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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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FLEX 10K Embedded Programmable Logic Device Family Data Sheet
f For more information, see the following documents:

■ Configuration Devices for APEX & FLEX Devices Data Sheet
■ BitBlaster Serial Download Cable Data Sheet
■ ByteBlasterMV Parallel Port Download Cable Data Sheet
■ Application Note 116 (Configuring APEX 20K, FLEX 10K & FLEX 6000 

Devices) 

FLEX 10K devices are supported by Altera development systems; single, 
integrated packages that offer schematic, text (including AHDL), and 
waveform design entry, compilation and logic synthesis, full simulation 
and worst-case timing analysis, and device configuration. The Altera 
software provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and 
other interfaces for additional design entry and simulation support from 
other industry-standard PC- and UNIX workstation-based EDA tools.

The Altera software works easily with common gate array EDA tools for 
synthesis and simulation. For example, the Altera software can generate 
Verilog HDL files for simulation with tools such as Cadence Verilog-XL. 
Additionally, the Altera software contains EDA libraries that use device-
specific features such as carry chains which are used for fast counter and 
arithmetic functions. For instance, the Synopsys Design Compiler library 
supplied with the Altera development systems include DesignWare 
functions that are optimized for the FLEX 10K architecture.

The Altera development systems run on Windows-based PCs and Sun 
SPARCstation, and HP 9000 Series 700/800 workstations.

f See the MAX+PLUS II Programmable Logic Development System & Software 
Data Sheet for more information.

Functional 
Description

Each FLEX 10K device contains an embedded array to implement 
memory and specialized logic functions, and a logic array to implement 
general logic.

The embedded array consists of a series of EABs. When implementing 
memory functions, each EAB provides 2,048 bits, which can be used to 
create RAM, ROM, dual-port RAM, or first-in first-out (FIFO) functions. 
When implementing logic, each EAB can contribute 100 to 600 gates 
towards complex logic functions, such as multipliers, microcontrollers, 
state machines, and DSP functions. EABs can be used independently, or 
multiple EABs can be combined to implement larger functions. 
Altera Corporation  7
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The logic array consists of logic array blocks (LABs). Each LAB contains 
eight LEs and a local interconnect. An LE consists of a 4-input look-up 
table (LUT), a programmable flipflop, and dedicated signal paths for carry 
and cascade functions. The eight LEs can be used to create medium-sized 
blocks of logic—8-bit counters, address decoders, or state machines—or 
combined across LABs to create larger logic blocks. Each LAB represents 
about 96 usable gates of logic.

Signal interconnections within FLEX 10K devices and to and from device 
pins are provided by the FastTrack Interconnect, a series of fast, 
continuous row and column channels that run the entire length and width 
of the device. 

Each I/O pin is fed by an I/O element (IOE) located at the end of each row 
and column of the FastTrack Interconnect. Each IOE contains a 
bidirectional I/O buffer and a flipflop that can be used as either an output 
or input register to feed input, output, or bidirectional signals. When used 
with a dedicated clock pin, these registers provide exceptional 
performance. As inputs, they provide setup times as low as 1.6 ns and 
hold times of 0 ns; as outputs, these registers provide clock-to-output 
times as low as 5.3 ns. IOEs provide a variety of features, such as JTAG 
BST support, slew-rate control, tri-state buffers, and open-drain outputs. 

Figure 1 shows a block diagram of the FLEX 10K architecture. Each group 
of LEs is combined into an LAB; LABs are arranged into rows and 
columns. Each row also contains a single EAB. The LABs and EABs are 
interconnected by the FastTrack Interconnect. IOEs are located at the end 
of each row and column of the FastTrack Interconnect.
8 Altera Corporation
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Logic Array Block

Each LAB consists of eight LEs, their associated carry and cascade chains, 
LAB control signals, and the LAB local interconnect. The LAB provides 
the coarse-grained structure to the FLEX 10K architecture, facilitating 
efficient routing with optimum device utilization and high performance. 
See Figure 5. 

Figure 5. FLEX 10K LAB

Notes:
(1) EPF10K10, EPF10K10A, EPF10K20, EPF10K30, EPF10K30A, EPF10K40, EPF10K50, and EPF10K50V devices have 

22 inputs to the LAB local interconnect channel from the row; EPF10K70, EPF10K100, EPF10K100A, EPF10K130V, 
and EPF10K250A devices have 26.

