E·XFL

Intel - EPF10K30AFC256-3 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	216
Number of Logic Elements/Cells	1728
Total RAM Bits	12288
Number of I/O	191
Number of Gates	69000
Voltage - Supply	3V ~ 3.6V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	256-BGA
Supplier Device Package	256-FBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epf10k30afc256-3

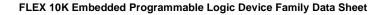
Email: info@E-XFL.COM

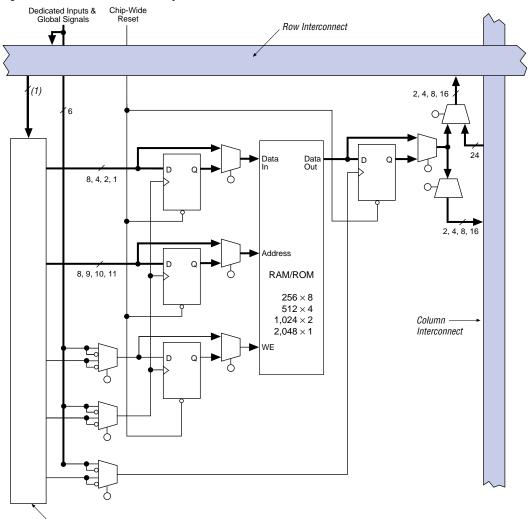
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FLEX 10K Embedded Programmable Logic Device Family Data Sheet

Device	84-Pin PLCC	100-Pin TQFP	144-Pin TQFP	208-Pin PQFP RQFP	240-Pin PQFP RQFP
EPF10K10	59		102	134	
EPF10K10A		66	102	134	
EPF10K20			102	147	189
EPF10K30				147	189
EPF10K30A			102	147	189
EPF10K40				147	189
EPF10K50					189
EPF10K50V					189
EPF10K70					189
EPF10K100					
EPF10K100A					189
EPF10K130V					
EPF10K250A					

Device	503-Pin	599-Pin	256-Pin	356-Pin	484-Pin	600-Pin	403-Pin
	PGA	PGA	FineLine BGA	BGA	FineLine BGA	BGA	PGA
EPF10K10							
EPF10K10A			150		150 (2)		
EPF10K20							
EPF10K30				246			
EPF10K30A			191	246	246		
EPF10K40							
EPF10K50				274			310
EPF10K50V				274			
EPF10K70	358						
EPF10K100	406						
EPF10K100A				274	369	406	
EPF10K130V		470				470	
EPF10K250A		470				470	


Г

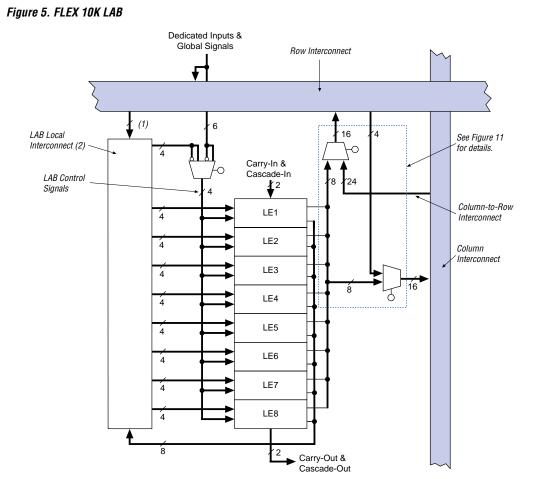

The FLEX 10K architecture is similar to that of embedded gate arrays, the fastest-growing segment of the gate array market. As with standard gate arrays, embedded gate arrays implement general logic in a conventional "sea-of-gates" architecture. In addition, embedded gate arrays have dedicated die areas for implementing large, specialized functions. By embedding functions in silicon, embedded gate arrays provide reduced die area and increased speed compared to standard gate arrays. However, embedded megafunctions typically cannot be customized, limiting the designer's options. In contrast, FLEX 10K devices are programmable, providing the designer with full control over embedded megafunctions and general logic while facilitating iterative design changes during debugging.

