Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 144 | | Number of Logic Elements/Cells | 1152 | | Total RAM Bits | 12288 | | Number of I/O | 102 | | Number of Gates | 63000 | | Voltage - Supply | 4.75V ~ 5.25V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 70°C (TA) | | Package / Case | 144-LQFP | | Supplier Device Package | 144-TQFP (20x20) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/epf10k20tc144-3 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong | Table 2. FLEX 10K Device I | eatures | | | | |-----------------------------------|----------|-------------------------|------------|------------| | Feature | EPF10K70 | EPF10K100
EPF10K100A | EPF10K130V | EPF10K250A | | Typical gates (logic and RAM) (1) | 70,000 | 100,000 | 130,000 | 250,000 | | Maximum system gates | 118,000 | 158,000 | 211,000 | 310,000 | | LEs | 3,744 | 4,992 | 6,656 | 12,160 | | LABs | 468 | 624 | 832 | 1,520 | | EABs | 9 | 12 | 16 | 20 | | Total RAM bits | 18,432 | 24,576 | 32,768 | 40,960 | | Maximum user I/O pins | 358 | 406 | 470 | 470 | #### Note to tables: The embedded IEEE Std. 1149.1 JTAG circuitry adds up to 31,250 gates in addition to the listed typical or maximum system gates. # ...and More Features - Devices are fabricated on advanced processes and operate with a 3.3-V or 5.0-V supply voltage (see Table 3 - In-circuit reconfigurability (ICR) via external configuration device, intelligent controller, or JTAG port - ClockLockTM and ClockBoostTM options for reduced clock delay/skew and clock multiplication - Built-in low-skew clock distribution trees - 100% functional testing of all devices; test vectors or scan chains are not required | Table 3. Supply Voltages for FLEX 10K & FLEX 10KA Devices | | | | |---|---------------|--|--| | 5.0-V Devices | 3.3-V Devices | | | | EPF10K10 | EPF10K10A | | | | EPF10K20 | EPF10K30A | | | | EPF10K30 | EPF10K50V | | | | EPF10K40 | EPF10K100A | | | | EPF10K50 | EPF10K130V | | | | EPF10K70 | EPF10K250A | | | | EPF10K100 | | | | Larger blocks of RAM are created by combining multiple EABs. For example, two 256×8 RAM blocks can be combined to form a 256×16 RAM block; two 512×4 blocks of RAM can be combined to form a 512×8 RAM block. See Figure 3. Figure 3. Examples of Combining EABs If necessary, all EABs in a device can be cascaded to form a single RAM block. EABs can be cascaded to form RAM blocks of up to 2,048 words without impacting timing. Altera's software automatically combines EABs to meet a designer's RAM specifications. EABs provide flexible options for driving and controlling clock signals. Different clocks can be used for the EAB inputs and outputs. Registers can be independently inserted on the data input, EAB output, or the address and WE inputs. The global signals and the EAB local interconnect can drive the WE signal. The global signals, dedicated clock pins, and EAB local interconnect can drive the EAB clock signals. Because the LEs drive the EAB local interconnect, the LEs can control the WE signal