(2) EPF10K10, EPF10K10A, EPF10K20, EPF10K30, EPF10K30A, EPF10K40, EPF10K50, and EPF10K50V devices have 
30 LAB local interconnect channels; EPF10K70, EPF10K100, EPF10K100A, EPF10K130V, and EPF10K250A devices 
have 34 LABs.
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The programmable flipflop in the LE can be configured for D, T, JK, or SR 
operation. The clock, clear, and preset control signals on the flipflop can 
be driven by global signals, general-purpose I/O pins, or any internal 
logic. For combinatorial functions, the flipflop is bypassed and the output 
of the LUT drives the output of the LE. 

The LE has two outputs that drive the interconnect; one drives the local 
interconnect and the other drives either the row or column FastTrack 
Interconnect. The two outputs can be controlled independently. For 
example, the LUT can drive one output while the register drives the other 
output. This feature, called register packing, can improve LE utilization 
because the register and the LUT can be used for unrelated functions.

The FLEX 10K architecture provides two types of dedicated high-speed 
data paths that connect adjacent LEs without using local interconnect 
paths: carry chains and cascade chains. The carry chain supports high-
speed counters and adders; the cascade chain implements wide-input 
functions with minimum delay. Carry and cascade chains connect all LEs 
in an LAB and all LABs in the same row. Intensive use of carry and 
cascade chains can reduce routing flexibility. Therefore, the use of these 
chains should be limited to speed-critical portions of a design.

Carry Chain

The carry chain provides a very fast (as low as 0.2 ns) carry-forward 
function between LEs. The carry-in signal from a lower-order bit drives 
forward into the higher-order bit via the carry chain, and feeds into both 
the LUT and the next portion of the carry chain. This feature allows the 
FLEX 10K architecture to implement high-speed counters, adders, and 
comparators of arbitrary width efficiently. Carry chain logic can be 
created automatically by the Compiler during design processing, or 
manually by the designer during design entry. Parameterized functions 
such as LPM and DesignWare functions automatically take advantage of 
carry chains.

Carry chains longer than eight LEs are automatically implemented by 
linking LABs together. For enhanced fitting, a long carry chain skips 
alternate LABs in a row. A carry chain longer than one LAB skips either 
from even-numbered LAB to even-numbered LAB, or from odd-
numbered LAB to odd-numbered LAB. For example, the last LE of the 
first LAB in a row carries to the first LE of the third LAB in the row. The 
carry chain does not cross the EAB at the middle of the row. For instance, 
in the EPF10K50 device, the carry chain stops at the eighteenth LAB and a 
new one begins at the nineteenth LAB.
Altera Corporation  15
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Cascade Chain

With the cascade chain, the FLEX 10K architecture can implement 
functions that have a very wide fan-in. Adjacent LUTs can be used to 
compute portions of the function in parallel; the cascade chain serially 
connects the intermediate values. The cascade chain can use a logical AND 
or logical OR (via De Morgan’s inversion) to connect the outputs of 
adjacent LEs. Each additional LE provides four more inputs to the 
effective width of a function, with a delay as low as 0.7 ns per LE. Cascade 
chain logic can be created automatically by the Compiler during design 
processing, or manually by the designer during design entry.

Cascade chains longer than eight bits are implemented automatically by 
linking several LABs together. For easier routing, a long cascade chain 
skips every other LAB in a row. A cascade chain longer than one LAB 
skips either from even-numbered LAB to even-numbered LAB, or from 
odd-numbered LAB to odd-numbered LAB (e.g., the last LE of the first 
LAB in a row cascades to the first LE of the third LAB). The cascade chain 
does not cross the center of the row (e.g., in the EPF10K50 device, the 
cascade chain stops at the eighteenth LAB and a new one begins at the 
nineteenth LAB). This break is due to the EAB’s placement in the middle 
of the row.

Figure 8 shows how the cascade function can connect adjacent LEs to form 
functions with a wide fan-in. These examples show functions of 4n 
variables implemented with n LEs. The LE delay is as low as 1.6 ns; the 
cascade chain delay is as low as 0.7 ns. With the cascade chain, 3.7 ns is 
needed to decode a 16-bit address.