Each FLEX 10K device contains an embedded array and a logic array. The embedded array is used to implement a variety of memory functions or complex logic functions, such as digital signal processing (DSP), microcontroller, wide-data-path manipulation, and data-transformation functions. The logic array performs the same function as the sea-of-gates in the gate array: it is used to implement general logic, such as counters, adders, state machines, and multiplexers. The combination of embedded and logic arrays provides the high performance and high density of embedded gate arrays, enabling designers to implement an entire system on a single device.

FLEX 10K devices are configured at system power-up with data stored in an Altera serial configuration device or provided by a system controller. Altera offers the EPC1, EPC2, EPC16, and EPC1441 configuration devices, which configure FLEX 10K devices via a serial data stream. Configuration data can also be downloaded from system RAM or from Altera's BitBlaster[™] serial download cable or ByteBlasterMV[™] parallel port download cable. After a FLEX 10K device has been configured, it can be reconfigured in-circuit by resetting the device and loading new data. Because reconfiguration requires less than 320 ms, real-time changes can be made during system operation.

FLEX 10K devices contain an optimized interface that permits microprocessors to configure FLEX 10K devices serially or in parallel, and synchronously or asynchronously. The interface also enables microprocessors to treat a FLEX 10K device as memory and configure the device by writing to a virtual memory location, making it very easy for the designer to reconfigure the device.

Figure 4. FLEX 10K Embedded Array Block


`EAB Local Interconnect (1)

Note:

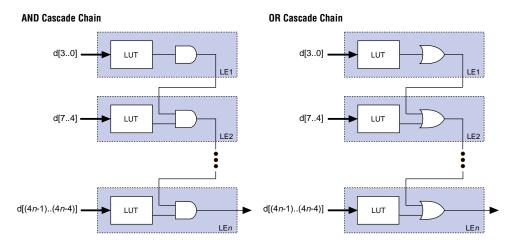
 EPF10K10, EPF10K10A, EPF10K20, EPF10K30, EPF10K30A, EPF10K40, EPF10K50, and EPF10K50V devices have 22 EAB local interconnect channels; EPF10K70, EPF10K100, EPF10K100A, EPF10K130V, and EPF10K250A devices have 26.

Logic Array Block

Each LAB consists of eight LEs, their associated carry and cascade chains, LAB control signals, and the LAB local interconnect. The LAB provides the coarse-grained structure to the FLEX 10K architecture, facilitating efficient routing with optimum device utilization and high performance. See Figure 5.

Notes:

- (1) EPF10K10, EPF10K10A, EPF10K20, EPF10K30, EPF10K30A, EPF10K40, EPF10K50, and EPF10K50V devices have 22 inputs to the LAB local interconnect channel from the row; EPF10K70, EPF10K100, EPF10K100A, EPF10K130V, and EPF10K250A devices have 26.
- (2) EPF10K10, EPF10K10A, EPF10K20, EPF10K30, EPF10K30A, EPF10K40, EPF10K50, and EPF10K50V devices have 30 LAB local interconnect channels; EPF10K70, EPF10K100, EPF10K100A, EPF10K130V, and EPF10K250A devices have 34 LABs.


Altera Corporation

Cascade Chain

With the cascade chain, the FLEX 10K architecture can implement functions that have a very wide fan-in. Adjacent LUTs can be used to compute portions of the function in parallel; the cascade chain serially connects the intermediate values. The cascade chain can use a logical AND or logical OR (via De Morgan's inversion) to connect the outputs of adjacent LEs. Each additional LE provides four more inputs to the effective width of a function, with a delay as low as 0.7 ns per LE. Cascade chain logic can be created automatically by the Compiler during design processing, or manually by the designer during design entry.

