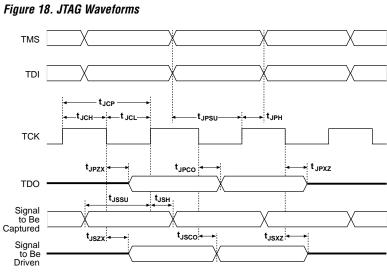


Table 16 shows the timing parameters and values for FLEX 10K devices.

Table 1	6. JTAG Timing Parameters & Values			
Symbol	Parameter	Min	Max	Unit
t _{JCP}	TCK clock period	100		ns
t _{JCH}	TCK clock high time	50		ns
t _{JCL}	TCK clock low time	50		ns
t _{JPSU}	JTAG port setup time	20		ns
t _{JPH}	JTAG port hold time	45		ns
t _{JPCO}	JTAG port clock to output		25	ns
t _{JPZX}	JTAG port high impedance to valid output		25	ns
t _{JPXZ}	JTAG port valid output to high impedance		25	ns
t _{JSSU}	Capture register setup time	20		ns
t _{JSH}	Capture register hold time	45		ns
t _{JSCO}	Update register clock to output		35	ns
t _{JSZX}	Update register high-impedance to valid output		35	ns
t _{JSXZ}	Update register valid output to high impedance		35	ns

Figure 22 shows the typical output drive characteristics of EPF10K10A, EPF10K30A, EPF10K100A, and EPF10K250A devices with 3.3-V and 2.5-V V_{CCIO}. The output driver is compliant with the 3.3-V *PCI Local Bus Specification, Revision 2.2* (with 3.3-V V_{CCIO}). Moreover, device analysis shows that the EPF10K10A, EPF10K30A, and EPF 10K100A devices can drive a 5.0-V PCI bus with eight or fewer loads.

60 H 60 H I_{OL} I_{OL} 50 50 40 40 $V_{CCINT} = 3.3 V$ $V_{CCINT} = 3.3 V$ $V_{CCIO} = 3.3 V$ $V_{CCIO} = 2.5 V$ Typical I_O Typical I_O Room Temperature Room Temperature 30 30 Output Output Current (mA) Current (mA) 20 20 10 10 I_{OH} I_{OH} V_O Output Voltage (V) Vo Output Voltage (V)

Figure 22. Output Drive Characteristics for EPF10K10A, EPF10K30A & EPF10K100A Devices

Figure 23 shows the typical output drive characteristics of the EPF10K250A device with 3.3-V and 2.5-V $V_{\rm CCIO}$.

Figure 26. FLEX 10K Device IOE Timing Model

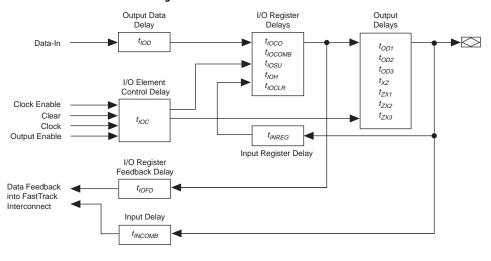
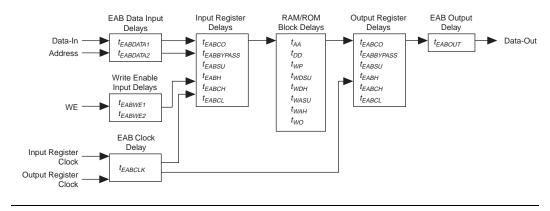



Figure 27. FLEX 10K Device EAB Timing Model

Figures 28 shows the timing model for bidirectional I/O pin timing.

Table 32. LE Timing Microparameters (Part 2 of 2) Note (1)						
Symbol	Parameter	Conditions				
t _{SU}	LE register setup time for data and enable signals before clock; LE register recovery time after asynchronous clear, preset, or load					
t _H	LE register hold time for data and enable signals after clock					
t _{PRE}	LE register preset delay					
t _{CLR}	LE register clear delay					
t _{CH}	Minimum clock high time from clock pin					
t_{CL}	Minimum clock low time from clock pin					

