

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

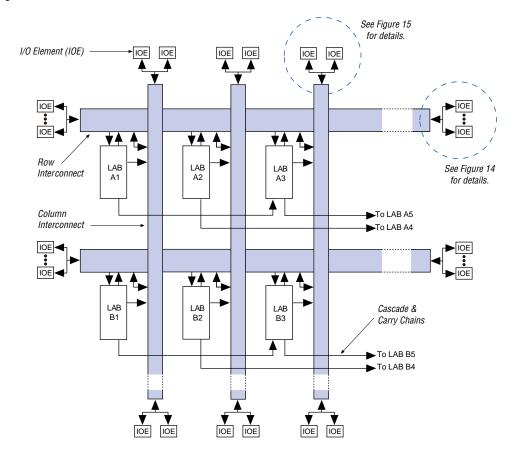
Details	
Product Status	Obsolete
Number of LABs/CLBs	216
Number of Logic Elements/Cells	1728
Total RAM Bits	12288
Number of I/O	189
Number of Gates	69000
Voltage - Supply	3V ~ 3.6V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	240-BFQFP
Supplier Device Package	240-PQFP (32x32)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epf10k30aqc240-1n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

For improved routing, the row interconnect is comprised of a combination of full-length and half-length channels. The full-length channels connect to all LABs in a row; the half-length channels connect to the LABs in half of the row. The EAB can be driven by the half-length channels in the left half of the row and by the full-length channels. The EAB drives out to the full-length channels. In addition to providing a predictable, row-wide interconnect, this architecture provides increased routing resources. Two neighboring LABs can be connected using a half-row channel, thereby saving the other half of the channel for the other half of the row.

Table 7 summarizes the FastTrack Interconnect resources available in each FLEX $10 \mathrm{K}$ device.


Table 7. FLEX 10K FastTrack Interconnect Resources								
Device	Rows	Channels per Row	Columns	Channels per Column				
EPF10K10 EPF10K10A	3	144	24	24				
EPF10K20	6	144	24	24				
EPF10K30 EPF10K30A	6	216	36	24				
EPF10K40	8	216	36	24				
EPF10K50 EPF10K50V	10	216	36	24				
EPF10K70	9	312	52	24				
EPF10K100 EPF10K100A	12	312	52	24				
EPF10K130V	16	312	52	32				
EPF10K250A	20	456	76	40				

In addition to general-purpose I/O pins, FLEX 10K devices have six dedicated input pins that provide low-skew signal distribution across the device. These six inputs can be used for global clock, clear, preset, and peripheral output enable and clock enable control signals. These signals are available as control signals for all LABs and IOEs in the device.

The dedicated inputs can also be used as general-purpose data inputs because they can feed the local interconnect of each LAB in the device. However, the use of dedicated inputs as data inputs can introduce additional delay into the control signal network.

Figure 12 shows the interconnection of adjacent LABs and EABs with row, column, and local interconnects, as well as the associated cascade and carry chains. Each LAB is labeled according to its location: a letter represents the row and a number represents the column. For example, LAB B3 is in row B, column 3.

Figure 12. Interconnect Resources

SameFrame Pin-Outs

FLEX 10KE devices support the SameFrame pin-out feature for FineLine BGA packages. The SameFrame pin-out feature is the arrangement of balls on FineLine BGA packages such that the lower-ball-count packages form a subset of the higher-ball-count packages. SameFrame pin-outs provide the flexibility to migrate not only from device to device within the same package, but also from one package to another. A given printed circuit board (PCB) layout can support multiple device density/package combinations. For example, a single board layout can support a range of devices from an EPF10K10A device in a 256-pin FineLine BGA package to an EPF10K100A device in a 484-pin FineLine BGA package.

The Altera software provides support to design PCBs with SameFrame pin-out devices. Devices can be defined for present and future use. The Altera software generates pin-outs describing how to lay out a board to take advantage of this migration (see Figure 16).