Cascade chains longer than eight bits are implemented automatically by linking several LABs together. For easier routing, a long cascade chain skips every other LAB in a row. A cascade chain longer than one LAB skips either from even-numbered LAB to even-numbered LAB, or from odd-numbered LAB to odd-numbered LAB (e.g., the last LE of the first LAB in a row cascades to the first LE of the third LAB). The cascade chain does not cross the center of the row (e.g., in the EPF10K50 device, the cascade chain stops at the eighteenth LAB and a new one begins at the nineteenth LAB). This break is due to the EAB's placement in the middle of the row.

Figure 8 shows how the cascade function can connect adjacent LEs to form functions with a wide fan-in. These examples show functions of 4n variables implemented with n LEs. The LE delay is as low as 1.6 ns; the cascade chain delay is as low as 0.7 ns. With the cascade chain, 3.7 ns is needed to decode a 16-bit address.

Figure 8. Cascade Chain Operation

Altera Corporation

Asynchronous Preset

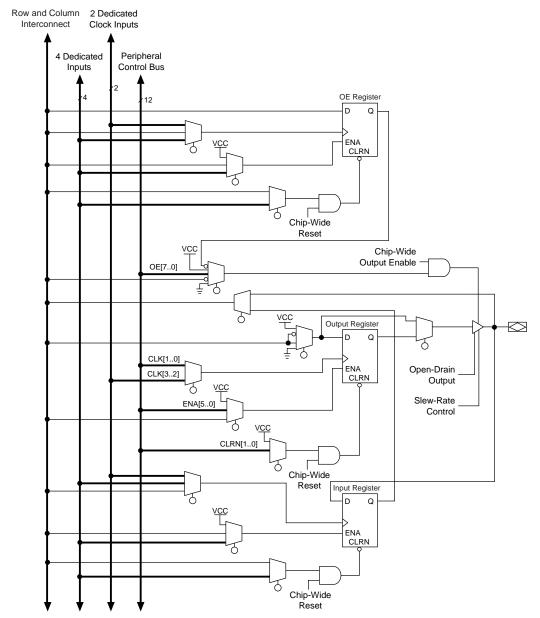
An asynchronous preset is implemented as either an asynchronous load, or with an asynchronous clear. If DATA3 is tied to V_{CC}, asserting LABCTRL1 asynchronously loads a one into the register. Alternatively, the Altera software can provide preset control by using the clear and inverting the input and output of the register. Inversion control is available for the inputs to both LEs and IOEs. Therefore, if a register is preset by only one of the two LABCTRL signals, the DATA3 input is not needed and can be used for one of the LE operating modes.

Asynchronous Preset & Clear

When implementing asynchronous clear and preset, LABCTRL1 controls the preset and LABCTRL2 controls the clear. DATA3 is tied to V_{CC} , therefore, asserting LABCTRL1 asynchronously loads a one into the register, effectively presetting the register. Asserting LABCTRL2 clears the register.

Asynchronous Load with Clear

When implementing an asynchronous load in conjunction with the clear, LABCTRL1 implements the asynchronous load of DATA3 by controlling the register preset and clear. LABCTRL2 implements the clear by controlling the register clear; LABCTRL2 does not have to feed the preset circuits.


Asynchronous Load with Preset

When implementing an asynchronous load in conjunction with preset, the Altera software provides preset control by using the clear and inverting the input and output of the register. Asserting LABCTRL2 presets the register, while asserting LABCTRL1 loads the register. The Altera software inverts the signal that drives DATA3 to account for the inversion of the register's output.

Asynchronous Load without Preset or Clear

When implementing an asynchronous load without preset or clear, LABCTRL1 implements the asynchronous load of DATA3 by controlling the register preset and clear.

Figure 13. Bidirectional I/O Registers

Device	Channels per Row (<i>n</i>)	Row Channels per Pin (<i>m</i>		
EPF10K10	144	18		
EPF10K10A				
EPF10K20	144	18		
EPF10K30	216	27		
EPF10K30A				
EPF10K40	216	27		
EPF10K50	216	27		
EPF10K50V				
EPF10K70	312	39		
EPF10K100	312	39		
EPF10K100A				
EPF10K130V	312	39		
EPF10K250A	456	57		

Table 10 lists the FLEX 10K row-to-IOE interconnect resources.