Figure 8. Cascade Chain Operation
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Normal Mode

The normal mode is suitable for general logic applications and wide 
decoding functions that can take advantage of a cascade chain. In normal 
mode, four data inputs from the LAB local interconnect and the carry-in 
are inputs to a four-input LUT. The Compiler automatically selects the 
carry-in or the DATA3 signal as one of the inputs to the LUT. The LUT 
output can be combined with the cascade-in signal to form a cascade chain 
through the cascade-out signal. Either the register or the LUT can be used 
to drive both the local interconnect and the FastTrack Interconnect at the 
same time. 

The LUT and the register in the LE can be used independently; this feature 
is known as register packing. To support register packing, the LE has two 
outputs; one drives the local interconnect and the other drives the 
FastTrack Interconnect. The DATA4 signal can drive the register directly, 
allowing the LUT to compute a function that is independent of the 
registered signal; a three-input function can be computed in the LUT, and 
a fourth independent signal can be registered. Alternatively, a four-input 
function can be generated, and one of the inputs to this function can be 
used to drive the register. The register in a packed LE can still use the clock 
enable, clear, and preset signals in the LE. In a packed LE, the register can 
drive the FastTrack Interconnect while the LUT drives the local 
interconnect, or vice versa.

Arithmetic Mode

The arithmetic mode offers 2 three-input LUTs that are ideal for 
implementing adders, accumulators, and comparators. One LUT 
computes a three-input function, and the other generates a carry output. 
As shown in Figure 9 on page 19, the first LUT uses the carry-in signal and 
two data inputs from the LAB local interconnect to generate a 
combinatorial or registered output. For example, in an adder, this output 
is the sum of three signals: a, b, and carry-in. The second LUT uses the 
same three signals to generate a carry-out signal, thereby creating a carry 
chain. The arithmetic mode also supports simultaneous use of the cascade 
chain.
20 Altera Corporation
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Figure 10. LE Clear & Preset Modes
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Figure 17. Enabling ClockLock & ClockBoost in the Same Design

To use both the ClockLock and ClockBoost circuits in the same design, 
designers must use Revision C EPF10K100GC503-3DX devices and 
MAX+PLUS II software versions 7.2 or higher. The die revision is 
indicated by the third digit of the nine-digit code on the top side of the 
device.

Output 
Configuration

This section discusses the peripheral component interconnect (PCI) 
pull-up clamping diode option, slew-rate control, open-drain output 
option, MultiVolt I/O interface, and power sequencing for FLEX 10K 
devices. The PCI pull-up clamping diode, slew-rate control, and 
open-drain output options are controlled pin-by-pin via Altera logic 
options. The MultiVolt I/O interface is controlled by connecting VCCIO to 
a different voltage than VCCINT. Its effect can be simulated in the Altera 
software via the Global Project Device Options dialog box (Assign 
menu).

PCI Clamping Diodes

The EPF10K10A and EPF10K30A devices have a pull-up clamping diode 
on every I/O, dedicated input, and dedicated clock pin. PCI clamping 
diodes clamp the transient overshoot caused by reflected waves to the 
VCCIO value and are required for 3.3-V PCI compliance. Clamping diodes 
can also be used to limit overshoot in other systems.

Clamping diodes are controlled on a pin-by-pin basis via a logic option in 
the Altera software. When VCCIO is 3.3 V, a pin that has the clamping 
diode turned on can be driven by a 2.5-V or 3.3-V signal, but not a 5.0-V 
signal. When VCCIO is 2.5 V, a pin that has the clamping diode turned on 
can be driven by a 2.5-V signal, but not a 3.3-V or 5.0-V signal. However, 
a clamping diode can be turned on for a subset of pins, which allows 
devices to bridge between a 3.3-V PCI bus and a 5.0-V device.
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Figure 18 shows the timing requirements for the JTAG signals.

Figure 18. JTAG Waveforms

Table 16 shows the timing parameters and values for FLEX 10K devices.