Printed Circuit Board
Designed for 484-PinFineLine BGA Package

256-Pin
FineLine
BGA

256-Pin FineLine
BGA

256-Pin FineLine
BGA

256-Pin FineLine
BGA

Figure 16. SameFrame Pin-Out Example

(Reduced I/O Count or Logic Requirements) (Increased I/O Count or Logic Requirements)

ClockLock & ClockBoost Features

To support high-speed designs, selected FLEX 10K devices offer optional ClockLock and ClockBoost circuitry containing a phase-locked loop (PLL) that is used to increase design speed and reduce resource usage. The ClockLock circuitry uses a synchronizing PLL that reduces the clock delay and skew within a device. This reduction minimizes clock-to-output and setup times while maintaining zero hold times. The ClockBoost circuitry, which provides a clock multiplier, allows the designer to enhance device area efficiency by sharing resources within the device. The ClockBoost feature allows the designer to distribute a low-speed clock and multiply that clock on-device. Combined, the ClockLock and ClockBoost features provide significant improvements in system performance and bandwidth.

The ClockLock and ClockBoost features in FLEX 10K devices are enabled through the Altera software. External devices are not required to use these features. The output of the ClockLock and ClockBoost circuits is not available at any of the device pins.

The ClockLock and ClockBoost circuitry locks onto the rising edge of the incoming clock. The circuit output can only drive the clock inputs of registers; the generated clock cannot be gated or inverted.

The dedicated clock pin (GCLK1) supplies the clock to the ClockLock and ClockBoost circuitry. When the dedicated clock pin is driving the ClockLock or ClockBoost circuitry, it cannot drive elsewhere in the device.

In designs that require both a multiplied and non-multiplied clock, the clock trace on the board can be connected to GCLK1. With the Altera software, GCLK1 can feed both the ClockLock and ClockBoost circuitry in the FLEX 10K device. However, when both circuits are used, the other clock pin (GCLK0) cannot be used. Figure 17 shows a block diagram of how to enable both the ClockLock and ClockBoost circuits in the Altera software. The example shown is a schematic, but a similar approach applies for designs created in AHDL, VHDL, and Verilog HDL. When the ClockLock and ClockBoost circuits are used simultaneously, the input frequency parameter must be the same for both circuits. In Figure 17, the input frequency must meet the requirements specified when the ClockBoost multiplication factor is two.

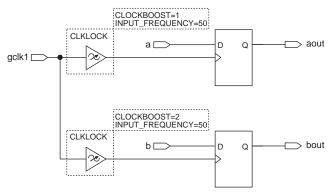


Figure 17. Enabling ClockLock & ClockBoost in the Same Design

To use both the ClockLock and ClockBoost circuits in the same design, designers must use Revision C EPF10K100GC503-3DX devices and MAX+PLUS II software versions 7.2 or higher. The die revision is indicated by the third digit of the nine-digit code on the top side of the device.

Output Configuration

This section discusses the peripheral component interconnect (PCI) pull-up clamping diode option, slew-rate control, open-drain output option, MultiVolt I/O interface, and power sequencing for FLEX 10K devices. The PCI pull-up clamping diode, slew-rate control, and open-drain output options are controlled pin-by-pin via Altera logic options. The MultiVolt I/O interface is controlled by connecting V_{CCIO} to a different voltage than $V_{CCINT}.$ Its effect can be simulated in the Altera software via the **Global Project Device Options** dialog box (Assign menu).

PCI Clamping Diodes

The EPF10K10A and EPF10K30A devices have a pull-up clamping diode on every I/O, dedicated input, and dedicated clock pin. PCI clamping diodes clamp the transient overshoot caused by reflected waves to the $V_{\rm CCIO}$ value and are required for 3.3-V PCI compliance. Clamping diodes can also be used to limit overshoot in other systems.

Clamping diodes are controlled on a pin-by-pin basis via a logic option in the Altera software. When $V_{\rm CCIO}$ is 3.3 V, a pin that has the clamping diode turned on can be driven by a 2.5-V or 3.3-V signal, but not a 5.0-V signal. When $V_{\rm CCIO}$ is 2.5 V, a pin that has the clamping diode turned on can be driven by a 2.5-V signal, but not a 3.3-V or 5.0-V signal. However, a clamping diode can be turned on for a subset of pins, which allows devices to bridge between a 3.3-V PCI bus and a 5.0-V device.

Slew-Rate Control

The output buffer in each IOE has an adjustable output slew rate that can be configured for low-noise or high-speed performance. A slower slew rate reduces system noise and adds a maximum delay of approximately 2.9 ns. The fast slew rate should be used for speed-critical outputs in systems that are adequately protected against noise. Designers can specify the slew rate on a pin-by-pin basis during design entry or assign a default slew rate to all pins on a device-wide basis. The slow slew rate setting affects only the falling edge of the output.