Column-to-IOE Connections

When an IOE is used as an input, it can drive up to two separate column channels. When an IOE is used as an output, the signal is driven by a multiplexer that selects a signal from the column channels. Two IOEs connect to each side of the column channels. Each IOE can be driven by column channels via a multiplexer. The set of column channels that each IOE can access is different for each IOE. See Figure 15.

Table 15. 32-Bit FLEX 10K Devic	e IDCODE	Note (1)					
Device	IDCODE (32 Bits)						
	Version (4 Bits)	Part Number (16 Bits)	Manufacturer's Identity (11 Bits)	1 (1 Bit) (2)			
EPF10K10, EPF10K10A	0000	0001 0000 0001 0000	00001101110	1			
EPF10K20	0000	0001 0000 0010 0000	00001101110	1			
EPF10K30, EPF10K30A	0000	0001 0000 0011 0000	00001101110	1			
EPF10K40	0000	0001 0000 0100 0000	00001101110	1			
EPF10K50, EPF10K50V	0000	0001 0000 0101 0000	00001101110	1			
EPF10K70	0000	0001 0000 0111 0000	00001101110	1			
EPF10K100, EPF10K100A	0000	0000 0001 0000 0000	00001101110	1			
EPF10K130V	0000	0000 0001 0011 0000	00001101110	1			
EPF10K250A	0000	0000 0010 0101 0000	00001101110	1			

Notes:

Г

- (1) The most significant bit (MSB) is on the left.
- (2) The least significant bit (LSB) for all JTAG IDCODEs is 1.

FLEX 10K devices include weak pull-ups on JTAG pins.

For more information, see the following documents:

- Application Note 39 (IEEE 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices)
- BitBlaster Serial Download Cable Data Sheet
- ByteBlasterMV Parallel Port Download Cable Data Sheet
- Jam Programming & Test Language Specification

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IH}	High-level input voltage		$\begin{array}{c} 1.7 \text{ or} \\ 0.5 \times V_{\text{CCINT}}, \\ \text{whichever is} \\ \text{lower} \end{array}$		5.75	V
VIL	Low-level input voltage		-0.5		$0.3 \times V_{CCINT}$	V
V _{OH}	3.3-V high-level TTL output voltage	$I_{OH} = -11 \text{ mA DC},$ $V_{CCIO} = 3.00 \text{ V} (8)$	2.4			V
	3.3-V high-level CMOS output voltage	$I_{OH} = -0.1 \text{ mA DC},$ $V_{CCIO} = 3.00 \text{ V} (8)$	V _{CCIO} – 0.2			V
	3.3-V high-level PCI output voltage	$I_{OH} = -0.5 \text{ mA DC},$ $V_{CCIO} = 3.00 \text{ to } 3.60 \text{ V} (8)$	$0.9 imes V_{CCIO}$			V
	2.5-V high-level output voltage	I _{OH} = -0.1 mA DC, V _{CCIO} = 2.30 V <i>(8)</i>	2.1			V
		I _{OH} = –1 mA DC, V _{CCIO} = 2.30 V <i>(8)</i>	2.0			V
	$I_{OH} = -2 \text{ mA DC},$ $V_{CCIO} = 2.30 \text{ V} (8)$	1.7			V	
V _{OL}	3.3-V low-level TTL output voltage	I _{OL} = 9 mA DC, V _{CCIO} = 3.00 V <i>(</i> 9 <i>)</i>			0.45	V
	3.3-V low-level CMOS output voltage	I _{OL} = 0.1 mA DC, V _{CCIO} = 3.00 V (9)			0.2	V
	3.3-V low-level PCI output voltage	I _{OL} = 1.5 mA DC, V _{CCIO} = 3.00 to 3.60 V <i>(9)</i>			$0.1 \times V_{CCIO}$	V
	2.5-V low-level output voltage	I _{OL} = 0.1 mA DC, V _{CCIO} = 2.30 V (9)			0.2	V
		I _{OL} = 1 mA DC, V _{CCIO} = 2.30 V (9)			0.4	V
		I _{OL} = 2 mA DC, V _{CCIO} = 2.30 V (9)			0.7	V
I _I	Input pin leakage current	$V_{\rm I} = 5.3 \text{ V to} -0.3 \text{ V} (10)$	-10		10	μΑ
I _{OZ}	Tri-stated I/O pin leakage current	$V_{O} = 5.3 \text{ V to } -0.3 \text{ V} (10)$	-10		10	μA
I _{CC0}	V _{CC} supply current (standby)	V _I = ground, no load		0.3	10	mA
		V_{I} = ground, no load (11)		10		mA