Table 16. JTAG Timing Parameters & Values

Symbol Parameter Min Max Unit

tJCP TCK clock period  100 ns

tJCH TCK clock high time  50 ns

tJCL TCK clock low time  50 ns

tJPSU JTAG port setup time  20 ns

tJPH JTAG port hold time  45 ns

tJPCO JTAG port clock to output 25 ns

tJPZX JTAG port high impedance to valid output 25 ns

tJPXZ JTAG port valid output to high impedance 25 ns

tJSSU Capture register setup time 20 ns

tJSH Capture register hold time 45 ns

tJSCO Update register clock to output 35 ns

tJSZX Update register high-impedance to valid output 35 ns

tJSXZ Update register valid output to high impedance 35 ns
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Table 28. FLEX 10KA 3.3-V Device DC Operating Conditions Notes (6), (7)

Symbol Parameter Conditions Min Typ Max Unit

VIH High-level input voltage 1.7 or 
0.5 × VCCINT, 
whichever is 

lower

5.75 V

VIL Low-level input voltage –0.5 0.3 × VCCINT V

VOH 3.3-V high-level TTL output 
voltage

IOH = –11 mA DC, 
VCCIO = 3.00 V (8) 

2.4 V

3.3-V high-level CMOS output 
voltage

IOH = –0.1 mA DC, 
VCCIO = 3.00 V (8) 

VCCIO – 0.2 V

3.3-V high-level PCI output 
voltage

IOH = –0.5 mA DC, 
VCCIO = 3.00 to 3.60 V (8) 

0.9 × VCCIO V

2.5-V high-level output voltage IOH = –0.1 mA DC, 
VCCIO = 2.30 V (8) 

2.1 V

IOH = –1 mA DC, 
VCCIO = 2.30 V (8) 

2.0 V

IOH = –2 mA DC, 
VCCIO = 2.30 V (8) 

1.7 V

VOL 3.3-V low-level TTL output 
voltage

IOL = 9 mA DC, 
VCCIO = 3.00 V (9)

0.45 V

3.3-V low-level CMOS output 
voltage

IOL = 0.1 mA DC, 
VCCIO = 3.00 V (9)

0.2 V

3.3-V low-level PCI output 
voltage

IOL = 1.5 mA DC, 
VCCIO = 3.00 to 3.60 V (9)

0.1 × VCCIO V

2.5-V low-level output voltage IOL = 0.1 mA DC, 
VCCIO = 2.30 V (9)

0.2 V

IOL = 1 mA DC, 
VCCIO = 2.30 V (9)

0.4 V

IOL = 2 mA DC, 
VCCIO = 2.30 V (9)

0.7 V

II Input pin leakage current VI = 5.3 V to –0.3 V (10) –10 10 µA

IOZ Tri-stated I/O pin leakage 
current

VO = 5.3 V to –0.3 V (10) –10 10 µA

ICC0 VCC supply current (standby) VI = ground, no load 0.3 10 mA

VI = ground, no load (11) 10 mA
52 Altera Corporation
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Figure 26. FLEX 10K Device IOE Timing Model

Figure 27. FLEX 10K Device EAB Timing Model

Figures 28 shows the timing model for bidirectional I/O pin timing.
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Table 34. EAB Timing Microparameters Note (1)

Symbol Parameter Conditions

tEABDATA1 Data or address delay to EAB for combinatorial input

tEABDATA2 Data or address delay to EAB for registered input

tEABWE1 Write enable delay to EAB for combinatorial input

tEABWE2 Write enable delay to EAB for registered input

tEABCLK EAB register clock delay

tEABCO EAB register clock-to-output delay

tEABBYPASS Bypass register delay

tEABSU EAB register setup time before clock

tEABH EAB register hold time after clock

tAA Address access delay

tWP Write pulse width

tWDSU Data setup time before falling edge of write pulse (5)

tWDH Data hold time after falling edge of write pulse (5)

tWASU Address setup time before rising edge of write pulse (5)

tWAH Address hold time after falling edge of write pulse (5)

tWO Write enable to data output valid delay

tDD Data-in to data-out valid delay

tEABOUT Data-out delay

tEABCH Clock high time

tEABCL Clock low time
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Table 49. EPF10K30, EPF10K40 & EPF10K50 Device IOE Timing Microparameters Note (1)

