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Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.
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FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
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offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Larger blocks of RAM are created by combining multiple EABs. For 
example, two 256 × 8 RAM blocks can be combined to form a 
256 × 16 RAM block; two 512 × 4 blocks of RAM can be combined to form 
a 512 × 8 RAM block. See Figure 3.

Figure 3. Examples of Combining EABs

If necessary, all EABs in a device can be cascaded to form a single RAM 
block. EABs can be cascaded to form RAM blocks of up to 2,048 words 
without impacting timing. Altera’s software automatically combines 
EABs to meet a designer’s RAM specifications.

EABs provide flexible options for driving and controlling clock signals. 
Different clocks can be used for the EAB inputs and outputs. Registers can 
be independently inserted on the data input, EAB output, or the address 
and WE inputs. The global signals and the EAB local interconnect can drive 
the WE signal. The global signals, dedicated clock pins, and EAB local 
interconnect can drive the EAB clock signals. Because the LEs drive the 
EAB local interconnect, the LEs can control the WE signal or the EAB clock 
signals.

Each EAB is fed by a row interconnect and can drive out to row and 
column interconnects. Each EAB output can drive up to two row channels 
and up to two column channels; the unused row channel can be driven by 
other LEs. This feature increases the routing resources available for EAB 
outputs. See Figure 4.
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Normal Mode

The normal mode is suitable for general logic applications and wide 
decoding functions that can take advantage of a cascade chain. In normal 
mode, four data inputs from the LAB local interconnect and the carry-in 
are inputs to a four-input LUT. The Compiler automatically selects the 
carry-in or the DATA3 signal as one of the inputs to the LUT. The LUT 
output can be combined with the cascade-in signal to form a cascade chain 
through the cascade-out signal. Either the register or the LUT can be used 
to drive both the local interconnect and the FastTrack Interconnect at the 
same time. 

The LUT and the register in the LE can be used independently; this feature 
is known as register packing. To support register packing, the LE has two 
outputs; one drives the local interconnect and the other drives the 
FastTrack Interconnect. The DATA4 signal can drive the register directly, 
allowing the LUT to compute a function that is independent of the 
registered signal; a three-input function can be computed in the LUT, and 
a fourth independent signal can be registered. Alternatively, a four-input 
function can be generated, and one of the inputs to this function can be 
used to drive the register. The register in a packed LE can still use the clock 
enable, clear, and preset signals in the LE. In a packed LE, the register can 
drive the FastTrack Interconnect while the LUT drives the local 
interconnect, or vice versa.

Arithmetic Mode

The arithmetic mode offers 2 three-input LUTs that are ideal for 
implementing adders, accumulators, and comparators. One LUT 
computes a three-input function, and the other generates a carry output. 
As shown in Figure 9 on page 19, the first LUT uses the carry-in signal and 
two data inputs from the LAB local interconnect to generate a 
combinatorial or registered output. For example, in an adder, this output 
is the sum of three signals: a, b, and carry-in. The second LUT uses the 
same three signals to generate a carry-out signal, thereby creating a carry 
chain. The arithmetic mode also supports simultaneous use of the cascade 
chain.
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FastTrack Interconnect

In the FLEX 10K architecture, connections between LEs and device I/O 
pins are provided by the FastTrack Interconnect, which is a series of 
continuous horizontal and vertical routing channels that traverse the 
device. This global routing structure provides predictable performance, 
even in complex designs. In contrast, the segmented routing in FPGAs 
requires switch matrices to connect a variable number of routing paths, 
increasing the delays between logic resources and reducing performance.

The FastTrack Interconnect consists of row and column interconnect 
channels that span the entire device. Each row of LABs is served by a 
dedicated row interconnect. The row interconnect can drive I/O pins and 
feed other LABs in the device. The column interconnect routes signals 
between rows and can drive I/O pins.

A row channel can be driven by an LE or by one of three column channels. 
These four signals feed dual 4-to-1 multiplexers that connect to two 
specific row channels. These multiplexers, which are connected to each 
LE, allow column channels to drive row channels even when all eight LEs 
in an LAB drive the row interconnect. 

Each column of LABs is served by a dedicated column interconnect. The 
column interconnect can then drive I/O pins or another row’s 
interconnect to route the signals to other LABs in the device. A signal from 
the column interconnect, which can be either the output of an LE or an 
input from an I/O pin, must be routed to the row interconnect before it 
can enter an LAB or EAB. Each row channel that is driven by an IOE or 
EAB can drive one specific column channel.