Symbol	Parameter	Conditions
t _{EABAA}	EAB address access delay	
t _{EABRCCOMB}	EAB asynchronous read cycle time	
t _{EABRCREG}	EAB synchronous read cycle time	
t _{EABWP}	EAB write pulse width	
t _{EABWCCOMB}	EAB asynchronous write cycle time	
t _{EABWCREG}	EAB synchronous write cycle time	
t _{EABDD}	EAB data-in to data-out valid delay	
t _{EABDATACO}	EAB clock-to-output delay when using output registers	
t _{EABDATASU}	EAB data/address setup time before clock when using input register	
t _{EABDATAH}	EAB data/address hold time after clock when using input register	
t _{EABWESU}	EAB WE setup time before clock when using input register	
t _{EABWEH}	EAB WE hold time after clock when using input register	
t _{EABWDSU}	EAB data setup time before falling edge of write pulse when not using input registers	
t _{EABWDH}	EAB data hold time after falling edge of write pulse when not using input registers	
t _{EABWASU}	EAB address setup time before rising edge of write pulse when not using input registers	
t _{EABWAH}	EAB address hold time after falling edge of write pulse when not using input registers	
t _{EABWO}	EAB write enable to data output valid delay	

Symbol	Parameter	Conditions	
t _{DIN2IOE}	Delay from dedicated input pin to IOE control input	(7)	
t _{DCLK2LE}	Delay from dedicated clock pin to LE or EAB clock	(7)	
t _{DIN2DATA}	Delay from dedicated input or clock to LE or EAB data	(7)	
t _{DCLK2IOE}	Delay from dedicated clock pin to IOE clock	(7)	
t _{DIN2LE}	Delay from dedicated input pin to LE or EAB control input	(7)	
t _{SAMELAB}	Routing delay for an LE driving another LE in the same LAB		
t _{SAMEROW}	Routing delay for a row IOE, LE, or EAB driving a row IOE, LE, or EAB in the same row	(7)	
t _{SAME} COLUMN	Routing delay for an LE driving an IOE in the same column	(7)	
t _{DIFFROW}	Routing delay for a column IOE, LE, or EAB driving an LE or EAB in a different row	(7)	
t _{TWOROWS}	Routing delay for a row IOE or EAB driving an LE or EAB in a different row	(7)	
t _{LEPERIPH}	Routing delay for an LE driving a control signal of an IOE via the peripheral control bus	(7)	
t _{LABCARRY}	Routing delay for the carry-out signal of an LE driving the carry-in signal of a different LE in a different LAB		
t _{LABCASC}	Routing delay for the cascade-out signal of an LE driving the cascade-in signal of a different LE in a different LAB		

Table 37. External Timing ParametersNotes (8), (10)				
Symbol	Parameter	Conditions		
t _{DRR}	Register-to-register delay via four LEs, three row interconnects, and four local interconnects	(9)		
t _{INSU}	Setup time with global clock at IOE register			
t _{INH}	Hold time with global clock at IOE register			
t _{outco}	Clock-to-output delay with global clock at IOE register			

