E·XFL

Intel - EPF10K30AFC256-1 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	216
Number of Logic Elements/Cells	1728
Total RAM Bits	12288
Number of I/O	191
Number of Gates	69000
Voltage - Supply	3V ~ 3.6V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	256-BGA
Supplier Device Package	256-FBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epf10k30afc256-1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FastTrack Interconnect

In the FLEX 10K architecture, connections between LEs and device I/O pins are provided by the FastTrack Interconnect, which is a series of continuous horizontal and vertical routing channels that traverse the device. This global routing structure provides predictable performance, even in complex designs. In contrast, the segmented routing in FPGAs requires switch matrices to connect a variable number of routing paths, increasing the delays between logic resources and reducing performance.

The FastTrack Interconnect consists of row and column interconnect channels that span the entire device. Each row of LABs is served by a dedicated row interconnect. The row interconnect can drive I/O pins and feed other LABs in the device. The column interconnect routes signals between rows and can drive I/O pins.

A row channel can be driven by an LE or by one of three column channels. These four signals feed dual 4-to-1 multiplexers that connect to two specific row channels. These multiplexers, which are connected to each LE, allow column channels to drive row channels even when all eight LEs in an LAB drive the row interconnect.

Each column of LABs is served by a dedicated column interconnect. The column interconnect can then drive I/O pins or another row's interconnect to route the signals to other LABs in the device. A signal from the column interconnect, which can be either the output of an LE or an input from an I/O pin, must be routed to the row interconnect before it can enter an LAB or EAB. Each row channel that is driven by an IOE or EAB can drive one specific column channel.

Access to row and column channels can be switched between LEs in adjacent pairs of LABs. For example, an LE in one LAB can drive the row and column channels normally driven by a particular LE in the adjacent LAB in the same row, and vice versa. This routing flexibility enables routing resources to be used more efficiently. See Figure 11. Signals on the peripheral control bus can also drive the four global signals, referred to as GLOBAL0 through GLOBAL3 in Tables 8 and 9. The internally generated signal can drive the global signal, providing the same low-skew, low-delay characteristics for an internally generated signal as for a signal driven by an input. This feature is ideal for internally generated clear or clock signals with high fan-out. When a global signal is driven by internal logic, the dedicated input pin that drives that global signal cannot be used. The dedicated input pin should be driven to a known logic state (such as ground) and not be allowed to float.

When the chip-wide output enable pin is held low, it will tri-state all pins on the device. This option can be set in the Global Project Device Options menu. Additionally, the registers in the IOE can be reset by holding the chip-wide reset pin low.

Row-to-IOE Connections

When an IOE is used as an input signal, it can drive two separate row channels. The signal is accessible by all LEs within that row. When an IOE is used as an output, the signal is driven by a multiplexer that selects a signal from the row channels. Up to eight IOEs connect to each side of each row channel. See Figure 14.

Figure 14. FLEX 10K Row-to-IOE Connections

The values for m and n are provided in Table 10.

ClockLock & ClockBoost Features

To support high-speed designs, selected FLEX 10K devices offer optional ClockLock and ClockBoost circuitry containing a phase-locked loop (PLL) that is used to increase design speed and reduce resource usage. The ClockLock circuitry uses a synchronizing PLL that reduces the clock delay and skew within a device. This reduction minimizes clock-to-output and setup times while maintaining zero hold times. The ClockBoost circuitry, which provides a clock multiplier, allows the designer to enhance device area efficiency by sharing resources within the device. The ClockBoost feature allows the designer to distribute a low-speed clock and multiply that clock on-device. Combined, the ClockLock and ClockBoost features provide significant improvements in system performance and bandwidth.

The ClockLock and ClockBoost features in FLEX 10K devices are enabled through the Altera software. External devices are not required to use these features. The output of the ClockLock and ClockBoost circuits is not available at any of the device pins.

The ClockLock and ClockBoost circuitry locks onto the rising edge of the incoming clock. The circuit output can only drive the clock inputs of registers; the generated clock cannot be gated or inverted.

The dedicated clock pin (GCLK1) supplies the clock to the ClockLock and ClockBoost circuitry. When the dedicated clock pin is driving the ClockLock or ClockBoost circuitry, it cannot drive elsewhere in the device.

