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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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FLEX 10K Embedded Programmable Logic Device Family Data Sheet
f For more information, see the following documents:

■ Configuration Devices for APEX & FLEX Devices Data Sheet
■ BitBlaster Serial Download Cable Data Sheet
■ ByteBlasterMV Parallel Port Download Cable Data Sheet
■ Application Note 116 (Configuring APEX 20K, FLEX 10K & FLEX 6000 

Devices) 

FLEX 10K devices are supported by Altera development systems; single, 
integrated packages that offer schematic, text (including AHDL), and 
waveform design entry, compilation and logic synthesis, full simulation 
and worst-case timing analysis, and device configuration. The Altera 
software provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and 
other interfaces for additional design entry and simulation support from 
other industry-standard PC- and UNIX workstation-based EDA tools.

The Altera software works easily with common gate array EDA tools for 
synthesis and simulation. For example, the Altera software can generate 
Verilog HDL files for simulation with tools such as Cadence Verilog-XL. 
Additionally, the Altera software contains EDA libraries that use device-
specific features such as carry chains which are used for fast counter and 
arithmetic functions. For instance, the Synopsys Design Compiler library 
supplied with the Altera development systems include DesignWare 
functions that are optimized for the FLEX 10K architecture.

The Altera development systems run on Windows-based PCs and Sun 
SPARCstation, and HP 9000 Series 700/800 workstations.

f See the MAX+PLUS II Programmable Logic Development System & Software 
Data Sheet for more information.

Functional 
Description

Each FLEX 10K device contains an embedded array to implement 
memory and specialized logic functions, and a logic array to implement 
general logic.

The embedded array consists of a series of EABs. When implementing 
memory functions, each EAB provides 2,048 bits, which can be used to 
create RAM, ROM, dual-port RAM, or first-in first-out (FIFO) functions. 
When implementing logic, each EAB can contribute 100 to 600 gates 
towards complex logic functions, such as multipliers, microcontrollers, 
state machines, and DSP functions. EABs can be used independently, or 
multiple EABs can be combined to implement larger functions. 
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Larger blocks of RAM are created by combining multiple EABs. For 
example, two 256 × 8 RAM blocks can be combined to form a 
256 × 16 RAM block; two 512 × 4 blocks of RAM can be combined to form 
a 512 × 8 RAM block. See Figure 3.

Figure 3. Examples of Combining EABs

If necessary, all EABs in a device can be cascaded to form a single RAM 
block. EABs can be cascaded to form RAM blocks of up to 2,048 words 
without impacting timing. Altera’s software automatically combines 
EABs to meet a designer’s RAM specifications.

EABs provide flexible options for driving and controlling clock signals. 
Different clocks can be used for the EAB inputs and outputs. Registers can 
be independently inserted on the data input, EAB output, or the address 
and WE inputs. The global signals and the EAB local interconnect can drive 
the WE signal. The global signals, dedicated clock pins, and EAB local 
interconnect can drive the EAB clock signals. Because the LEs drive the 
EAB local interconnect, the LEs can control the WE signal or the EAB clock 
signals.

Each EAB is fed by a row interconnect and can drive out to row and 
column interconnects. Each EAB output can drive up to two row channels 
and up to two column channels; the unused row channel can be driven by 
other LEs. This feature increases the routing resources available for EAB 
outputs. See Figure 4.
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Logic Array Block

Each LAB consists of eight LEs, their associated carry and cascade chains, 
LAB control signals, and the LAB local interconnect. The LAB provides 
the coarse-grained structure to the FLEX 10K architecture, facilitating 
efficient routing with optimum device utilization and high performance. 
See Figure 5. 

Figure 5. FLEX 10K LAB

Notes:
(1) EPF10K10, EPF10K10A, EPF10K20, EPF10K30, EPF10K30A, EPF10K40, EPF10K50, and EPF10K50V devices have 

22 inputs to the LAB local interconnect channel from the row; EPF10K70, EPF10K100, EPF10K100A, EPF10K130V, 
and EPF10K250A devices have 26.

(2) EPF10K10, EPF10K10A, EPF10K20, EPF10K30, EPF10K30A, EPF10K40, EPF10K50, and EPF10K50V devices have 
30 LAB local interconnect channels; EPF10K70, EPF10K100, EPF10K100A, EPF10K130V, and EPF10K250A devices 
have 34 LABs.
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Cascade Chain

With the cascade chain, the FLEX 10K architecture can implement 
functions that have a very wide fan-in. Adjacent LUTs can be used to 
compute portions of the function in parallel; the cascade chain serially 
connects the intermediate values. The cascade chain can use a logical AND 
or logical OR (via De Morgan’s inversion) to connect the outputs of 
adjacent LEs. Each additional LE provides four more inputs to the 
effective width of a function, with a delay as low as 0.7 ns per LE. Cascade 
chain logic can be created automatically by the Compiler during design 
processing, or manually by the designer during design entry.