Table 38. External Bidirectional Timing Parameters Note (10)

Symbol	Symbol Parameter			
t _{INSUBIDIR}	Setup time for bidirectional pins with global clock at adjacent LE register			
t _{INHBIDIR}	Hold time for bidirectional pins with global clock at adjacent LE register			
toutcobidir	Clock-to-output delay for bidirectional pins with global clock at IOE register			
t _{XZBIDIR}	Synchronous IOE output buffer disable delay			
t _{ZXBIDIR}	Synchronous IOE output buffer enable delay, slow slew rate = off			

Table 45. EPF10K10 & EPF10K20 Device External Timing Parameters Note (1)							
Symbol	d Grade	Unit					
	Min	Max	Min	Max			
t _{DRR}		16.1		20.0	ns		
t _{INSU} (2), (3)	5.5		6.0		ns		
t _{INH} (3)	0.0		0.0		ns		
t _{оитсо} (3)	2.0	6.7	2.0	8.4	ns		

Table 46. EPF10K10 Device External Bidirectional Timing Parameters Note (1)							
Symbol	-3 Speed Grade		-4 Speed Grade		Unit		
	Min	Max	Min	Мах			
t _{INSUBIDIR}	4.5		5.6		ns		
t _{INHBIDIR}	0.0		0.0		ns		
toutcobidir	2.0	6.7	2.0	8.4	ns		
t _{xzbidir}		10.5		13.4	ns		
t _{zxbidir}		10.5		13.4	ns		

Symbol	-3 Spee	ed Grade	-4 Spee	d Grade	Unit
	Min	Max	Min	Max	
t _{INSUBIDIR}	4.6		5.7		ns
t _{INHBIDIR}	0.0		0.0		ns
toutcobidir	2.0	6.7	2.0	8.4	ns
t _{XZBIDIR}		10.5		13.4	ns
		10.5		13.4	ns

Notes to tables:

All timing parameters are described in Tables 32 through 38 in this data sheet.
 Using an LE to register the signal may provide a lower setup time.
 This parameter is specified by characterization.

Symbol	-2 Speed Grade		-3 Spee	d Grade	-4 Spee	Unit	
	Min	Max	Min	Max	Min	Max	1
t _{DIN2IOE}		6.6		7.3		8.8	ns
t _{DIN2LE}		4.2		4.8		6.0	ns
t _{DIN2DATA}		6.5		7.1		10.8	ns
t _{DCLK2IOE}		5.5		6.2		7.7	ns
t _{DCLK2LE}		4.2		4.8		6.0	ns
t _{SAMELAB}		0.4		0.4		0.5	ns
t _{SAMEROW}		4.8		4.9		5.5	ns
t _{SAMECOLUMN}		3.3		3.4		3.7	ns
t _{DIFFROW}		8.1		8.3		9.2	ns
t _{TWOROWS}		12.9		13.2		14.7	ns
t _{LEPERIPH}		5.5		5.7		6.5	ns
t _{LABCARRY}		0.8		0.9		1.1	ns
t _{LABCASC}		2.7		3.0		3.2	ns

Table 62. EPF10K70) Device Externa	nt Timing Para	ameters	Note (1)			
Symbol	-2 Spee	d Grade	-3 Spee	ed Grade	-4 Spee	ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{DRR}		17.2		19.1		24.2	ns
t _{INSU} (2), (3)	6.6		7.3		8.0		ns
t _{INH} (3)	0.0		0.0		0.0		ns
t _{оитсо} (3)	2.0	9.9	2.0	11.1	2.0	14.3	ns

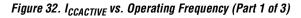
Table 63. EPF10K70 Device External Bidirectional Timing Parameters