or the EAB clock signals. Each EAB is fed by a row interconnect and can drive out to row and column interconnects. Each EAB output can drive up to two row channels and up to two column channels; the unused row channel can be driven by other LEs. This feature increases the routing resources available for EAB outputs. See Figure 4. Figure 12 shows the interconnection of adjacent LABs and EABs with row, column, and local interconnects, as well as the associated cascade and carry chains. Each LAB is labeled according to its location: a letter represents the row and a number represents the column. For example, LAB B3 is in row B, column 3. Figure 12. Interconnect Resources Each IOE selects the clock, clear, clock enable, and output enable controls from a network of I/O control signals called the peripheral control bus. The peripheral control bus uses high-speed drivers to minimize signal skew across devices; it provides up to 12 peripheral control signals that can be allocated as follows: - Up to eight output enable signals - Up to six clock enable signals - Up to two clock signals - Up to two clear signals If more than six clock enable or eight output enable signals are required, each IOE on the device can be controlled by clock enable and output enable signals driven by specific LEs. In addition to the two clock signals available on the peripheral control bus, each IOE can use one of two dedicated clock pins. Each peripheral control signal can be driven by any of the dedicated input pins or the first LE of each LAB in a particular row. In addition, an LE in a different row can drive a column interconnect, which causes a row interconnect to drive the peripheral control signal. The chip-wide reset signal will reset all IOE registers, overriding any other control signals. Tables 8 and 9 list the sources for each peripheral control signal, and the rows that can drive global signals. These tables also show how the output enable, clock enable, clock, and clear signals share 12 peripheral control signals. | Table 8. EPF10K10, EPF10K20, | EPF10K30, EPF | 10K40 & EPF10 | K50 Periphera | l Bus Sources | | |------------------------------|-----------------------|---------------|-----------------------|---------------|-----------------------| | Peripheral
Control Signal | EPF10K10
EPF10K10A | EPF10K20 | EPF10K30
EPF10K30A | EPF10K40 | EPF10K50
EPF10K50V | | OE0 | Row A | | OE1 | Row A | Row B | Row B | Row C | Row B | | OE2 | Row B | Row C | Row C | Row D | Row D | | OE3 | Row B | Row D | Row D | Row E | Row F | | OE4 | Row C | Row E | Row E | Row F | Row H | | OE5 | Row C | Row F | Row F | Row G | Row J | | CLKENA0/CLK0/GLOBAL0 | Row A | Row A | Row A | Row B | Row A | | CLKENA1/OE6/GLOBAL1 | Row A | Row B | Row B | Row C | Row C | | CLKENA2/CLR0 | Row B | Row C | Row C | Row D | Row E | | CLKENA3/OE7/GLOBAL2 | Row B | Row D | Row D | Row E | Row G | | CLKENA4/CLR1 | Row C | Row E | Row E | Row F | Row I | | CLKENA5/CLK1/GLOBAL3 | Row C | Row F | Row F | Row H | Row J | | Peripheral