Cascade chains longer than eight bits are implemented automatically by 
linking several LABs together. For easier routing, a long cascade chain 
skips every other LAB in a row. A cascade chain longer than one LAB 
skips either from even-numbered LAB to even-numbered LAB, or from 
odd-numbered LAB to odd-numbered LAB (e.g., the last LE of the first 
LAB in a row cascades to the first LE of the third LAB). The cascade chain 
does not cross the center of the row (e.g., in the EPF10K50 device, the 
cascade chain stops at the eighteenth LAB and a new one begins at the 
nineteenth LAB). This break is due to the EAB’s placement in the middle 
of the row.

Figure 8 shows how the cascade function can connect adjacent LEs to form 
functions with a wide fan-in. These examples show functions of 4n 
variables implemented with n LEs. The LE delay is as low as 1.6 ns; the 
cascade chain delay is as low as 0.7 ns. With the cascade chain, 3.7 ns is 
needed to decode a 16-bit address.

Figure 8. Cascade Chain Operation
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Normal Mode

The normal mode is suitable for general logic applications and wide 
decoding functions that can take advantage of a cascade chain. In normal 
mode, four data inputs from the LAB local interconnect and the carry-in 
are inputs to a four-input LUT. The Compiler automatically selects the 
carry-in or the DATA3 signal as one of the inputs to the LUT. The LUT 
output can be combined with the cascade-in signal to form a cascade chain 
through the cascade-out signal. Either the register or the LUT can be used 
to drive both the local interconnect and the FastTrack Interconnect at the 
same time. 

The LUT and the register in the LE can be used independently; this feature 
is known as register packing. To support register packing, the LE has two 
outputs; one drives the local interconnect and the other drives the 
FastTrack Interconnect. The DATA4 signal can drive the register directly, 
allowing the LUT to compute a function that is independent of the 
registered signal; a three-input function can be computed in the LUT, and 
a fourth independent signal can be registered. Alternatively, a four-input 
function can be generated, and one of the inputs to this function can be 
used to drive the register. The register in a packed LE can still use the clock 
enable, clear, and preset signals in the LE. In a packed LE, the register can 
drive the FastTrack Interconnect while the LUT drives the local 
interconnect, or vice versa.

Arithmetic Mode

The arithmetic mode offers 2 three-input LUTs that are ideal for 
implementing adders, accumulators, and comparators. One LUT 
computes a three-input function, and the other generates a carry output. 
As shown in Figure 9 on page 19, the first LUT uses the carry-in signal and 
two data inputs from the LAB local interconnect to generate a 
combinatorial or registered output. For example, in an adder, this output 
is the sum of three signals: a, b, and carry-in. The second LUT uses the 
same three signals to generate a carry-out signal, thereby creating a carry 
chain. The arithmetic mode also supports simultaneous use of the cascade 
chain.
20 Altera Corporation
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FastTrack Interconnect

In the FLEX 10K architecture, connections between LEs and device I/O 
pins are provided by the FastTrack Interconnect, which is a series of 
continuous horizontal and vertical routing channels that traverse the 
device. This global routing structure provides predictable performance, 
even in complex designs. In contrast, the segmented routing in FPGAs 
requires switch matrices to connect a variable number of routing paths, 
increasing the delays between logic resources and reducing performance.

The FastTrack Interconnect consists of row and column interconnect 
channels that span the entire device. Each row of LABs is served by a 
dedicated row interconnect. The row interconnect can drive I/O pins and 
feed other LABs in the device. The column interconnect routes signals 
between rows and can drive I/O pins.

A row channel can be driven by an LE or by one of three column channels. 
These four signals feed dual 4-to-1 multiplexers that connect to two 
specific row channels. These multiplexers, which are connected to each 
LE, allow column channels to drive row channels even when all eight LEs 
in an LAB drive the row interconnect. 

Each column of LABs is served by a dedicated column interconnect. The 
column interconnect can then drive I/O pins or another row’s 
interconnect to route the signals to other LABs in the device. A signal from 
the column interconnect, which can be either the output of an LE or an 
input from an I/O pin, must be routed to the row interconnect before it 
can enter an LAB or EAB. Each row channel that is driven by an IOE or 
EAB can drive one specific column channel.