Access to row and column channels can be switched between LEs in 
adjacent pairs of LABs. For example, an LE in one LAB can drive the row 
and column channels normally driven by a particular LE in the adjacent 
LAB in the same row, and vice versa. This routing flexibility enables 
routing resources to be used more efficiently. See Figure 11.
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I/O Element

An I/O element (IOE) contains a bidirectional I/O buffer and a register 
that can be used either as an input register for external data that requires 
a fast setup time, or as an output register for data that requires fast clock-
to-output performance. In some cases, using an LE register for an input 
register will result in a faster setup time than using an IOE register. IOEs 
can be used as input, output, or bidirectional pins. For bidirectional 
registered I/O implementation, the output register should be in the IOE 
and, the data input and output enable register should be LE registers 
placed adjacent to the bidirectional pin. The Compiler uses the 
programmable inversion option to invert signals from the row and 
column interconnect automatically where appropriate. Figure 13 shows 
the bidirectional I/O registers.
Altera Corporation  29



FLEX 10K Embedded Programmable Logic Device Family Data Sheet
Each IOE selects the clock, clear, clock enable, and output enable controls 
from a network of I/O control signals called the peripheral control bus. 
The peripheral control bus uses high-speed drivers to minimize signal 
skew across devices; it provides up to 12 peripheral control signals that 
can be allocated as follows:

■ Up to eight output enable signals
■ Up to six clock enable signals
■ Up to two clock signals
■ Up to two clear signals

If more than six clock enable or eight output enable signals are required, 
each IOE on the device can be controlled by clock enable and output 
enable signals driven by specific LEs. In addition to the two clock signals 
available on the peripheral control bus, each IOE can use one of two 
dedicated clock pins. Each peripheral control signal can be driven by any 
of the dedicated input pins or the first LE of each LAB in a particular row. 
In addition, an LE in a different row can drive a column interconnect, 
which causes a row interconnect to drive the peripheral control signal. 
The chip-wide reset signal will reset all IOE registers, overriding any other 
control signals.

Tables 8 and 9 list the sources for each peripheral control signal, and the 
rows that can drive global signals. These tables also show how the output 
enable, clock enable, clock, and clear signals share 12 peripheral control 
signals.
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Signals on the peripheral control bus can also drive the four global signals, 
referred to as GLOBAL0 through GLOBAL3 in Tables 8 and 9. The 
internally generated signal can drive the global signal, providing the same 
low-skew, low-delay characteristics for an internally generated signal as 
for a signal driven by an input. This feature is ideal for internally 
generated clear or clock signals with high fan-out. When a global signal is 
driven by internal logic, the dedicated input pin that drives that global 
signal cannot be used. The dedicated input pin should be driven to a 
known logic state (such as ground) and not be allowed to float.

When the chip-wide output enable pin is held low, it will tri-state all pins 
on the device. This option can be set in the Global Project Device Options 
menu. Additionally, the registers in the IOE can be reset by holding the 
chip-wide reset pin low.

Row-to-IOE Connections

When an IOE is used as an input signal, it can drive two separate row 
channels. The signal is accessible by all LEs within that row. When an IOE 
is used as an output, the signal is driven by a multiplexer that selects a 
signal from the row channels. Up to eight IOEs connect to each side of 
each row channel. See Figure 14.

Figure 14. FLEX 10K Row-to-IOE Connections
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The values for m and n are provided in Table 10.
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Notes:
(1) The most significant bit (MSB) is on the left.
(2) The least significant bit (LSB) for all JTAG IDCODEs is 1.

FLEX 10K devices include weak pull-ups on JTAG pins.

f For more information, see the following documents:

■ Application Note 39 (IEEE 1149.1 (JTAG) Boundary-Scan Testing in 
Altera Devices)

■ BitBlaster Serial Download Cable Data Sheet
■ ByteBlasterMV Parallel Port Download Cable Data Sheet
■ Jam Programming & Test Language Specification

Table 15. 32-Bit FLEX 10K Device IDCODE Note (1)

Device IDCODE (32 Bits)

Version 
(4 Bits)

Part Number 
(16 Bits)

Manufacturer’s Identity 
(11 Bits)

1 (1 Bit) 
(2)