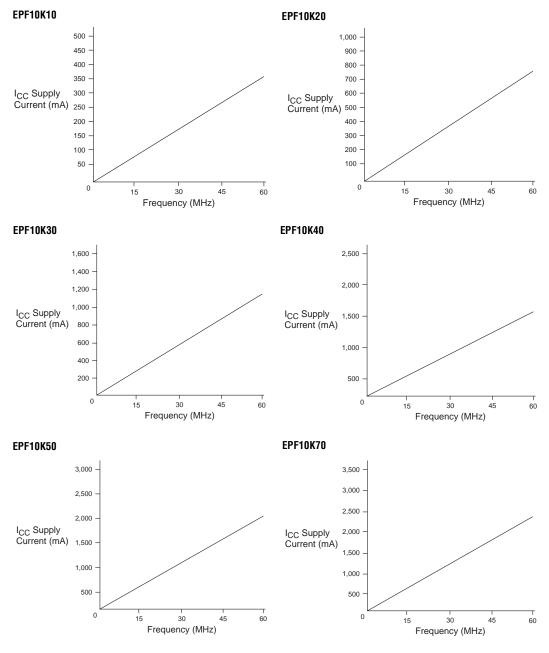
Note (1)

Symbol	-2 Spee	ed Grade	-3 Spee	ed Grade	-4 Spee	Unit	
	Min	Max	Min	Max	Min	Max	
t _{INSUBIDIR}	7.4		8.1		10.4		ns
t _{INHBIDIR}	0.0		0.0		0.0		ns
toutcobidir	2.0	9.9	2.0	11.1	2.0	14.3	ns
t _{XZBIDIR}		13.7		15.4		18.5	ns
t _{ZXBIDIR}		13.7		15.4		18.5	ns

Г

Symbol	-3DX Sne	ed Grade	-3 Snee	d Grade	-4 Spee	Unit	
oyinbor	Min	Max	Min	Max	Min	Max	Unit
	IVIII		IVIII		IVIIII	-	
t _{EABDATA1}		1.5		1.5		1.9	ns
t _{EABDATA2}		4.8		4.8		6.0	ns
t _{EABWE1}		1.0		1.0		1.2	ns
t _{EABWE2}		5.0		5.0		6.2	ns
t _{EABCLK}		1.0		1.0		2.2	ns
t _{EABCO}		0.5		0.5		0.6	ns
t _{EABBYPASS}		1.5		1.5		1.9	ns
t _{EABSU}	1.5		1.5		1.8		ns
t _{EABH}	2.0		2.0		2.5		ns
t _{AA}		8.7		8.7		10.7	ns
t _{WP}	5.8		5.8		7.2		ns
t _{WDSU}	1.6		1.6		2.0		ns
t _{WDH}	0.3		0.3		0.4		ns
t _{WASU}	0.5		0.5		0.6		ns
t _{WAH}	1.0		1.0		1.2		ns
t _{WO}		5.0		5.0		6.2	ns
t _{DD}		5.0		5.0		6.2	ns
t _{EABOUT}		0.5		0.5		0.6	ns
t _{EABCH}	4.0		4.0		4.0		ns
t _{EABCL}	5.8		5.8	ĺ	7.2		ns


Tables 71 through 77 show EPF10K50V device internal and external timing parameters.


Symbol	-1 Spee	d Grade	-2 Speed Grade		-3 Speed Grade		-4 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	Min	Max	
t _{LUT}		0.9		1.0		1.3		1.6	ns
t _{CLUT}		0.1		0.5		0.6		0.6	ns
t _{RLUT}		0.5		0.8		0.9		1.0	ns
t _{PACKED}		0.4		0.4		0.5		0.7	ns
t _{EN}		0.7		0.9		1.1		1.4	ns
tcico		0.2		0.2		0.2		0.3	ns
t _{CGEN}		0.8		0.7		0.8		1.2	ns
t _{CGENR}		0.4		0.3		0.3		0.4	ns
t _{CASC}		0.7		0.7		0.8		0.9	ns
t _C		0.3		1.0		1.3		1.5	ns
t _{CO}		0.5		0.7		0.9		1.0	ns
t _{COMB}		0.4		0.4		0.5		0.6	ns
t _{SU}	0.8		1.6		2.2		2.5		ns
t _H	0.5		0.8		1.0		1.4		ns
t _{PRE}		0.8		0.4		0.5		0.5	ns
t _{CLR}		0.8		0.4		0.5		0.5	ns
t _{CH}	2.0		4.0		4.0		4.0		ns
t _{CL}	2.0		4.0		4.0		4.0	1	ns