Control Signal | EPF10K70 | EPF10K100
EPF10K100A | EPF10K130V | EPF10K250A | |------------------------------|----------|-------------------------|------------|------------| | OE 0 | Row A | Row A | Row C | Row E | | OE1 | Row B | Row C | Row E | Row G | | OE2 | Row D | Row E | Row G | Row I | | OE3 | Row I | Row L | Row N | Row P | | OE 4 | Row G | Row I | Row K | Row M | | OE5 | Row H | Row K | Row M | Row O | | CLKENA0/CLK0/GLOBAL0 | Row E | Row F | Row H | Row J | | CLKENA1/OE6/GLOBAL1 | Row C | Row D | Row F | Row H | | CLKENA2/CLR0 | Row B | Row B | Row D | Row F | | CLKENA3/OE7/GLOBAL2 | Row F | Row H | Row J | Row L | | CLKENA4/CLR1 | Row H | Row J | Row L | Row N | | CLKENA5/CLK1/GLOBAL3 | Row E | Row G | Row I | Row K | Figure 15. FLEX 10K Column-to-IOE Connections The values for m and n are provided in Table 11. Table 11 lists the FLEX 10K column-to-IOE interconnect resources. | Table 11. FLEX 10 | OK Column-to-IOE Interconnec | ct Resources | |-------------------------|------------------------------|----------------------------| | Device | Channels per Column (n) | Column Channel per Pin (m) | | EPF10K10
EPF10K10A | 24 | 16 | | EPF10K20 | 24 | 16 | | EPF10K30
EPF10K30A | 24 | 16 | | EPF10K40 | 24 | 16 | | EPF10K50
EPF10K50V | 24 | 16 | | EPF10K70 | 24 | 16 | | EPF10K100
EPF10K100A | 24 | 16 | | EPF10K130V | 32 | 24 | | EPF10K250A | 40 | 32 | | Symbol | Parameter | Conditions | Min | Typ | Max | Unit | |------------------|--|--|-------------------------|-----|------|------| | V _{IH} | High-level input voltage | | 2.0 | | 5.75 | V | | V _{IL} | Low-level input voltage | | -0.5 | | 0.8 | V | | V _{OH} | 3.3-V high-level TTL output voltage | $I_{OH} = -8 \text{ mA DC } (8)$ | 2.4 | | | V | | | 3.3-V high-level CMOS output voltage | $I_{OH} = -0.1 \text{ mA DC } (8)$ | V _{CCIO} - 0.2 | | | V | | V _{OL} | 3.3-V low-level TTL output voltage | I _{OL} = 8 mA DC (9) | | | 0.45 | V | | | 3.3-V low-level CMOS output voltage | I _{OL} = 0.1 mA DC (9) | | | 0.2 | V | | I _I | Input pin leakage current | $V_1 = 5.3 \text{ V to } -0.3 \text{ V } (10)$ | -10 | | 10 | μА | | I _{OZ} | Tri-stated I/O pin leakage current | $V_O = 5.3 \text{ V to } -0.3 \text{ V } (10)$ | -10 | | 10 | μΑ | | I _{CC0} | V _{CC} supply current (standby) | V _I = ground, no load | | 0.3 | 10 | mA | | | | V_I = ground, no load (11) | | 10 | | mA | | Table 2 | 5. EPF10K50V & EPF10K130V D | Device Capacitance (12) | rice Capacitance (12) | | | |--------------------|--|-------------------------------------|-----------------------|-----|------| | Symbol | Parameter | Conditions | Min | Max | Unit | | C _{IN} | Input capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 10 | pF | | C _{INCLK} | Input capacitance on dedicated clock pin | V _{IN} = 0 V, f = 1.0 MHz | | 15 | pF | | C _{OUT} | Output capacitance | V _{OUT} = 0 V, f = 1.0 MHz | | 10 | pF | #### Notes to tables: - (1) See the Operating Requirements for Altera Devices Data Sheet. - (2) Minimum DC input