EPF10K10, EPF10K10A 0000 0001 0000 0001 0000 00001101110 1

EPF10K20 0000 0001 0000 0010 0000 00001101110 1

EPF10K30, EPF10K30A 0000 0001 0000 0011 0000 00001101110 1

EPF10K40 0000 0001 0000 0100 0000 00001101110 1

EPF10K50, EPF10K50V 0000 0001 0000 0101 0000 00001101110 1

EPF10K70 0000 0001 0000 0111 0000 00001101110 1

EPF10K100, EPF10K100A 0000 0000 0001 0000 0000 00001101110 1

EPF10K130V 0000 0000 0001 0011 0000 00001101110 1

EPF10K250A 0000 0000 0010 0101 0000 00001101110 1
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Table 18. FLEX 10K 5.0-V Device Recommended Operating Conditions

Symbol Parameter Conditions Min Max Unit

VCCINT Supply voltage for internal logic 
and input buffers

(3), (4) 4.75 (4.50) 5.25 (5.50) V

VCCIO Supply voltage for output 
buffers, 5.0-V operation

(3), (4) 4.75 (4.50) 5.25 (5.50) V

Supply voltage for output 
buffers, 3.3-V operation

(3), (4) 3.00 (3.00) 3.60 (3.60) V

VI Input voltage –0.5 VCCINT + 0.5 V

VO Output voltage 0 VCCIO V

TA Ambient temperature For commercial use 0 70 ° C

For industrial use –40 85 ° C

TJ Operating temperature For commercial use 0 85 ° C

For industrial use –40 100 ° C

tR Input rise time 40 ns

tF Input fall time 40 ns
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Notes to tables:
(1) See the Operating Requirements for Altera Devices Data Sheet.
(2) Minimum DC input voltage is –0.5 V. During transitions, the inputs may undershoot to –2.0 V for input currents 

less than 100 mA and periods shorter than 20 ns.
(3) Numbers in parentheses are for industrial-temperature-range devices.
(4) Maximum VCC rise time is 100 ms. VCC must rise monotonically.
(5) Typical values are for TA = 25° C and VCC = 5.0 V.
(6) These values are specified under the Recommended Operation Condition shown in Table 18 on page 45.
(7) The IOH parameter refers to high-level TTL or CMOS output current.
(8) The IOL parameter refers to low-level TTL or CMOS output current. This parameter applies to open-drain pins as 

well as output pins.
(9) This value is specified for normal device operation. The value may vary during power-up.
(10) Capacitance is sample-tested only.

Figure 20 shows the typical output drive characteristics of FLEX 10K 
devices with 5.0-V and 3.3-V VCCIO. The output driver is compliant with 
the 5.0-V PCI Local Bus Specification, Revision 2.2 (for 5.0-V VCCIO).

Figure 20. Output Drive Characteristics of FLEX 10K Devices
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Figure 26. FLEX 10K Device IOE Timing Model

Figure 27. FLEX 10K Device EAB Timing Model

Figures 28 shows the timing model for bidirectional I/O pin timing.
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tSU LE register setup time for data and enable signals before clock; LE register 
recovery time after asynchronous clear, preset, or load

tH LE register hold time for data and enable signals after clock

tPRE LE register preset delay

tCLR LE register clear delay

tCH Minimum clock high time from clock pin

tCL Minimum clock low time from clock pin

Table 33. IOE Timing Microparameters Note (1)

Symbol Parameter Conditions

tIOD IOE data delay

tIOC IOE register control signal delay

tIOCO IOE register clock-to-output delay

tIOCOMB IOE combinatorial delay

tIOSU IOE register setup time for data and enable signals before clock; IOE register 
recovery time after asynchronous clear

tIOH IOE register hold time for data and enable signals after clock

tIOCLR IOE register clear time

tOD1 Output buffer and pad delay, slow slew rate = off, VCCIO = VCCINT C1 = 35 pF (2)

tOD2 Output buffer and pad delay, slow slew rate = off, VCCIO = low voltage C1 = 35 pF (3)

tOD3 Output buffer and pad delay, slow slew rate = on C1 = 35 pF (4)

tXZ IOE output buffer disable delay

tZX1 IOE output buffer enable delay, slow slew rate = off, VCCIO = VCCINT C1 = 35 pF (2)

tZX2 IOE output buffer enable delay, slow slew rate = off, VCCIO = low voltage C1 = 35 pF (3)

tZX3 IOE output buffer enable delay, slow slew rate = on C1 = 35 pF (4)

tINREG IOE input pad and buffer to IOE register delay

tIOFD IOE register feedback delay

tINCOMB IOE input pad and buffer to FastTrack Interconnect delay

Table 32. LE Timing Microparameters (Part 2 of 2) Note (1)