In designs that require both a multiplied and non-multiplied clock, the clock trace on the board can be connected to GCLK1. With the Altera software, GCLK1 can feed both the ClockLock and ClockBoost circuitry in the FLEX 10K device. However, when both circuits are used, the other clock pin (GCLK0) cannot be used. Figure 17 shows a block diagram of how to enable both the ClockLock and ClockBoost circuits in the Altera software. The example shown is a schematic, but a similar approach applies for designs created in AHDL, VHDL, and Verilog HDL. When the ClockLock and ClockBoost circuits. In Figure 17, the input frequency must meet the requirements specified when the ClockBoost multiplication factor is two.

Notes to tables:

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- (2) Minimum DC input voltage is -0.5 V. During transitions, the inputs may undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns.
- (3) Numbers in parentheses are for industrial-temperature-range devices.
- (4) Maximum \hat{V}_{CC} rise time is 100 ms. V_{CC} must rise monotonically.
- (5) Typical values are for $T_A = 25^\circ \text{ C}$ and $V_{CC} = 5.0 \text{ V}$.
- (6) These values are specified under the Recommended Operation Condition shown in Table 18 on page 45.
- (7) The I_{OH} parameter refers to high-level TTL or CMOS output current.
- (8) The I_{OL} parameter refers to low-level TTL or CMOS output current. This parameter applies to open-drain pins as well as output pins.
- (9) This value is specified for normal device operation. The value may vary during power-up.
- (10) Capacitance is sample-tested only.

Figure 20 shows the typical output drive characteristics of FLEX 10K devices with 5.0-V and 3.3-V V_{CCIO} . The output driver is compliant with the 5.0-V *PCI Local Bus Specification, Revision 2.2* (for 5.0-V V_{CCIO}).

Figure 20. Output Drive Characteristics of FLEX 10K Devices

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IH}	High-level input voltage		2.0		5.75	V
VIL	Low-level input voltage		-0.5		0.8	V
V _{OH}	3.3-V high-level TTL output voltage	I _{OH} = -8 mA DC <i>(8)</i>	2.4			V
	3.3-V high-level CMOS output voltage	I _{OH} = -0.1 mA DC <i>(8)</i>	V _{CCIO} – 0.2			V
V _{OL}	3.3-V low-level TTL output voltage	I _{OL} = 8 mA DC <i>(9)</i>			0.45	V
	3.3-V low-level CMOS output voltage	I _{OL} = 0.1 mA DC <i>(9)</i>			0.2	V
I _I	Input pin leakage current	V _I = 5.3 V to -0.3 V (10)	-10		10	μA
I _{OZ}	Tri-stated I/O pin leakage current	$V_{\rm O} = 5.3 \text{ V to } -0.3 \text{ V} (10)$	-10		10	μA
I _{CC0}	V _{CC} supply current (standby)	V _I = ground, no load		0.3	10	mA
		V_1 = ground, no load (11)		10		mA

Table 2	Table 25. EPF10K50V & EPF10K130V Device Capacitance (12)							
Symbol	Parameter	Conditions	Min	Max	Unit			
C _{IN}	Input capacitance	V _{IN} = 0 V, f = 1.0 MHz		10	pF			
CINCLK	Input capacitance on dedicated clock pin	V _{IN} = 0 V, f = 1.0 MHz		15	pF			
C _{OUT}	Output capacitance	V _{OUT} = 0 V, f = 1.0 MHz		10	pF			

Notes to tables:

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- (2) Minimum DC input voltage is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 5.75 V for input currents less than 100 mA and periods shorter than 20 ns.
- (3) Numbers in parentheses are for industrial-temperature-range devices.
- (4) Maximum V_{CC} rise time is 100 ms. V_{CC} must rise monotonically.
- (5) EPF10K50V and EPF10K130V device inputs may be driven before V_{CCINT} and V_{CCIO} are powered.
- (6) Typical values are for $T_A = 25^\circ \text{ C}$ and $V_{CC} = 3.3 \text{ V}$.
- (7) These values are specified under the EPF10K50V and EPF10K130V device Recommended Operating Conditions in Table 23 on page 48.
- (8) The I_{OH} parameter refers to high-level TTL or CMOS output current.
- (9) The I_{OL} parameter refers to low-level TTL or CMOS output current. This parameter applies to open-drain pins as well as output pins.
- (10) This value is specified for normal device operation. The value may vary during power-up.
- (11) This parameter applies to -1 speed grade EPF10K50V devices, -2 speed grade EPF10K50V industrial temperature devices, and -2 speed grade EPF10K130V devices.
- (12) Capacitance is sample-tested only.

Figure 22 shows the typical output drive characteristics of EPF10K10A, EPF10K30A, EPF10K100A, and EPF10K250A devices with 3.3-V and 2.5-V V_{CCIO}. The output driver is compliant with the 3.3-V *PCI Local Bus Specification, Revision* 2.2 (with 3.3-V V_{CCIO}). Moreover, device analysis shows that the EPF10K10A, EPF10K30A, and EPF10K10A devices can drive a 5.0-V PCI bus with eight or fewer loads.