Symbol -3 Speed Grade -4 Speed Grade Unit

Min Max Min Max

tIOD 0.4 0.6 ns

tIOC 0.5 0.9 ns

tIOCO 0.4 0.5 ns

tIOCOMB 0.0 0.0 ns

tIOSU 3.1 3.5 ns

tIOH 1.0 1.9 ns

tIOCLR 1.0 1.2 ns

tOD1 3.3 3.6 ns

tOD2 5.6 6.5 ns

tOD3 7.0 8.3 ns

tXZ 5.2 5.5 ns

tZX1 5.2 5.5 ns

tZX2 7.5 8.4 ns

tZX3 8.9 10.2 ns

tINREG 7.7 10.0 ns

tIOFD 3.3 4.0 ns

tINCOMB 3.3 4.0 ns
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Table 51. EPF10K30, EPF10K40 & EPF10K50 Device EAB Internal Timing Macroparameters Note (1)

Symbol -3 Speed Grade -4 Speed Grade Unit

Min Max Min Max

tEABAA 13.7 17.0 ns

tEABRCCOMB 13.7 17.0 ns

tEABRCREG 9.7 11.9 ns

tEABWP 5.8 7.2 ns

tEABWCCOMB 7.3 9.0 ns

tEABWCREG 13.0 16.0 ns

tEABDD 10.0 12.5 ns

tEABDATACO 2.0 3.4 ns

tEABDATASU 5.3 5.6 ns

tEABDATAH 0.0 0.0 ns

tEABWESU 5.5 5.8 ns

tEABWEH 0.0 0.0 ns

tEABWDSU 5.5 5.8 ns

tEABWDH 0.0 0.0 ns

tEABWASU 2.1 2.7 ns

tEABWAH 0.0 0.0 ns

tEABWO 9.5 11.8 ns
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Table 52. EPF10K30 Device Interconnect Timing Microparameters Note (1)

Symbol -3 Speed Grade -4 Speed Grade Unit

Min Max Min Max

tDIN2IOE 6.9 8.7 ns

tDIN2LE 3.6 4.8 ns

tDIN2DATA 5.5 7.2 ns

tDCLK2IOE 4.6 6.2 ns

tDCLK2LE 3.6 4.8 ns

tSAMELAB 0.3 0.3 ns

tSAMEROW 3.3 3.7 ns

tSAMECOLUMN 2.5 2.7 ns

tDIFFROW 5.8 6.4 ns

tTWOROWS 9.1 10.1 ns

tLEPERIPH 6.2 7.1 ns

tLABCARRY 0.4 0.6 ns

tLABCASC 2.4 3.0 ns

Table 53. EPF10K40 Device Interconnect Timing Microparameters Note (1)

Symbol -3 Speed Grade -4 Speed Grade Unit

Min Max Min Max

tDIN2IOE 7.6 9.4 ns

tDIN2LE 3.6 4.8 ns

tDIN2DATA 5.5 7.2 ns

tDCLK2IOE 4.6 6.2 ns

tDCLK2LE 3.6 4.8 ns

tSAMELAB 0.3 0.3 ns

tSAMEROW 3.3 3.7 ns

tSAMECOLUMN 3.1 3.2 ns

tDIFFROW 6.4 6.4 ns

tTWOROWS 9.7 10.6 ns

tLEPERIPH 6.4 7.1 ns

tLABCARRY 0.4 0.6 ns

tLABCASC 2.4 3.0 ns
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Table 59. EPF10K70 Device EAB Internal Microparameters Note (1)

Symbol -2 Speed Grade -3 Speed Grade -4 Speed Grade Unit

Min Max Min Max Min Max

tEABDATA1 1.3 1.5 1.9 ns

tEABDATA2 4.3 4.8 6.0 ns

tEABWE1 0.9 1.0 1.2 ns

tEABWE2 4.5 5.0 6.2 ns

tEABCLK 0.9 1.0 2.2 ns

tEABCO 0.4 0.5 0.6 ns

tEABBYPASS 1.3 1.5 1.9 ns

tEABSU 1.3 1.5 1.8 ns

tEABH 1.8 2.0 2.5 ns

tAA 7.8 8.7 10.7 ns

tWP 5.2 5.8 7.2 ns

tWDSU 1.4 1.6 2.0 ns

tWDH 0.3 0.3 0.4 ns

tWASU 0.4 0.5 0.6 ns

tWAH 0.9 1.0 1.2 ns

tWO 4.5 5.0 6.2 ns

tDD 4.5 5.0 6.2 ns

tEABOUT 0.4 0.5 0.6 ns

tEABCH 4.0 4.0 4.0 ns

tEABCL 5.2 5.8 7.2 ns
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Table 67. EPF10K100 Device EAB Internal Timing Macroparameters Note (1)