Symbol Parameter Conditions
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Table 36. Interconnect Timing Microparameters Note (1)

Symbol Parameter Conditions

tDIN2IOE Delay from dedicated input pin to IOE control input (7)

tDCLK2LE Delay from dedicated clock pin to LE or EAB clock (7)

tDIN2DATA Delay from dedicated input or clock to LE or EAB data (7)

tDCLK2IOE Delay from dedicated clock pin to IOE clock (7)

tDIN2LE Delay from dedicated input pin to LE or EAB control input (7)

tSAMELAB Routing delay for an LE driving another LE in the same LAB

tSAMEROW Routing delay for a row IOE, LE, or EAB driving a row IOE, LE, or EAB in the 
same row

(7)

tSAMECOLUMN Routing delay for an LE driving an IOE in the same column (7)

tDIFFROW Routing delay for a column IOE, LE, or EAB driving an LE or EAB in a different 
row

(7)

tTWOROWS Routing delay for a row IOE or EAB driving an LE or EAB in a different row (7)

tLEPERIPH Routing delay for an LE driving a control signal of an IOE via the peripheral 
control bus

(7)

tLABCARRY Routing delay for the carry-out signal of an LE driving the carry-in signal of a 
different LE in a different LAB

tLABCASC Routing delay for the cascade-out signal of an LE driving the cascade-in 
signal of a different LE in a different LAB

Table 37. External Timing Parameters  Notes (8), (10)

Symbol Parameter Conditions

tDRR Register-to-register delay via four LEs, three row interconnects, and four local 
interconnects

(9)

tINSU Setup time with global clock at IOE register

tINH Hold time with global clock at IOE register

tOUTCO Clock-to-output delay with global clock at IOE register

Table 38. External Bidirectional Timing Parameters Note (10)

Symbol Parameter Condition

tINSUBIDIR Setup time for bidirectional pins with global clock at adjacent LE register

tINHBIDIR Hold time for bidirectional pins with global clock at adjacent LE register

tOUTCOBIDIR Clock-to-output delay for bidirectional pins with global clock at IOE register

tXZBIDIR Synchronous IOE output buffer disable delay

tZXBIDIR Synchronous IOE output buffer enable delay, slow slew rate = off
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Notes to tables:
(1) Microparameters are timing delays contributed by individual architectural elements. These parameters cannot be 

measured explicitly.
(2) Operating conditions: VCCIO = 5.0 V ± 5% for commercial use in FLEX 10K devices.

VCCIO = 5.0 V ± 10% for industrial use in FLEX 10K devices.
VCCIO = 3.3 V ± 10% for commercial or industrial use in FLEX 10KA devices.

(3) Operating conditions: VCCIO = 3.3 V ± 10% for commercial or industrial use in FLEX 10K devices.
VCCIO = 2.5 V ± 0.2 V for commercial or industrial use in FLEX 10KA devices.

(4) Operating conditions: VCCIO = 2.5 V, 3.3 V, or 5.0 V.
(5) Because the RAM in the EAB is self-timed, this parameter can be ignored when the WE signal is registered. 
(6) EAB macroparameters are internal parameters that can simplify predicting the behavior of an EAB at its boundary; 

these parameters are calculated by summing selected microparameters. 
(7) These parameters are worst-case values for typical applications. Post-compilation timing simulation and timing 

analysis are required to determine actual worst-case performance.
(8) External reference timing parameters are factory-tested, worst-case values specified by Altera. A representative 

subset of signal paths is tested to approximate typical device applications.
(9) Contact Altera Applications for test circuit specifications and test conditions.
(10) These timing parameters are sample-tested only. 

Figures 29 and 30 show the asynchronous and synchronous timing 
waveforms, respectively, for the EAB macroparameters in Table 34. 