Figure 22. Output Drive Characteristics for EPF10K10A, EPF10K30A & EPF10K100A Devices

Figure 23 shows the typical output drive characteristics of the EPF10K250A device with 3.3-V and 2.5-V $V_{\rm CCIO}.$

Figure 23. Output Drive Characteristics for EPF10K250A Device

Timing Model

The continuous, high-performance FastTrack Interconnect routing resources ensure predictable performance and accurate simulation and timing analysis. This predictable performance contrasts with that of FPGAs, which use a segmented connection scheme and therefore have unpredictable performance.

Device performance can be estimated by following the signal path from a source, through the interconnect, to the destination. For example, the registered performance between two LEs on the same row can be calculated by adding the following parameters:

- LE register clock-to-output delay (t_{CO})
- Interconnect delay (*t*_{SAMEROW})
- LE look-up table delay (t_{LUT})
- LE register setup time (t_{SU})

The routing delay depends on the placement of the source and destination LEs. A more complex registered path may involve multiple combinatorial LEs between the source and destination LEs.

Timing simulation and delay prediction are available with the MAX+PLUS II Simulator and Timing Analyzer, or with industrystandard EDA tools. The Simulator offers both pre-synthesis functional simulation to evaluate logic design accuracy and post-synthesis timing simulation with 0.1-ns resolution. The Timing Analyzer provides pointto-point timing delay information, setup and hold time analysis, and device-wide performance analysis.

Figure 24 shows the overall timing model, which maps the possible paths to and from the various elements of the FLEX 10K device.

Figures 25 through 27 show the delays that correspond to various paths and functions within the LE, IOE, and EAB timing models.

Symbol	Parameter	Conditions
t _{EABDATA1}	Data or address delay to EAB for combinatorial input	
t _{EABDATA2}	Data or address delay to EAB for registered input	
t _{EABWE1}	Write enable delay to EAB for combinatorial input	
t _{EABWE2}	Write enable delay to EAB for registered input	
t _{EABCLK}	EAB register clock delay	
t _{EABCO}	EAB register clock-to-output delay	
t _{EABBYPASS}	Bypass register delay	
t _{EABSU}	EAB register setup time before clock	
t _{EABH}	EAB register hold time after clock	
t _{AA}	Address access delay	
t _{WP}	Write pulse width	
t _{WDSU}	Data setup time before falling edge of write pulse	(5)
t _{WDH}	Data hold time after falling edge of write pulse	(5)
t _{WASU}	Address setup time before rising edge of write pulse	(5)
t _{WAH}	Address hold time after falling edge of write pulse	(5)
t _{WO}	Write enable to data output valid delay	
t _{DD}	Data-in to data-out valid delay	
t _{EABOUT}	Data-out delay	
t _{EABCH}	Clock high time	
t _{EABCL}	Clock low time	

Figure 30. EAB Synchronous Timing Waveforms

EAB Synchronous Write (EAB Output Registers Used)

Altera Corporation

Tables 39 through 47 show EPF10K10 and EPF10K20 device internal and external timing parameters.

Table 39. EPF10K10 & EPF10	OK20 Device LE Tin	ning Micropara	meters Not	te (1)	
Symbol	-3 Spee	d Grade	-4 Spee	d Grade	Unit
	Min	Мах	Min	Max	
t _{LUT}		1.4		1.7	ns
t _{CLUT}		0.6		0.7	ns
t _{RLUT}		1.5		1.9	ns
t _{PACKED}		0.6		0.9	ns
t _{EN}		1.0		1.2	ns
t _{CICO}		0.2		0.3	ns
t _{CGEN}		0.9		1.2	ns
t _{CGENR}		0.9		1.2	ns
tCASC		0.8		0.9	ns
t _C		1.3		1.5	ns
t _{CO}		0.9		1.1	ns
t _{COMB}		0.5		0.6	ns
t _{SU}	1.3		2.5		ns
t _H	1.4		1.6		ns
t _{PRE}		1.0		1.2	ns
t _{CLR}		1.0		1.2	ns
t _{CH}	4.0		4.0		ns
t _{CL}	4.0		4.0		ns