voltage is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 5.75 V for input currents less than 100 mA and periods shorter than 20 ns. - (3) Numbers in parentheses are for industrial-temperature-range devices. - (4) Maximum V_{CC} rise time is 100 ms. V_{CC} must rise monotonically. - (5) EPF10K50V and EPF10K130V device inputs may be driven before V_{CCINT} and V_{CCIO} are powered. - (6) Typical values are for $T_A = 25^{\circ}$ C and $V_{CC} = 3.3$ V. - (7) These values are specified under the EPF10K50V and EPF10K130V device Recommended Operating Conditions in Table 23 on page 48. - (8) The I_{OH} parameter refers to high-level TTL or CMOS output current. - (9) The I_{OL} parameter refers to low-level TTL or CMOS output current. This parameter applies to open-drain pins as well as output pins. - (10) This value is specified for normal device operation. The value may vary during power-up. - (11) This parameter applies to -1 speed grade EPF10K50V devices, -2 speed grade EPF10K50V industrial temperature devices, and -2 speed grade EPF10K130V devices. - (12) Capacitance is sample-tested only. Timing simulation and delay prediction are available with the MAX+PLUS II Simulator and Timing Analyzer, or with industry-standard EDA tools. The Simulator offers both pre-synthesis functional simulation to evaluate logic design accuracy and post-synthesis timing simulation with 0.1-ns resolution. The Timing Analyzer provides point-to-point timing delay information, setup and hold time analysis, and device-wide performance analysis. Figure 24 shows the overall timing model, which maps the possible paths to and from the various elements of the FLEX 10K device. Figure 24. FLEX 10K Device Timing Model | Symbol | Parameter | Conditions | |------------------------|--|------------| | t _{EABDATA1} | Data or address delay to EAB for combinatorial input | | | t _{EABDATA2} | Data or address delay to EAB for registered input | | | t _{EABWE1} | Write enable delay to EAB for combinatorial input | | | t _{EABWE2} | Write enable delay to EAB for registered input | | | t _{EABCLK} | EAB register clock delay | | | t _{EABCO} | EAB register clock-to-output delay | | | t _{EABBYPASS} | Bypass register delay | | | t _{EABSU} | EAB register setup time before clock | | | t _{EABH} | EAB register hold time after clock | | | t_{AA} | Address access delay | | | t_{WP} | Write pulse width | | | t _{WDSU} | Data setup time before falling edge of write pulse | (5) | | t _{WDH} | Data hold time after falling edge of write pulse | (5) | | t _{WASU} | Address setup time before rising edge of write pulse | (5) | | t _{WAH} | Address hold time after falling edge of write pulse | (5) | | t_{WO} | Write enable to data output valid delay | | | t _{DD} | Data-in to data-out valid delay | | | t _{EABOUT} | Data-out delay | | | t _{EABCH} | Clock high time | | | t _{EABCL} | Clock low time | | | Table 45. EPF10K10 & EPF10K20 Device External Timing Parameters Note (1) | | | | | | |---|--------|----------|---------|------|----| | Symbol | -3 Spe | ed Grade | -4 Spee | Unit | | | | Min | Max | Min | Max | | | t _{DRR} | | 16.1 | | 20.0 | ns | | t _{INSU} (2), (3) | 5.5 | | 6.0 | | ns | | t _{INH} (3) | 0.0 | | 0.0 | | ns | | t _{оитсо} (3) | 2.0 | 6.7 | 2.0 | 8.4 | ns | | Table 46. EPF10K10 Device External Bidirectional Timing Parameters Note (1) | | | | | | |---|----------------|------|----------------|------|------| | Symbol | -3 Speed Grade | | -4 Speed Grade | | Unit | | | Min | Max | Min | Max | | | t _{INSUBIDIR} | 4.5 | | 5.6 | | ns | | t _{INHBIDIR} | 0.0 | | 0.0 | | ns | | t _{OUTCOBIDIR} | 2.0 | 6.7 | 2.0 | 8.4 | ns | | t _{XZBIDIR} | | 10.5 | | 13.4 | ns | | t _{ZXBIDIR} | | 10.5 | | 13.4 | ns | | Symbol | -3 Speed Grade | | -4 Speed Grade | | Unit | |-------------------------|----------------|------|----------------|------|------| | | Min | Max | Min | Max | | | t _{INSUBIDIR} | 4.6 | | 5.7 | | ns | | t _{INHBIDIR} | 0.0 | | 0.0 | | ns | | t _{OUTCOBIDIR} | 2.0 | 6.7 | 2.0 | 8.4 | ns | | t _{XZBIDIR} | | 10.5 | | 13.4 | ns | | t _{ZXBIDIR} | | 10.5 | | 13.4 | ns | ### Notes to tables: - All timing parameters are described in Tables 32 through 38 in this data sheet. Using an LE to register the signal may provide a lower setup time. This parameter is specified by characterization. | Symbol | -3DX Spe | -3DX Speed Grade -3 S | | | -4 Speed Grade | | Unit | |---|----------|-------------------------|-----|------|----------------|------|------| | | Min | Max | Min | Max | Min | Max | | | t _{DIN2IOE} | | 10.3 | | 10.3 | | 12.2 | ns | | t _{DIN2LE} | | 4.8 | | 4.8 | | 6.0 | ns | | t _{DIN2DATA} | | 7.3 | | 7.3 | | 11.0 | ns | | t _{DCLK2IOE} without ClockLock or ClockBoost circuitry | | 6.2 | | 6.2 | | 7.7 | ns | | $t_{DCLK2IOE}$ with ClockLock or ClockBoost circuitry | | 2.3 | | _ | | _ | ns | | t _{DCLK2LE} without ClockLock or
ClockBoost circuitry | | 4.8 | | 4.8 | | 6.0 | ns | | $t_{DCLK2LE}$ with ClockLock or ClockBoost circuitry | | 2.3 | | _ | | _ | ns | | ^t SAMELAB | | 0.4 | | 0.4 | | 0.5 | ns | | ^t SAMEROW | | 4.9 | | 4.9 | | 5.5 | ns | | ^t SAMECOLUMN | | 5.1 | | 5.1 | | 5.4 | ns | | t _{DIFFROW} | | 10.0 | | 10.0 | | 10.9 | ns | | t _{TWOROWS} | | 14.9 | | 14.9 | | 16.4 | ns | | t _{LEPERIPH} | | 6.9 | | 6.9 | | 8.1 | ns | | t _{LABCARRY} | | 0.9 | | 0.9 | | 1.1 | ns | | t _{LABCASC} | | 3.0 | | 3.0 | | 3.2 | ns | | 0 | 4.0 | | 0.0 | -l 0l - | 0.0 | | de -4 Speed Grade | | | |------------------------|--------|---------|---------|---------|--------|----------|-------------------|----------|------| | Symbol | -1 Spe | d Grade | -2 Spee | d Grade | -3 Spe | ed Grade | -4 Spee | ed Grade | Unit | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t _{EABDATA1} | | 1.7 | | 2.8 | | 3.4 | | 4.6 | ns | | t _{EABDATA2} | | 4.9 | | 3.9 | | 4.8 | | 5.9 | ns | | t _{EABWE1} | | 0.0 | | 2.5 | | 3.0 | | 3.7 | ns | | t _{EABWE2} | | 4.0 | | 4.1 | | 5.0 | | 6.2 | ns | | t _{EABCLK} | | 0.4 | | 0.8 | | 1.0 | | 1.2 | ns | | t _{EABCO} | | 0.1 | | 0.2 | | 0.3 | | 0.4 | ns | | t _{EABBYPASS} | | 0.9 | | 1.1 | | 1.3 | | 1.6 | ns | | t _{EABSU} | 0.8 | | 1.5 | | 1.8 | | 2.2 | | ns | | t _{EABH} | 0.8 | | 1.6 | | 2.0 | | 2.5 | | ns | | t_{AA} | | 5.5 | | 8.2 | | 10.0 | | 12.4 | ns | | t_{WP} | 6.0 | | 4.9 | | 6.0 | | 7.4 | | ns | | t _{WDSU} | 0.1 | | 0.8 | | 1.0 | | 1.2 | | ns | | t _{WDH} | 0.1 | | 0.2 | | 0.3 | | 0.4 | | ns | | t _{WASU} | 0.1 | | 0.4 | | 0.5 | | 0.6 | | ns | | t _{WAH} | 0.1 | | 0.8 | | 1.0 | | 1.2 | | ns | | t_{WO} | | 2.8 | | 4.3 | | 5.3 | | 6.5 | ns | | t_{DD} | | 2.8 | | 4.3 | | 5.3 | | 6.5 | ns | | t _{EABOUT} | | 0.5 | | 0.4 | | 0.5 | | 0.6 | ns | | t _{EABCH} | 2.0 | | 4.0 | | 4.0 | | 4.0 | | ns | | t _{EABCL} | 6.0 | | 4.9 | | 6.0 | | 7.4 | | ns | | Symbol | -1 Spee | ed Grade | -2 Spee | d Grade | -3 Spee | ed Grade | -4 Spee | -4 Speed Grade | | |--------------------------|---------|----------|---------|---------|---------|----------|---------|----------------|----| | · | Min | Max | Min | Max | Min | Max | Min | Max | - | | t _{DIN2IOE} | | 4.7 | | 6.0 | | 7.1 | | 8.2 | ns | | t _{DIN2LE} | | 2.5 | | 2.6 | | 3.1 | | 3.9 | ns | | t _{DIN2DATA} | | 4.4 | | 5.9 | | 6.8 | | 7.7 | ns | | t _{DCLK2IOE} | | 2.5 | | 3.9 | | 4.7 | | 5.5 | ns | | t _{DCLK2LE} | | 2.5 | | 2.6 | | 3.1 | | 3.9 | ns | | t _{SAMELAB} | | 0.2 | | 0.2 | | 0.3 | | 0.3 | ns | | t _{SAMEROW} | | 2.8 | | 3.0 | | 3.2 | | 3.4 | ns | | t _{SAME} COLUMN | | 3.0 | | 3.2 | | 3.4 | | 3.6 | ns | | t _{DIFFROW} | | 5.8 | | 6.2 | | 6.6 | | 7.0 | ns | | t _{TWOROWS} | | 8.6 | | 9.2 | | 9.8 | | 10.4 | ns | | t _{LEPERIPH} | | 4.5 | | 5.5 | | 6.1 | | 7.0 | ns | | t _{LABCARRY} | | 0.3 | | 0.4 | | 0.5 | | 0.7 | ns | | t _{LABCASC} | | 0.0 | | 1.3 | | 1.6 | | 2.0 | ns | | Table 76. EPF | Table 76. EPF10K50V Device External Timing Parameters Note (1) | | | | | | | | | | |----------------------------|--|------|---------|-------------------------------------|-----|---------|------|------|----|--| | Symbol | -1 Speed Grade | | -2 Spee | ed Grade -3 Speed Grade -4 Speed Gr | | d Grade | Unit | | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | | t _{DRR} | | 11.2 | | 14.0 | | 17.2 | | 21.1 | ns | | | t _{INSU} (2), (3) | 5.5 | | 4.2 | | 5.2 | | 6.9 | | ns | | | t _{INH} (3) | 0.0 | | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{оитсо} (3) | 2.0 | 5.9 | 2.0 | 7.8 | 2.0 | 9.5 | 2.0 | 11.1 | ns | | | Table 77. EPF10K50V Device External Bidirectional Timing Parameters Note (1) | | | | | | | | | | |--|----------------|-----|---------|---------|---------|---------|---------|---------|------| | Symbol | -1 Speed Grade | | -2 Spee | d Grade | -3 Spee | d Grade | -4 Spee | d Grade | Unit | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t _{INSUBIDIR} | 2.0 | | 2.8 | | 3.5 | | 4.1 | | ns | | t _{INHBIDIR} | 0.0 | | 0.0 | | 0.0 | | 0.0 | | ns | | t _{OUTCOBIDIR} | 2.0 | 5.9 | 2.0 | 7.8 | 2.0 | 9.5 | 2.0 | 11.1 | ns | | t _{XZBIDIR} | | 8.0 | | 9.8 | | 11.8 | | 14.3 | ns | | t _{ZXBIDIR} | | 8.0 | | 9.8 | | 11.8 | | 14.3 | ns | #### Notes to tables: - (1) All timing parameters are described in Tables 32 through 38 in this data sheet. - (2) Using an LE to register the signal may provide a lower setup time. - (3) This parameter is specified by characterization. Tables 78 through 84 show EPF10K130V device internal and external timing parameters. | Symbol | -2 Spee | ed Grade | -3 Spee | ed Grade | -4 Spee | d Grade | Unit | |---------------------|---------|----------|---------|----------|---------|---------|------| | | Min | Max | Min | Max | Min | Max | | | t_{LUT} | | 1.3 | | 1.8 | | 2.3 | ns | | t _{CLUT} | | 0.5 | | 0.7 | | 0.9 | ns | | t _{RLUT} | | 1.2 | | 1.7 | | 2.2 | ns | | t _{PACKED} | | 0.5 | | 0.6 | | 0.7 | ns | | t_{EN} | | 0.6 | | 0.8 | | 1.0 | ns | | t_{CICO} | | 0.2 | | 0.3 | | 0.4 | ns | | t _{CGEN} | | 0.3 | | 0.4 | | 0.5 | ns | | t _{CGENR} | | 0.7 | | 1.0 | | 1.3 | ns | | t_{CASC} | | 0.9 | | 1.2 | | 1.5 | ns | | $t_{\rm C}$ | | 1.9 | | 2.4 | | 3.0 | ns | | t_{CO} | | 0.6 | | 0.9 | | 1.1 | ns | | t _{COMB} | | 0.5 | | 0.7 | | 0.9 | ns | | t _{SU} | 0.2 | | 0.2 | | 0.3 | | ns | | t _H | 0.0 | | 0.0 | | 0.0 | | ns | | t _{PRE} | | 2.4 | | 3.1 | | 3.9 | ns | | t _{CLR} | | 2.4 | | 3.1 | | 3.9 | ns | | t _{CH} | 4.0 | | 4.0 | | 4.0 | | ns | | t_{CL} | 4.0 | | 4.0 | | 4.0 | | ns | | Symbol | -1 Spee | d Grade | -2 Spee | d Grade | -3 Spee | d Grade | Unit | |------------------------|---------|---------|---------|---------|---------|---------|------| | | Min | Max | Min | Max | Min | Max | | | t _{EABDATA1} | | 3.3 | | 3.9 | | 5.2 | ns | | t _{EABDATA2} | | 1.0 | | 1.3 | | 1.7 | ns | | t _{EABWE1} | | 2.6 | | 3.1 | | 4.1 | ns | | t _{EABWE2} | | 2.7 | | 3.2 | | 4.3 | ns | | t _{EABCLK} | | 0.0 | | 0.0 | | 0.0 | ns | | t _{EABCO} | | 1.2 | | 1.4 | | 1.8 | ns | | t _{EABBYPASS} | | 0.1 | | 0.2 | | 0.2 | ns | | t _{EABSU} | 1.4 | | 1.7 | | 2.2 | | ns | | t _{EABH} | 0.1 | | 0.1 | | 0.1 | | ns | | t_{AA} | | 4.5 | | 5.4 | | 7.3 | ns | | t_{WP} | 2.0 | | 2.4 | | 3.2 | | ns | | t _{WDSU} | 0.7 | | 0.8 | | 1.1 | | ns | | t _{WDH} | 0.5 | | 0.6 | | 0.7 | | ns | | t _{WASU} | 0.6 | | 0.7 | | 0.9 | | ns | | t _{WAH} | 0.9 | | 1.1 | | 1.5 | | ns | | t_{WO} | | 3.3 | | 3.9 | | 5.2 | ns | | t_{DD} | | 3.3 | | 3.9 | | 5.2 | ns | | t _{EABOUT} | | 0.1 | | 0.1 | | 0.2 | ns | | t _{EABCH} | 3.0 | | 3.5 | | 4.0 | | ns | | t _{EABCL} | 3.03 | | 3.5 | | 4.0 | | ns | | Symbol | -1 Spee | d Grade | -2 Spee | d Grade | -3 Spee | d Grade | Unit | |---------------------|---------|---------|---------|---------|---------|---------|------| | | Min | Max | Min | Max | Min | Max | | | t _{IOH} | 0.9 | | 1.1 | | 1.4 | | ns | | t _{IOCLR} | | 0.7 | | 0.8 | | 1.0 | ns | | t _{OD1} | | 1.9 | | 2.2 | | 2.9 | ns | | tOD2 | | 4.8 | | 5.6 | | 7.3 | ns | | t _{OD3} | | 7.0 | | 8.2 | | 10.8 | ns | | XZ | | 2.2 | | 2.6 | | 3.4 | ns | | ZX1 | | 2.2 | | 2.6 | | 3.4 | ns | | ZX2 | | 5.1 | | 6.0 | | 7.8 | ns | | ZX3 | | 7.3 | | 8.6 | | 11.3 | ns | | INREG | | 4.4 | | 5.2 | | 6.8 | ns | | IOFD | | 3.8 | | 4.5 | | 5.9 | ns | | t _{INCOMB} | | 3.8 | | 4.5 | | 5.9 | ns | | Table 95. EPF10 | K30A Device | EAB Internal | Timing Macr | oparameters | Note (1) | | | | |-------------------------|-------------|--------------|-------------|-------------|----------------|------|------|--| | Symbol | -1 Spee | d Grade | -2 Spee | d Grade | -3 Speed Grade | | Unit | | | | Min | Max | Min | Max | Min | Max | | | | t _{EABAA} | | 9.7 | | 11.6 | | 16.2 | ns | | | t _{EABRCCOMB} | 9.7 | | 11.6 | | 16.2 | | ns | | | t _{EABRCREG} | 5.9 | | 7.1 | | 9.7 | | ns | | | t _{EABWP} | 3.8 | | 4.5 | | 5.9 | | ns | | | t _{EABWCCOMB} | 4.0 | | 4.7 | | 6.3 | | ns | | | t _{EABWCREG} | 9.8 | | 11.6 | | 16.6 | | ns | | | t _{EABDD} | | 9.2 | | 11.0 | | 16.1 | ns | | | t _{EABDATA} CO | | 1.7 | | 2.1 | | 3.4 | ns | | | t _{EABDATASU} | 2.3 | | 2.7 | | 3.5 | | ns | | | t _{EABDATAH} | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{EABWESU} | 3.3 | | 3.9 | | 4.9 | | ns | | | t _{EABWEH} | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{EABWDSU} | 3.2 | | 3.8 | | 5.0 | | ns | | | t _{EABWDH} | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{EABWASU} | 3.7 | | 4.4 | | 5.1 | | ns | | | t _{EABWAH} | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{EABWO} | | 6.1 | | 7.3 | | 11.3 | ns | | Figure 32. I_{CCACTIVE} vs. Operating Frequency (Part 1 of 3) Figure 32. I_{CCACTIVE} vs. Operating Frequency (Part 2 of 3) Multiple FLEX 10K devices can be configured in any of the five configuration schemes by connecting the configuration enable (nCE) and configuration enable output (nCEO) pins on each device. | Table 116. Data Sources for Configuration | on | |---|---| | Configuration Scheme | Data Source | | Configuration device | EPC1, EPC2, EPC16, or EPC1441 configuration device | | Passive serial (PS) | BitBlaster, MasterBlaster, or ByteBlasterMV download cable, or serial data source | | Passive parallel asynchronous (PPA) | Parallel data source | | Passive parallel synchronous (PPS) | Parallel data source | | JTAG | BitBlaster, MasterBlaster, or ByteBlasterMV download cable, or microprocessor with Jam STAPL file or Jam Byte-Code file | # Device Pin-Outs See the Altera web site (http://www.altera.com) or the Altera Digital Library for pin-out information. # Revision History The information contained in the *FLEX 10K Embedded Programmable Logic Device Family Data Sheet* version 4.2 supersedes information published in previous versions. ### **Version 4.2 Changes** The following change was made to version 4.2 of the *FLEX 10K Embedded Programmable Logic Device Family Data Sheet*: updated Figure 13. ## **Version 4.1 Changes** The following changes were made to version 4.1 of the FLEX 10K Embedded Programmable Logic Device Family Data Sheet. - Updated General Description section - Updated I/O Element section - Updated SameFrame Pin-Outs section - Updated Figure 16 - Updated Tables 13 and 116 - Added Note 9 to Table 19 - Added Note 10 to Table 24 - Added Note 10 to Table 28