Figure 29. EAB Asynchronous Timing Waveforms
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Table 59. EPF10K70 Device EAB Internal Microparameters Note (1)

Symbol -2 Speed Grade -3 Speed Grade -4 Speed Grade Unit

Min Max Min Max Min Max

tEABDATA1 1.3 1.5 1.9 ns

tEABDATA2 4.3 4.8 6.0 ns

tEABWE1 0.9 1.0 1.2 ns

tEABWE2 4.5 5.0 6.2 ns

tEABCLK 0.9 1.0 2.2 ns

tEABCO 0.4 0.5 0.6 ns

tEABBYPASS 1.3 1.5 1.9 ns

tEABSU 1.3 1.5 1.8 ns

tEABH 1.8 2.0 2.5 ns

tAA 7.8 8.7 10.7 ns

tWP 5.2 5.8 7.2 ns

tWDSU 1.4 1.6 2.0 ns

tWDH 0.3 0.3 0.4 ns

tWASU 0.4 0.5 0.6 ns

tWAH 0.9 1.0 1.2 ns

tWO 4.5 5.0 6.2 ns

tDD 4.5 5.0 6.2 ns

tEABOUT 0.4 0.5 0.6 ns

tEABCH 4.0 4.0 4.0 ns

tEABCL 5.2 5.8 7.2 ns
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Table 66. EPF10K100 Device EAB Internal Microparameters Note (1)

Symbol -3DX Speed Grade -3 Speed Grade -4 Speed Grade Unit

Min Max Min Max Min Max

tEABDATA1 1.5 1.5 1.9 ns

tEABDATA2 4.8 4.8 6.0 ns

tEABWE1 1.0 1.0 1.2 ns

tEABWE2 5.0 5.0 6.2 ns

tEABCLK 1.0 1.0 2.2 ns

tEABCO 0.5 0.5 0.6 ns

tEABBYPASS 1.5 1.5 1.9 ns

tEABSU 1.5 1.5 1.8 ns

tEABH 2.0 2.0 2.5 ns

tAA 8.7 8.7 10.7 ns

tWP 5.8 5.8 7.2 ns

tWDSU 1.6 1.6 2.0 ns

tWDH 0.3 0.3 0.4 ns

tWASU 0.5 0.5 0.6 ns

tWAH 1.0 1.0 1.2 ns

tWO 5.0 5.0 6.2 ns

tDD 5.0 5.0 6.2 ns

tEABOUT 0.5 0.5 0.6 ns

tEABCH 4.0 4.0 4.0 ns

tEABCL 5.8 5.8 7.2 ns
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Notes to tables:
(1) All timing parameters are described in Tables 32 through 38 in this data sheet.
(2) Using an LE to register the signal may provide a lower setup time.
(3) This parameter is specified by characterization.

Tables 85 through 91 show EPF10K10A device internal and external 
timing parameters.

Table 85. EPF10K10A Device LE Timing Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tLUT 0.9 1.2 1.6 ns

tCLUT 1.2 1.4 1.9 ns

tRLUT 1.9 2.3 3.0 ns

tPACKED 0.6 0.7 0.9 ns

tEN 0.5 0.6 0.8 ns

tCICO 02 0.3 0.4 ns

tCGEN 0.7 0.9 1.1 ns

tCGENR 0.7 0.9 1.1 ns

tCASC 1.0 1.2 1.7 ns

tC 1.2 1.4 1.9 ns

tCO 0.5 0.6 0.8 ns

tCOMB 0.5 0.6 0.8 ns

tSU 1.1 1.3 1.7 ns

tH 0.6 0.7 0.9 ns

tPRE 0.5 0.6 0.9 ns

tCLR 0.5 0.6 0.9 ns

tCH 3.0 3.5 4.0 ns

tCL 3.0 3.5 4.0 ns

Table 86. EPF10K10A Device IOE Timing Microparameters Note (1) (Part 1 of 2)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

1.3 1.5 2.0 ns

tIOC 0.2 0.3 0.3 ns

tIOCO 0.2 0.3 0.4 ns

tIOCOMB 0.6 0.7 0.9 ns

tIOSU 0.8 1.0 1.3 ns
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tIOH 0.8 1.0 1.3 ns