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		-4 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	Min	Max	
t _{EABAA}		9.5		13.6		16.5		20.8	ns
t _{EABRCCOMB}	9.5		13.6		16.5		20.8		ns
t _{EABRCREG}	6.1		8.8		10.8		13.4		ns
t _{EABWP}	6.0		4.9		6.0		7.4		ns
t _{EABWCCOMB}	6.2		6.1		7.5		9.2		ns
t _{EABWCREG}	12.0		11.6		14.2		17.4		ns
t _{EABDD}		6.8		9.7		11.8		14.9	ns
t _{EABDATACO}		1.0		1.4		1.8		2.2	ns
t _{EABDATASU}	5.3		4.6		5.6		6.9		ns
t _{EABDATAH}	0.0		0.0		0.0		0.0		ns
t _{EABWESU}	4.4		4.8		5.8		7.2		ns
t _{EABWEH}	0.0		0.0		0.0		0.0		ns
t _{EABWDSU}	1.8		1.1		1.4		2.1		ns
t _{EABWDH}	0.0		0.0		0.0		0.0		ns
t _{EABWASU}	4.5		4.6		5.6		7.4		ns
t _{EABWAH}	0.0		0.0		0.0		0.0		ns
t _{EABWO}		5.1		9.4		11.4		14.0	ns

Symbol	-1 Speed Grade		-2 Spee	d Grade	-3 Spee	Unit	
	Min	Max	Min	Max	Min	Max	
t _{IOH}	0.9		1.1		1.4		ns
t _{IOCLR}		0.7		0.8		1.0	ns
t _{OD1}		1.9		2.2		2.9	ns
t _{OD2}		4.8		5.6		7.3	ns
t _{OD3}		7.0		8.2		10.8	ns
t _{XZ}		2.2		2.6		3.4	ns
t _{ZX1}		2.2		2.6		3.4	ns
t _{ZX2}		5.1		6.0		7.8	ns
t _{ZX3}		7.3		8.6		11.3	ns
t _{INREG}		4.4		5.2		6.8	ns
t _{IOFD}		3.8		4.5		5.9	ns
t _{INCOMB}		3.8		4.5		5.9	ns

Symbol	-1 Speed Grade		-2 Snee	d Grade	-3 Spee	Unit	
oy moor	Min	Max	Min	Max	Min	Max	
t _{EABAA}		6.8		7.8		9.2	ns
t _{EABRCCOMB}	6.8		7.8		9.2		ns
t _{EABRCREG}	5.4		6.2		7.4		ns
t _{EABWP}	3.2		3.7		4.4		ns
t _{EABWCCOMB}	3.4		3.9		4.7		ns
t _{EABWCREG}	9.4		10.8		12.8		ns
t _{EABDD}		6.1		6.9		8.2	ns
t _{EABDATACO}		2.1		2.3		2.9	ns
t _{EABDATASU}	3.7		4.3		5.1		ns
t _{EABDATAH}	0.0		0.0		0.0		ns
t _{EABWESU}	2.8		3.3		3.8		ns
t _{EABWEH}	0.0		0.0		0.0		ns
t _{EABWDSU}	3.4		4.0		4.6		ns
t _{EABWDH}	0.0		0.0		0.0		ns
t _{EABWASU}	1.9		2.3		2.6		ns
t _{EABWAH}	0.0		0.0		0.0		ns
t _{EABWO}		5.1		5.7		6.9	ns

Altera Corporation