Access to row and column channels can be switched between LEs in 
adjacent pairs of LABs. For example, an LE in one LAB can drive the row 
and column channels normally driven by a particular LE in the adjacent 
LAB in the same row, and vice versa. This routing flexibility enables 
routing resources to be used more efficiently. See Figure 11.
Altera Corporation  25



FLEX 10K Embedded Programmable Logic Device Family Data Sheet
I/O Element

An I/O element (IOE) contains a bidirectional I/O buffer and a register 
that can be used either as an input register for external data that requires 
a fast setup time, or as an output register for data that requires fast clock-
to-output performance. In some cases, using an LE register for an input 
register will result in a faster setup time than using an IOE register. IOEs 
can be used as input, output, or bidirectional pins. For bidirectional 
registered I/O implementation, the output register should be in the IOE 
and, the data input and output enable register should be LE registers 
placed adjacent to the bidirectional pin. The Compiler uses the 
programmable inversion option to invert signals from the row and 
column interconnect automatically where appropriate. Figure 13 shows 
the bidirectional I/O registers.
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Each IOE selects the clock, clear, clock enable, and output enable controls 
from a network of I/O control signals called the peripheral control bus. 
The peripheral control bus uses high-speed drivers to minimize signal 
skew across devices; it provides up to 12 peripheral control signals that 
can be allocated as follows:

■ Up to eight output enable signals
■ Up to six clock enable signals
■ Up to two clock signals
■ Up to two clear signals

If more than six clock enable or eight output enable signals are required, 
each IOE on the device can be controlled by clock enable and output 
enable signals driven by specific LEs. In addition to the two clock signals 
available on the peripheral control bus, each IOE can use one of two 
dedicated clock pins. Each peripheral control signal can be driven by any 
of the dedicated input pins or the first LE of each LAB in a particular row. 
In addition, an LE in a different row can drive a column interconnect, 
which causes a row interconnect to drive the peripheral control signal. 
The chip-wide reset signal will reset all IOE registers, overriding any other 
control signals.

Tables 8 and 9 list the sources for each peripheral control signal, and the 
rows that can drive global signals. These tables also show how the output 
enable, clock enable, clock, and clear signals share 12 peripheral control 
signals.
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Figure 17. Enabling ClockLock & ClockBoost in the Same Design

To use both the ClockLock and ClockBoost circuits in the same design, 
designers must use Revision C EPF10K100GC503-3DX devices and 
MAX+PLUS II software versions 7.2 or higher. The die revision is 
indicated by the third digit of the nine-digit code on the top side of the 
device.

Output 
Configuration

This section discusses the peripheral component interconnect (PCI) 
pull-up clamping diode option, slew-rate control, open-drain output 
option, MultiVolt I/O interface, and power sequencing for FLEX 10K 
devices. The PCI pull-up clamping diode, slew-rate control, and 
open-drain output options are controlled pin-by-pin via Altera logic 
options. The MultiVolt I/O interface is controlled by connecting VCCIO to 
a different voltage than VCCINT. Its effect can be simulated in the Altera 
software via the Global Project Device Options dialog box (Assign 
menu).

PCI Clamping Diodes

The EPF10K10A and EPF10K30A devices have a pull-up clamping diode 
on every I/O, dedicated input, and dedicated clock pin. PCI clamping 
diodes clamp the transient overshoot caused by reflected waves to the 
VCCIO value and are required for 3.3-V PCI compliance. Clamping diodes 
can also be used to limit overshoot in other systems.

Clamping diodes are controlled on a pin-by-pin basis via a logic option in 
the Altera software. When VCCIO is 3.3 V, a pin that has the clamping 
diode turned on can be driven by a 2.5-V or 3.3-V signal, but not a 5.0-V 
signal. When VCCIO is 2.5 V, a pin that has the clamping diode turned on 
can be driven by a 2.5-V signal, but not a 3.3-V or 5.0-V signal. However, 
a clamping diode can be turned on for a subset of pins, which allows 
devices to bridge between a 3.3-V PCI bus and a 5.0-V device.
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Notes to tables:
(1) See the Operating Requirements for Altera Devices Data Sheet.
(2) Minimum DC input voltage is –0.5 V. During transitions, the inputs may undershoot to –2.0 V for input currents 

less than 100 mA and periods shorter than 20 ns.
(3) Numbers in parentheses are for industrial-temperature-range devices.
(4) Maximum VCC rise time is 100 ms. VCC must rise monotonically.
(5) Typical values are for TA = 25° C and VCC = 5.0 V.
(6) These values are specified under the Recommended Operation Condition shown in Table 18 on page 45.
(7) The IOH parameter refers to high-level TTL or CMOS output current.
(8) The IOL parameter refers to low-level TTL or CMOS output current. This parameter applies to open-drain pins as 

well as output pins.
(9) This value is specified for normal device operation. The value may vary during power-up.
(10) Capacitance is sample-tested only.