Symbol -3DX Speed Grade -3 Speed Grade -4 Speed Grade Unit

Min Max Min Max Min Max

tEABAA 13.7 13.7 17.0 ns

tEABRCCOMB 13.7 13.7 17.0 ns

tEABRCREG 9.7 9.7 11.9 ns

tEABWP 5.8 5.8 7.2 ns

tEABWCCOMB 7.3 7.3 9.0 ns

tEABWCREG 13.0 13.0 16.0 ns

tEABDD 10.0 10.0 12.5 ns

tEABDATACO 2.0 2.0 3.4 ns

tEABDATASU 5.3 5.3 5.6 ns

tEABDATAH 0.0 0.0 0.0 ns

tEABWESU 5.5 5.5 5.8 ns

tEABWEH 0.0 0.0 0.0 ns

tEABWDSU 5.5 5.5 5.8 ns

tEABWDH 0.0 0.0 0.0 ns

tEABWASU 2.1 2.1 2.7 ns

tEABWAH 0.0 0.0 0.0 ns

tEABWO 9.5 9.5 11.8 ns
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Table 72. EPF10K50V Device IOE Timing Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade -4 Speed Grade Unit

Min Max Min Max Min Max Min Max

tIOD 1.2 1.6 1.9 2.1 ns

tIOC 0.3 0.4 0.5 0.5 ns

tIOCO 0.3 0.3 0.4 0.4 ns

tIOCOMB 0.0 0.0 0.0 0.0 ns

tIOSU 2.8 2.8 3.4 3.9 ns

tIOH 0.7 0.8 1.0 1.4 ns

tIOCLR 0.5 0.6 0.7 0.7 ns

tOD1 2.8 3.2 3.9 4.7 ns

tOD2 – – – – ns

tOD3 6.5 6.9 7.6 8.4 ns

tXZ 2.8 3.1 3.8 4.6 ns

tZX1 2.8 3.1 3.8 4.6 ns

tZX2 – – – – ns

tZX3 6.5 6.8 7.5 8.3 ns

tINREG 5.0 5.7 7.0 9.0 ns

tIOFD 1.5 1.9 2.3 2.7 ns

tINCOMB 1.5 1.9 2.3 2.7 ns
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Notes to tables:
(1) All timing parameters are described in Tables 32 through 37 in this data sheet.
(2) Using an LE to register the signal may provide a lower setup time.
(3) This parameter is specified by characterization.

ClockLock & 
ClockBoost 
Timing 
Parameters

For the ClockLock and ClockBoost circuitry to function properly, the 
incoming clock must meet certain requirements. If these specifications are 
not met, the circuitry may not lock onto the incoming clock, which 
generates an erroneous clock within the device. The clock generated by 
the ClockLock and ClockBoost circuitry must also meet certain 
specifications. If the incoming clock meets these requirements during 
configuration, the ClockLock and ClockBoost circuitry will lock onto the 
clock during configuration. The circuit will be ready for use immediately 
after configuration. Figure 31 illustrates the incoming and generated clock 
specifications.

Figure 31. Specifications for the Incoming & Generated Clocks

The tI parameter refers to the nominal input clock period; the tO parameter refers to the 
nominal output clock period.

Table 113 summarizes the ClockLock and ClockBoost parameters.

tR tF

tCLK1 tINDUTY tI ± fCLKDEV

tI tI ± tINCLKSTB

tOUTDUTY

tO tO + tJITTER tO – tJITTER

Input
Clock

ClockLock-
Generated
Clock

Table 113.  ClockLock & ClockBoost Parameters   (Part 1 of 2) 

Symbol Parameter Min Typ Max Unit
tR Input rise time 2 ns

tF Input fall time 2 ns

t INDUTY Input duty cycle 45 55 %

fCLK1 Input clock frequency (ClockBoost clock multiplication factor equals 1) 30 80 MHz

tCLK1 Input clock period (ClockBoost clock multiplication factor equals 1) 12.5 33.3 ns

fCLK2 Input clock frequency (ClockBoost clock multiplication factor equals 2) 16 50 MHz

tCLK2 Input clock period (ClockBoost clock multiplication factor equals 2) 20 62.5 ns
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Figure 32. ICCACTIVE vs. Operating Frequency (Part 1 of 3)
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