Table 33. IOE	E Timing Microparameters Note (1)	
Symbol	Parameter	Conditions
t_{IOD}	IOE data delay	
t _{IOC}	IOE register control signal delay	
t _{IOCO}	IOE register clock-to-output delay	
t _{IOCOMB}	IOE combinatorial delay	
t _{IOSU}	IOE register setup time for data and enable signals before clock; IOE register recovery time after asynchronous clear	
t _{IOH}	IOE register hold time for data and enable signals after clock	
t _{IOCLR}	IOE register clear time	
t _{OD1}	Output buffer and pad delay, slow slew rate = off, $V_{CCIO} = V_{CCINT}$	C1 = 35 pF (2)
t_{OD2}	Output buffer and pad delay, slow slew rate = off, V_{CCIO} = low voltage	C1 = 35 pF (3)
t _{OD3}	Output buffer and pad delay, slow slew rate = on	C1 = 35 pF (4)
t_{XZ}	IOE output buffer disable delay	
t_{ZX1}	IOE output buffer enable delay, slow slew rate = off, $V_{CCIO} = V_{CCINT}$	C1 = 35 pF (2)
t_{ZX2}	IOE output buffer enable delay, slow slew rate = off, V _{CCIO} = low voltage	C1 = 35 pF (3)
t_{ZX3}	IOE output buffer enable delay, slow slew rate = on	C1 = 35 pF (4)
t _{INREG}	IOE input pad and buffer to IOE register delay	
t_{IOFD}	IOE register feedback delay	
t _{INCOMB}	IOE input pad and buffer to FastTrack Interconnect delay	

Symbol	-3 Spee	d Grade	-4 Spee	d Grade	Unit
	Min	Max	Min	Max	
t_{IOD}		1.3		1.6	ns
t _{IOC}		0.5		0.7	ns
t _{IOCO}		0.2		0.2	ns
t _{IOCOMB}		0.0		0.0	ns
t _{IOSU}	2.8		3.2		ns
t _{IOH}	1.0		1.2		ns
t _{IOCLR}		1.0		1.2	ns
t _{OD1}		2.6		3.5	ns
t_{OD2}		4.9		6.4	ns
t_{OD3}		6.3		8.2	ns
t_{XZ}		4.5		5.4	ns
t _{ZX1}		4.5		5.4	ns
t _{ZX2}		6.8		8.3	ns
t _{ZX3}		8.2		10.1	ns
t _{INREG}		6.0		7.5	ns
t _{IOFD}		3.1		3.5	ns
t _{INCOMB}		3.1		3.5	ns

Table 58. EPF10K70 Device IOE Timing Microparameters Note (1)							
Symbol	-2 Spee	-2 Speed Grade		-3 Speed Grade		-4 Speed Grade	
	Min	Max	Min	Max	Min	Max	1
t_{IOD}		0.0		0.0		0.0	ns
t _{IOC}		0.4		0.5		0.7	ns
t _{IOCO}		0.4		0.4		0.9	ns
t _{IOCOMB}		0.0		0.0		0.0	ns
t _{IOSU}	4.5		5.0		6.2		ns
t_{IOH}	0.4		0.5		0.7		ns
t _{IOCLR}		0.6		0.7		1.6	ns
t _{OD1}		3.6		4.0		5.0	ns
t_{OD2}		5.6		6.3		7.3	ns
t_{OD3}		6.9		7.7		8.7	ns
t _{XZ}		5.5		6.2		6.8	ns
t _{ZX1}		5.5		6.2		6.8	ns
t_{ZX2}		7.5		8.5		9.1	ns
t_{ZX3}		8.8		9.9		10.5	ns
t _{INREG}		8.0		9.0		10.2	ns
t _{IOFD}		7.2		8.1		10.3	ns
t _{INCOMB}		7.2		8.1		10.3	ns

Tables 71 through 77 show EPF10K50V device internal and external timing parameters.

Symbol	-1 Spee	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		-4 Speed Grade	
	Min	Max	Min	Max	Min	Max	Min	Max	
t _{LUT}		0.9		1.0		1.3		1.6	ns
t _{CLUT}		0.1		0.5		0.6		0.6	ns
t _{RLUT}		0.5		8.0		0.9		1.0	ns
t _{PACKED}		0.4		0.4		0.5		0.7	ns
t _{EN}		0.7		0.9		1.1		1.4	ns
t _{CICO}		0.2		0.2		0.2		0.3	ns
t _{CGEN}		0.8		0.7		8.0		1.2	ns
t _{CGENR}		0.4		0.3		0.3		0.4	ns
t _{CASC}		0.7		0.7		8.0		0.9	ns
t_{C}		0.3		1.0		1.3		1.5	ns
t_{CO}		0.5		0.7		0.9		1.0	ns
t _{COMB}		0.4		0.4		0.5		0.6	ns
t_{SU}	0.8		1.6		2.2		2.5		ns
t_H	0.5		0.8		1.0		1.4		ns
t _{PRE}		0.8		0.4		0.5		0.5	ns
t _{CLR}		0.8		0.4		0.5		0.5	ns
t _{CH}	2.0		4.0		4.0		4.0		ns
t_{CL}	2.0		4.0		4.0		4.0		ns