Symbol	-3 Spee	d Grade	-4 Spee	d Grade	Unit
	Min	Max	Min	Max	
t _{EABAA}		13.7		17.0	ns
t _{EABRCCOMB}	13.7		17.0		ns
t _{EABRCREG}	9.7		11.9		ns
t _{EABWP}	5.8		7.2		ns
t _{EABWCCOMB}	7.3		9.0		ns
t _{EABWCREG}	13.0		16.0		ns
t _{EABDD}		10.0		12.5	ns
t _{EABDATACO}		2.0		3.4	ns
t _{EABDATASU}	5.3		5.6		ns
t _{EABDATAH}	0.0		0.0		ns
t _{EABWESU}	5.5		5.8		ns
t _{EABWEH}	0.0		0.0		ns
t _{EABWDSU}	5.5		5.8		ns
t _{EABWDH}	0.0		0.0		ns
t _{EABWASU}	2.1		2.7		ns
t _{EABWAH}	0.0		0.0		ns
t _{EABWO}		9.5		11.8	ns

Symbol	-3 Spee	d Grade	-4 Spee	d Grade	Unit
	Min	Max	Min	Max	
t _{EABDATA1}		1.5		1.9	ns
t _{EABDATA2}		4.8		6.0	ns
t _{EABWE1}		1.0		1.2	ns
t _{EABWE2}		5.0		6.2	ns
t _{EABCLK}		1.0		2.2	ns
t _{EABCO}		0.5		0.6	ns
t _{EABBYPASS}		1.5		1.9	ns
t _{EABSU}	1.5		1.8		ns
t _{EABH}	2.0		2.5		ns
t _{AA}		8.7		10.7	ns
t _{WP}	5.8		7.2		ns
t _{WDSU}	1.6		2.0		ns
t _{WDH}	0.3		0.4		ns
t _{WASU}	0.5		0.6		ns
t _{WAH}	1.0		1.2		ns
t _{WO}		5.0		6.2	ns
t _{DD}		5.0		6.2	ns
t _{EABOUT}		0.5		0.6	ns
t _{EABCH}	4.0		4.0		ns
t _{EABCL}	5.8		7.2		ns

Symbol	-2 Speed	l Grade	-3 Speed Grade		-4 Speed Grade		Unit	
	Min	Max	Min	Max	Min	Max		
t _{EABAA}		12.1		13.7		17.0	ns	
t _{EABRCCOMB}	12.1		13.7		17.0		ns	
t _{EABRCREG}	8.6		9.7		11.9		ns	
t _{EABWP}	5.2		5.8		7.2		ns	
t _{EABWCCOMB}	6.5		7.3		9.0		ns	
t _{EABWCREG}	11.6		13.0		16.0		ns	
t _{EABDD}		8.8		10.0		12.5	ns	
t _{EABDATACO}		1.7		2.0		3.4	ns	
t _{EABDATASU}	4.7		5.3		5.6		ns	
t _{EABDATAH}	0.0		0.0		0.0		ns	
t _{EABWESU}	4.9		5.5		5.8		ns	
t _{EABWEH}	0.0		0.0		0.0		ns	
t _{EABWDSU}	1.8		2.1		2.7		ns	
t _{EABWDH}	0.0		0.0		0.0		ns	
t _{EABWASU}	4.1		4.7		5.8		ns	
t _{EABWAH}	0.0		0.0		0.0		ns	
t _{EABWO}		8.4		9.5		11.8	ns	

Table 68. EPF10K100 Device Interconn	-		1	Note (1)			
Symbol	-3DX Spe	eed Grade	-3 Spee	ed Grade	-4 Spee	ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{DIN2IOE}		10.3		10.3		12.2	ns
t _{DIN2LE}		4.8		4.8		6.0	ns
t _{DIN2DATA}		7.3		7.3		11.0	ns
t _{DCLK2IOE} without ClockLock or ClockBoost circuitry		6.2		6.2		7.7	ns
<i>t_{DCLK2IOE}</i> with ClockLock or ClockBoost circuitry		2.3		-		_	ns
<i>t_{DCLK2LE}</i> without ClockLock or ClockBoost circuitry		4.8		4.8		6.0	ns
<i>t_{DCLK2LE}</i> with ClockLock or ClockBoost circuitry		2.3		-		_	ns
t _{SAMELAB}		0.4		0.4		0.5	ns
t _{SAMEROW}		4.9		4.9		5.5	ns
t _{SAMECOLUMN}		5.1		5.1		5.4	ns
t _{DIFFROW}		10.0		10.0		10.9	ns
t _{TWOROWS}		14.9		14.9		16.4	ns
t _{LEPERIPH}		6.9		6.9		8.1	ns
t _{LABCARRY}		0.9		0.9		1.1	ns
t _{LABCASC}		3.0		3.0		3.2	ns