Open-Drain Output Option

FLEX 10K devices provide an optional open-drain (electrically equivalent to an open-collector) output for each I/O pin. This open-drain output enables the device to provide system-level control signals (e.g., interrupt and write enable signals) that can be asserted by any of several devices. It can also provide an additional wired-OR plane. Additionally, the Altera software can convert tri-state buffers with grounded data inputs to open-drain pins automatically.

Open-drain output pins on FLEX 10K devices (with a pull-up resistor to the 5.0-V supply) can drive 5.0-V CMOS input pins that require a $V_{\rm IH}$ of 3.5 V. When the open-drain pin is active, it will drive low. When the pin is inactive, the trace will be pulled up to 5.0 V by the resistor. The open-drain pin will only drive low or tri-state; it will never drive high. The rise time is dependent on the value of the pull-up resistor and load impedance. The $I_{\rm OL}$ current specification should be considered when selecting a pull-up resistor.

Output pins on 5.0-V FLEX 10K devices with $V_{CCIO} = 3.3 \text{ V}$ or 5.0 V (with a pull-up resistor to the 5.0-V supply) can also drive 5.0-V CMOS input pins. In this case, the pull-up transistor will turn off when the pin voltage exceeds 3.3 V. Therefore, the pin does not have to be open-drain.

MultiVolt I/O Interface

The FLEX 10K device architecture supports the MultiVolt I/O interface feature, which allows FLEX 10K devices to interface with systems of differing supply voltages. These devices have one set of V_{CC} pins for internal operation and input buffers (VCCINT) and another set for I/O output drivers (VCCIO).

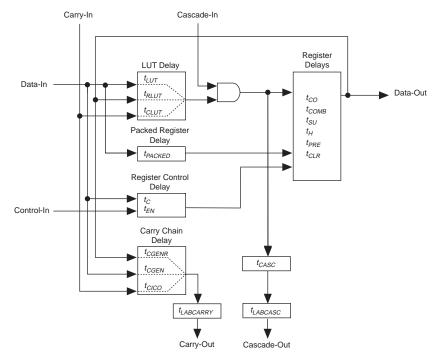
Table 12 describes the FLEX 10K device supply voltages and MultiVolt $\rm I/O$ support levels.

Devices	Supply Vo	oltage (V)	MultiVolt I/O Sup	port Levels (V)
	V _{CCINT}	V _{CCIO}	Input	Output
FLEX 10K (1)	5.0	5.0	3.3 or 5.0	5.0
	5.0	3.3	3.3 or 5.0	3.3 or 5.0
EPF10K50V (1)	3.3	3.3	3.3 or 5.0	3.3 or 5.0
EPF10K130V	3.3	3.3	3.3 or 5.0	3.3 or 5.0
FLEX 10KA (1)	3.3	3.3	2.5, 3.3, or 5.0	3.3 or 5.0
	3.3	2.5	2.5, 3.3, or 5.0	2.5

Note

(1) 240-pin QFP packages do not support the MultiVolt I/O features, so they do not have separate V_{CCIO} pins.

Power Sequencing & Hot-Socketing


Because FLEX 10K devices can be used in a multi-voltage environment, they have been designed specifically to tolerate any possible power-up sequence. The $V_{\rm CCIO}$ and $V_{\rm CCINT}$ power supplies can be powered in any order.

Signals can be driven into FLEX 10KA devices before and during power up without damaging the device. Additionally, FLEX 10KA devices do not drive out during power up. Once operating conditions are reached, FLEX 10KA devices operate as specified by the user.

IEEE Std. 1149.1 (JTAG) Boundary-Scan Support All FLEX 10K devices provide JTAG BST circuitry that complies with the IEEE Std. 1149.1-1990 specification. All FLEX 10K devices can also be configured using the JTAG pins through the BitBlaster serial download cable, or ByteBlasterMV parallel port download cable, or via hardware that uses the JamTM programming and test language. JTAG BST can be performed before or after configuration, but not during configuration. FLEX 10K devices support the JTAG instructions shown in Table 13.

Figures 25 through 27 show the delays that correspond to various paths and functions within the LE, IOE, and EAB timing models.