Table 72. EPI	F10K50V D	evice IOE T	iming Mic	roparamet	ers No	ote (1)			
Symbol	-1 Spec	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		-4 Speed Grade	
	Min	Max	Min	Max	Min	Max	Min	Max	
t_{IOD}		1.2		1.6		1.9		2.1	ns
t_{IOC}		0.3		0.4		0.5		0.5	ns
t _{IOCO}		0.3		0.3		0.4		0.4	ns
t _{IOCOMB}		0.0		0.0		0.0		0.0	ns
t_{IOSU}	2.8		2.8		3.4		3.9		ns
t _{IOH}	0.7		0.8		1.0		1.4		ns
t _{IOCLR}		0.5		0.6		0.7		0.7	ns
t _{OD1}		2.8		3.2		3.9		4.7	ns
t _{OD2}		_		_		_		_	ns
t _{OD3}		6.5		6.9		7.6		8.4	ns
t_{XZ}		2.8		3.1		3.8		4.6	ns
t_{ZX1}		2.8		3.1		3.8		4.6	ns
t_{ZX2}		_		_		_		_	ns
t_{ZX3}		6.5		6.8		7.5		8.3	ns
t _{INREG}		5.0		5.7		7.0		9.0	ns
t _{IOFD}		1.5		1.9		2.3		2.7	ns
t _{INCOMB}		1.5		1.9		2.3		2.7	ns

Notes to tables:

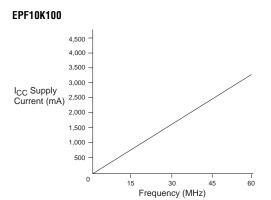
- (1) All timing parameters are described in Tables 32 through 38 in this data sheet.
- (2) Using an LE to register the signal may provide a lower setup time.
- (3) This parameter is specified by characterization.

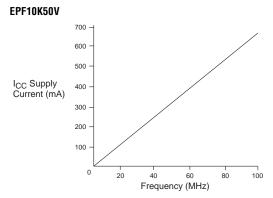
Tables 85 through 91 show EPF10K10A device internal and external timing parameters.

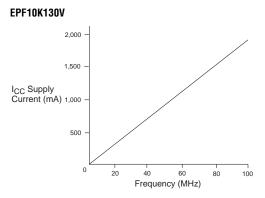
Symbol	1 Speed Crede		2 Snoo	d Grado	2 Snor	Unit	
Symbol	-1 Speed Grade		-2 Spec	d Grade	-o oper	ed Grade	UIIII
	Min	Max	Min	Max	Min	Max	
t _{LUT}		0.9		1.2		1.6	ns
t _{CLUT}		1.2		1.4		1.9	ns
t _{RLUT}		1.9		2.3		3.0	ns
t _{PACKED}		0.6		0.7		0.9	ns
t _{EN}		0.5		0.6		0.8	ns
t _{CICO}	_	02		0.3		0.4	ns
t _{CGEN}	_	0.7		0.9		1.1	ns
t _{CGENR}		0.7		0.9		1.1	ns
t _{CASC}		1.0		1.2		1.7	ns
t _C		1.2		1.4		1.9	ns
$t_{\rm CO}$		0.5		0.6		0.8	ns
t _{COMB}		0.5		0.6		0.8	ns
t _{SU}	1.1		1.3		1.7		ns
t _H	0.6		0.7		0.9		ns
t _{PRE}		0.5		0.6	_	0.9	ns
t _{CLR}		0.5		0.6		0.9	ns
t _{CH}	3.0		3.5		4.0		ns
t _{CL}	3.0		3.5		4.0		ns

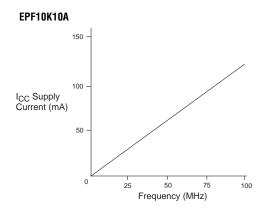
Symbol	-1 Spee	d Grade	-2 Spee	d Grade	-3 Spee	Unit	
	Min	Max	Min	Max	Min	Max	
		1.3		1.5		2.0	ns
ioc		0.2		0.3		0.3	ns
ioco		0.2		0.3		0.4	ns
^t іосомв		0.6		0.7		0.9	ns
t _{iosu}	0.8		1.0		1.3		ns