Altera Corporation

FLEX 10K Embedded Programmable Logic Device Family Data Sheet

Symbol	-1 Spee	-1 Speed Grade		-2 Speed Grade		ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{EABDATA1}		5.5		6.5		8.5	ns
t _{EABDATA2}		1.1		1.3		1.8	ns
t _{EABWE1}		2.4		2.8		3.7	ns
t _{EABWE2}		2.1		2.5		3.2	ns
t _{EABCLK}		0.0		0.0		0.2	ns
t _{EABCO}		1.7		2.0		2.6	ns
t _{EABBYPASS}		0.0		0.0		0.3	ns
t _{EABSU}	1.2		1.4		1.9		ns
t _{EABH}	0.1		0.1		0.3		ns
t _{AA}		4.2		5.0		6.5	ns
t _{WP}	3.8		4.5		5.9		ns
t _{WDSU}	0.1		0.1		0.2		ns
t _{WDH}	0.1		0.1		0.2		ns
t _{WASU}	0.1		0.1		0.2		ns
t _{WAH}	0.1		0.1		0.2		ns
t _{WO}		3.7		4.4		6.4	ns
t _{DD}		3.7		4.4		6.4	ns
t _{EABOUT}		0.0		0.1		0.6	ns
t _{EABCH}	3.0		3.5		4.0		ns
t _{EABCL}	3.8		4.5		5.9		ns

Symbol	-1 Speed Grade		-2 Spee	d Grade	-3 Spee	Unit	
	Min	Max	Min	Max	Min	Max	
t _{DIN2IOE}		4.8		5.4		6.0	ns
t _{DIN2LE}		2.0		2.4		2.7	ns
t _{DIN2DATA}		2.4		2.7		2.9	ns
t _{DCLK2IOE}		2.6		3.0		3.5	ns
t _{DCLK2LE}		2.0		2.4		2.7	ns
t _{SAMELAB}		0.1		0.1		0.1	ns
t _{SAMEROW}		1.5		1.7		1.9	ns
t _{SAME} COLUMN		5.5		6.5		7.4	ns
t _{DIFFROW}		7.0		8.2		9.3	ns
t _{TWOROWS}		8.5		9.9		11.2	ns
t _{LEPERIPH}		3.9		4.2		4.5	ns
t _{LABCARRY}		0.2		0.2		0.3	ns
t _{LABCASC}		0.4		0.5		0.6	ns

Table 104. EPF10K100A Device External Timing Parameters Note (1)

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit	
	Min	Max	Min	Max	Min	Max		
t _{DRR}		12.5		14.5		17.0	ns	
t _{INSU} (2), (3)	3.7		4.5		5.1		ns	
t _{INH} (3)	0.0		0.0		0.0		ns	
^t оитсо ⁽³⁾	2.0	5.3	2.0	6.1	2.0	7.2	ns	

7.4

Table 105. EPF10K100A Device External Bidirectional Timing Parameters Note (1)										
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit			
	Min	Max	Min	Max	Min	Max	1			
t _{INSUBIDIR}	4.9		5.8		6.8		ns			
t _{INHBIDIR}	0.0		0.0		0.0		ns			
toutcobidir	2.0	5.3	2.0	6.1	2.0	7.2	ns			
t _{XZBIDIR}		7.4		8.6		10.1	ns			

8.6

t_{ZXBIDIR}

ns

10.1

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{IOD}		1.2		1.3		1.6	ns
t _{IOC}		0.4		0.4		0.5	ns
t _{IOCO}		0.8		0.9		1.1	ns
t _{IOCOMB}		0.7		0.7		0.8	ns
t _{IOSU}	2.7		3.1		3.6		ns
t _{IOH}	0.2		0.3		0.3		ns
t _{IOCLR}		1.2		1.3		1.6	ns
t _{OD1}		3.2		3.6		4.2	ns
t _{OD2}		5.9		6.7		7.8	ns
t _{OD3}		8.7		9.8		11.5	ns
t _{XZ}		3.8		4.3		5.0	ns
t _{ZX1}		3.8		4.3		5.0	ns
t _{ZX2}		6.5		7.4		8.6	ns
t _{ZX3}		9.3		10.5		12.3	ns
t _{INREG}		8.2		9.3		10.9	ns
t _{IOFD}		9.0		10.2		12.0	ns
t _{INCOMB}		9.0		10.2		12.0	ns

Figure 32. I_{CCACTIVE} vs. Operating Frequency (Part 2 of 3)

Altera Corporation