tIOCLR 1.2 1.4 1.9 ns

tOD1 1.2 1.4 1.9 ns

tOD2 2.9 3.5 4.7 ns

tOD3 6.6 7.8 10.5 ns

tXZ 1.2 1.4 1.9 ns

tZX1 1.2 1.4 1.9 ns

tZX2 2.9 3.5 4.7 ns

tZX3 6.6 7.8 10.5 ns

tINREG 5.2 6.3 8.4 ns

tIOFD 3.1 3.8 5.0 ns

tINCOMB 3.1 3.8 5.0 ns

Table 86. EPF10K10A Device IOE Timing Microparameters Note (1) (Part 2 of 2)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max
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Table 87. EPF10K10A Device EAB Internal Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tEABDATA1 3.3 3.9 5.2 ns

tEABDATA2 1.0 1.3 1.7 ns

tEABWE1 2.6 3.1 4.1 ns

tEABWE2 2.7 3.2 4.3 ns

tEABCLK 0.0 0.0 0.0 ns

tEABCO 1.2 1.4 1.8 ns

tEABBYPASS 0.1 0.2 0.2 ns

tEABSU 1.4 1.7 2.2 ns

tEABH 0.1 0.1 0.1 ns

tAA 4.5 5.4 7.3 ns

tWP 2.0 2.4 3.2 ns

tWDSU 0.7 0.8 1.1 ns

tWDH 0.5 0.6 0.7 ns

tWASU 0.6 0.7 0.9 ns

tWAH 0.9 1.1 1.5 ns

tWO 3.3 3.9 5.2 ns

tDD 3.3 3.9 5.2 ns

tEABOUT 0.1 0.1 0.2 ns

tEABCH 3.0 3.5 4.0 ns

tEABCL 3.03 3.5 4.0 ns
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fMAX = Maximum operating frequency in MHz
N = Total number of logic cells used in the device
togLC = Average percent of logic cells toggling at each clock 

(typically 12.5%)
K = Constant, shown in Tables 114 and 115

This calculation provides an ICC estimate based on typical conditions with 
no output load. The actual ICC should be verified during operation 
because this measurement is sensitive to the actual pattern in the device 
and the environmental operating conditions.

To better reflect actual designs, the power model (and the constant K in 
the power calculation equations) for continuous interconnect FLEX 
devices assumes that logic cells drive FastTrack Interconnect channels. In 
contrast, the power model of segmented FPGAs assumes that all logic 
cells drive only one short interconnect segment. This assumption may 
lead to inaccurate results, compared to measured power consumption for 
an actual design in a segmented interconnect FPGA.

Figure 32 shows the relationship between the current and operating 
frequency of FLEX 10K devices.

Table 114. FLEX 10K K Constant Values

Device K Value

EPF10K10 82

EPF10K20 89

EPF10K30 88

EPF10K40 92

EPF10K50 95

EPF10K70 85

EPF10K100 88

Table 115. FLEX 10KA K Constant Values

Device K Value

EPF10K10A 17

EPF10K30A 17

EPF10K50V 19

EPF10K100A 19

EPF10K130V 22

EPF10K250A 23
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SRAM configuration elements allow FLEX 10K devices to be reconfigured 
in-circuit by loading new configuration data into the device. Real-time 
reconfiguration is performed by forcing the device into command mode 
with a device pin, loading different configuration data, reinitializing the 
device, and resuming user-mode operation.

The entire reconfiguration process may be completed in less than 320 ms 
using an EPF10K250A device with a DCLK frequency of 10 MHz. This 
process can be used to reconfigure an entire system dynamically. In-field 
upgrades can be performed by distributing new configuration files.

1 Refer to the configuration device data sheet to obtain the POR 
delay when using a configuration device method.

Programming Files

Despite being function- and pin-compatible, FLEX 10KA and FLEX 10KE 
devices are not programming- or configuration-file compatible with 
FLEX 10K devices. A design should be recompiled before it is transferred 
from a FLEX 10K device to an equivalent FLEX 10KA or FLEX 10KE 
device. This recompilation should be performed to create a new 
programming or configuration file and to check design timing on the 
faster FLEX 10KA or FLEX 10KE device. The programming or 
configuration files for EPF10K50 devices can program or configure an 
EPF10K50V device. However, Altera recommends recompiling a design 
for the EPF10K50V device when transferring it from the EPF10K50 device.

Configuration Schemes

The configuration data for a FLEX 10K device can be loaded with one of 
five configuration schemes (see Table 116), chosen on the basis of the 
target application. An EPC1, EPC2, EPC16, or EPC1441 configuration 
device, intelligent controller, or the JTAG port can be used to control the 
configuration of a FLEX 10K device, allowing automatic configuration on 
system power-up. 
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