Figure 25. FLEX 10K Device LE Timing Model

Symbol	Parameter	Conditions		
t _{DIN2IOE}	Delay from dedicated input pin to IOE control input			
t _{DCLK2LE}	Delay from dedicated clock pin to LE or EAB clock	(7)		
t _{DIN2DATA}	Delay from dedicated input or clock to LE or EAB data	(7)		
t _{DCLK2IOE}	Delay from dedicated clock pin to IOE clock	(7)		
t _{DIN2LE}	Delay from dedicated input pin to LE or EAB control input	(7)		
t _{SAMELAB}	Routing delay for an LE driving another LE in the same LAB			
t _{SAMEROW}	Routing delay for a row IOE, LE, or EAB driving a row IOE, LE, or EAB in the same row	(7)		
t _{SAME} COLUMN	Routing delay for an LE driving an IOE in the same column	(7)		
t _{DIFFROW}	Routing delay for a column IOE, LE, or EAB driving an LE or EAB in a different row	(7)		
t _{TWOROWS}	Routing delay for a row IOE or EAB driving an LE or EAB in a different row	(7)		
t _{LEPERIPH}	Routing delay for an LE driving a control signal of an IOE via the peripheral control bus	(7)		
t _{LABCARRY}	Routing delay for the carry-out signal of an LE driving the carry-in signal of a different LE in a different LAB			
t _{LABCASC}	Routing delay for the cascade-out signal of an LE driving the cascade-in signal of a different LE in a different LAB			

Table 37. External Timing Parameters Notes (8), (10)					
Symbol	Parameter	Conditions			
t _{DRR}	Register-to-register delay via four LEs, three row interconnects, and four local interconnects	(9)			
t _{INSU}	Setup time with global clock at IOE register				
t _{INH}	Hold time with global clock at IOE register				
t _{OUTCO}	Clock-to-output delay with global clock at IOE register				

Table 38. External Bidirectional Timing Parameters Note (10)					
Symbol	Parameter	Condition			
t _{INSUBIDIR}	Setup time for bidirectional pins with global clock at adjacent LE register				
t _{INHBIDIR}	Hold time for bidirectional pins with global clock at adjacent LE register				
t _{OUTCOBIDIR}	Clock-to-output delay for bidirectional pins with global clock at IOE register				
t _{XZBIDIR}	Synchronous IOE output buffer disable delay				
t _{ZXBIDIR}	Synchronous IOE output buffer enable delay, slow slew rate = off				

Symbol	-3 Spee	d Grade	-4 Spee	Unit	
	Min	Max	Min	Max	
t _{EABDATA1}		1.5		1.9	ns
t _{EABDATA2}		4.8		6.0	ns
t _{EABWE1}		1.0		1.2	ns
t _{EABWE2}		5.0		6.2	ns
t _{EABCLK}		1.0		2.2	ns
t _{EABCO}		0.5		0.6	ns
t _{EABBYPASS}		1.5		1.9	ns
t _{EABSU}	1.5		1.8		ns
t _{EABH}	2.0		2.5		ns
t_{AA}		8.7		10.7	ns
t_{WP}	5.8		7.2		ns
t _{WDSU}	1.6		2.0		ns
t _{WDH}	0.3		0.4		ns
t _{WASU}	0.5		0.6		ns
t_{WAH}	1.0		1.2		ns
t_{WO}		5.0		6.2	ns
t_{DD}		5.0		6.2	ns
t _{EABOUT}		0.5		0.6	ns
t _{EABCH}	4.0		4.0		ns
t _{EABCL}	5.8		7.2		ns

Symbol	-3 Spee	d Grade	-4 Spee	Unit	
	Min	Max	Min	Max	
t _{EABDATA1}		1.5		1.9	ns
t _{EABDATA2}		4.8		6.0	ns
t _{EABWE1}		1.0		1.2	ns
t _{EABWE2}		5.0		6.2	ns
t _{EABCLK}		1.0		2.2	ns
t _{EABCO}		0.5		0.6	ns
t _{EABBYPASS}		1.5		1.9	ns
t _{EABSU}	1.5		1.8		ns
t _{EABH}	2.0		2.5		ns
t_{AA}		8.7		10.7	ns
t_{WP}	5.8		7.2		ns
t _{WDSU}	1.6		2.0		ns
t _{WDH}	0.3		0.4		ns
t _{WASU}	0.5		0.6		ns
t _{WAH}	1.0		1.2		ns
t_{WO}		5.0		6.2	ns
t _{DD}		5.0		6.2	ns
t _{EABOUT}		0.5		0.6	ns
t _{EABCH}	4.0		4.0		ns
t _{EABCL}	5.8		7.2		ns