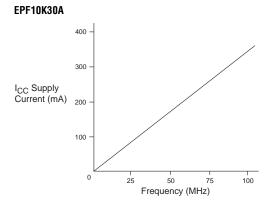
Symbol	-1 Spee	d Grade	-2 Spee	d Grade	-3 Spee	Unit	
	Min	Max	Min	Max	Min	Max	
t _{EABAA}		9.7		11.6		16.2	ns
t _{EABRCCOMB}	9.7		11.6		16.2		ns
t _{EABRCREG}	5.9		7.1		9.7		ns
t _{EABWP}	3.8		4.5		5.9		ns
t _{EABWCCOMB}	4.0		4.7		6.3		ns
t _{EABWCREG}	9.8		11.6		16.6		ns
t _{EABDD}		9.2		11.0		16.1	ns
^t EABDATACO		1.7		2.1		3.4	ns
t _{EABDATASU}	2.3		2.7		3.5		ns
t _{EABDATAH}	0.0		0.0		0.0		ns
t _{EABWESU}	3.3		3.9		4.9		ns
t _{EABWEH}	0.0		0.0		0.0		ns
t _{EABWDSU}	3.2		3.8		5.0		ns
t _{EABWDH}	0.0		0.0		0.0		ns
t _{EABWASU}	3.7		4.4		5.1		ns
t _{EABWAH}	0.0		0.0		0.0		ns
t _{EABWO}		6.1		7.3		11.3	ns


Symbol	-1 Spee	d Grade	-2 Spee	d Grade	-3 Spee	Unit	
	Min	Max	Min	Max	Min	Max	
t _{EABAA}		6.8		7.8		9.2	ns
t _{EABRCCOMB}	6.8		7.8		9.2		ns
t _{EABRCREG}	5.4		6.2		7.4		ns
t _{EABWP}	3.2		3.7		4.4		ns
t _{EABWCCOMB}	3.4		3.9		4.7		ns
t _{EABWCREG}	9.4		10.8		12.8		ns
t _{EABDD}		6.1		6.9		8.2	ns
t _{EABDATACO}		2.1		2.3		2.9	ns
t _{EABDATASU}	3.7		4.3		5.1		ns
t _{EABDATAH}	0.0		0.0		0.0		ns
t _{EABWESU}	2.8		3.3		3.8		ns
t _{EABWEH}	0.0		0.0		0.0		ns
t _{EABWDSU}	3.4		4.0		4.6		ns
t _{EABWDH}	0.0		0.0		0.0		ns
t _{EABWASU}	1.9		2.3		2.6		ns
t _{EABWAH}	0.0		0.0		0.0		ns
t _{EABWO}		5.1		5.7		6.9	ns


Symbol	-1 Speed Grade		-2 Spee	d Grade	-3 Spee	Unit	
	Min	Max	Min	Max	Min	Max	
t _{DIN2IOE}		7.8		8.5		9.4	ns
t _{DIN2LE}		2.7		3.1		3.5	ns
t _{DIN2DATA}		1.6		1.6		1.7	ns
t _{DCLK2IOE}		3.6		4.0		4.6	ns
t _{DCLK2LE}		2.7		3.1		3.5	ns
t _{SAMELAB}		0.2		0.3		0.3	ns
t _{SAMEROW}		6.7		7.3		8.2	ns
t _{SAME} COLUMN		2.5		2.7		3.0	ns
t _{DIFFROW}		9.2		10.0		11.2	ns
t _{TWOROWS}		15.9		17.3		19.4	ns
t _{LEPERIPH}		7.5		8.1		8.9	ns
t _{LABCARRY}		0.3		0.4		0.5	ns
t _{LABCASC}		0.4		0.4		0.5	ns


Table 111. EPF10K250A Device External Reference Timing Parameters Note (1)									
Symbol	-1 Spec	ed Grade	-2 Spec	ed Grade	-3 Spee	Unit			
	Min	Max	Min	Max	Min	Max			
t _{DRR}		15.0		17.0		20.0	ns		
t _{INSU} (2), (3)	6.9		8.0		9.4		ns		
t _{INH} (3)	0.0		0.0		0.0		ns		
t _{оитсо} (3)	2.0	8.0	2.0	8.9	2.0	10.4	ns		


Table 112. EPF10K250A Device External Bidirectional Timing Parameters Note (1)									
Symbol	-1 Speed Grade		-2 Spee	ed Grade	-3 Spee	Unit			
	Min	Max	Min	Max	Min	Max	1		
t _{INSUBIDIR}	9.3		10.6		12.7		ns		
t _{INHBIDIR}	0.0		0.0		0.0		ns		
t _{OUTCOBIDIR}	2.0	8.0	2.0	8.9	2.0	10.4	ns		
t _{XZBIDIR}		10.8		12.2		14.2	ns		
t _{ZXBIDIR}		10.8		12.2		14.2	ns		


Figure 32. I_{CCACTIVE} vs. Operating Frequency (Part 2 of 3)