Symbol	-3DX Spe	-3DX Speed Grade		-3 Speed Grade		-4 Speed Grade	
	Min	Max	Min	Max	Min	Max	
t _{EABAA}		13.7		13.7		17.0	ns
t _{EABRCCOMB}	13.7		13.7		17.0		ns
t _{EABRCREG}	9.7		9.7		11.9		ns
t _{EABWP}	5.8		5.8		7.2		ns
t _{EABWCCOMB}	7.3		7.3		9.0		ns
t _{EABWCREG}	13.0		13.0		16.0		ns
t _{EABDD}		10.0		10.0		12.5	ns
t _{EABDATA} CO		2.0		2.0		3.4	ns
t _{EABDATASU}	5.3		5.3		5.6		ns
t _{EABDATAH}	0.0		0.0		0.0		ns
t _{EABWESU}	5.5		5.5		5.8		ns
t _{EABWEH}	0.0		0.0		0.0		ns
t _{EABWDSU}	5.5		5.5		5.8		ns
t _{EABWDH}	0.0		0.0		0.0		ns
t _{EABWASU}	2.1		2.1		2.7		ns
t _{EABWAH}	0.0		0.0		0.0		ns
t _{EABWO}		9.5		9.5		11.8	ns

Symbol	-3DX Speed Grade		-3 Speed Grade		-4 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{DIN2IOE}		10.3		10.3		12.2	ns
t _{DIN2LE}		4.8		4.8		6.0	ns
t _{DIN2DATA}		7.3		7.3		11.0	ns
t _{DCLK2IOE} without ClockLock or ClockBoost circuitry		6.2		6.2		7.7	ns
$t_{DCLK2IOE}$ with ClockLock or ClockBoost circuitry		2.3		_		_	ns
t _{DCLK2LE} without ClockLock or ClockBoost circuitry		4.8		4.8		6.0	ns
$t_{DCLK2LE}$ with ClockLock or ClockBoost circuitry		2.3		_		_	ns
^t SAMELAB		0.4		0.4		0.5	ns
^t SAMEROW		4.9		4.9		5.5	ns
^t SAMECOLUMN		5.1		5.1		5.4	ns
t _{DIFFROW}		10.0		10.0		10.9	ns
t _{TWOROWS}		14.9		14.9		16.4	ns
t _{LEPERIPH}		6.9		6.9		8.1	ns
t _{LABCARRY}		0.9		0.9		1.1	ns
t _{LABCASC}		3.0		3.0		3.2	ns

Multiple FLEX 10K devices can be configured in any of the five configuration schemes by connecting the configuration enable (nCE) and configuration enable output (nCEO) pins on each device.

Table 116. Data Sources for Configuration			
Configuration Scheme	Data Source		
Configuration device	EPC1, EPC2, EPC16, or EPC1441 configuration device		
Passive serial (PS)	BitBlaster, MasterBlaster, or ByteBlasterMV download cable, or serial data source		
Passive parallel asynchronous (PPA)	Parallel data source		
Passive parallel synchronous (PPS)	Parallel data source		
JTAG	BitBlaster, MasterBlaster, or ByteBlasterMV download cable, or microprocessor with Jam STAPL file or Jam Byte-Code file		

Device Pin-Outs

See the Altera web site (http://www.altera.com) or the Altera Digital Library for pin-out information.

Revision History

The information contained in the *FLEX 10K Embedded Programmable Logic Device Family Data Sheet* version 4.2 supersedes information published in previous versions.

Version 4.2 Changes

The following change was made to version 4.2 of the *FLEX 10K Embedded Programmable Logic Device Family Data Sheet*: updated Figure 13.

Version 4.1 Changes

The following changes were made to version 4.1 of the FLEX 10K Embedded Programmable Logic Device Family Data Sheet.

- Updated General Description section
- Updated I/O Element section
- Updated SameFrame Pin-Outs section
- Updated Figure 16
- Updated Tables 13 and 116
- Added Note 9 to Table 19
- Added Note 10 to Table 24
- Added Note 10 to Table 28