Figure 20 shows the typical output drive characteristics of FLEX 10K 
devices with 5.0-V and 3.3-V VCCIO. The output driver is compliant with 
the 5.0-V PCI Local Bus Specification, Revision 2.2 (for 5.0-V VCCIO).

Figure 20. Output Drive Characteristics of FLEX 10K Devices
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Table 28. FLEX 10KA 3.3-V Device DC Operating Conditions Notes (6), (7)

Symbol Parameter Conditions Min Typ Max Unit

VIH High-level input voltage 1.7 or 
0.5 × VCCINT, 
whichever is 

lower

5.75 V

VIL Low-level input voltage –0.5 0.3 × VCCINT V

VOH 3.3-V high-level TTL output 
voltage

IOH = –11 mA DC, 
VCCIO = 3.00 V (8) 

2.4 V

3.3-V high-level CMOS output 
voltage

IOH = –0.1 mA DC, 
VCCIO = 3.00 V (8) 

VCCIO – 0.2 V

3.3-V high-level PCI output 
voltage

IOH = –0.5 mA DC, 
VCCIO = 3.00 to 3.60 V (8) 

0.9 × VCCIO V

2.5-V high-level output voltage IOH = –0.1 mA DC, 
VCCIO = 2.30 V (8) 

2.1 V

IOH = –1 mA DC, 
VCCIO = 2.30 V (8) 

2.0 V

IOH = –2 mA DC, 
VCCIO = 2.30 V (8) 

1.7 V

VOL 3.3-V low-level TTL output 
voltage

IOL = 9 mA DC, 
VCCIO = 3.00 V (9)

0.45 V

3.3-V low-level CMOS output 
voltage

IOL = 0.1 mA DC, 
VCCIO = 3.00 V (9)

0.2 V

3.3-V low-level PCI output 
voltage

IOL = 1.5 mA DC, 
VCCIO = 3.00 to 3.60 V (9)

0.1 × VCCIO V

2.5-V low-level output voltage IOL = 0.1 mA DC, 
VCCIO = 2.30 V (9)

0.2 V

IOL = 1 mA DC, 
VCCIO = 2.30 V (9)

0.4 V

IOL = 2 mA DC, 
VCCIO = 2.30 V (9)

0.7 V

II Input pin leakage current VI = 5.3 V to –0.3 V (10) –10 10 µA

IOZ Tri-stated I/O pin leakage 
current

VO = 5.3 V to –0.3 V (10) –10 10 µA

ICC0 VCC supply current (standby) VI = ground, no load 0.3 10 mA

VI = ground, no load (11) 10 mA
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Figure 23. Output Drive Characteristics for EPF10K250A Device

Timing Model The continuous, high-performance FastTrack Interconnect routing 
resources ensure predictable performance and accurate simulation and 
timing analysis. This predictable performance contrasts with that of 
FPGAs, which use a segmented connection scheme and therefore have 
unpredictable performance. 

Device performance can be estimated by following the signal path from a 
source, through the interconnect, to the destination. For example, the 
registered performance between two LEs on the same row can be 
calculated by adding the following parameters: 

■ LE register clock-to-output delay (tCO)
■ Interconnect delay (tSAMEROW)
■ LE look-up table delay (tLUT)
■ LE register setup time (tSU)

The routing delay depends on the placement of the source and destination 
LEs. A more complex registered path may involve multiple combinatorial 
LEs between the source and destination LEs. 
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Figures 25 through 27 show the delays that correspond to various paths 
and functions within the LE, IOE, and EAB timing models.

Figure 25. FLEX 10K Device LE Timing Model
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Tables 39 through 47 show EPF10K10 and EPF10K20 device internal and 
external timing parameters.

Table 39. EPF10K10 & EPF10K20 Device LE Timing Microparameters Note (1)

Symbol -3 Speed Grade -4 Speed Grade Unit

Min Max Min Max

tLUT 1.4 1.7 ns

tCLUT 0.6 0.7 ns

tRLUT 1.5 1.9 ns

tPACKED 0.6 0.9 ns

tEN 1.0 1.2 ns

tCICO 0.2 0.3 ns

tCGEN 0.9 1.2 ns

tCGENR 0.9 1.2 ns

tCASC 0.8 0.9 ns

tC 1.3 1.5 ns

tCO 0.9 1.1 ns

tCOMB 0.5 0.6 ns

tSU 1.3 2.5 ns

tH 1.4 1.6 ns

tPRE 1.0 1.2 ns

tCLR 1.0 1.2 ns

tCH 4.0 4.0 ns

tCL 4.0 4.0 ns
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Table 52. EPF10K30 Device Interconnect Timing Microparameters Note (1)

Symbol -3 Speed Grade -4 Speed Grade Unit

Min Max Min Max

tDIN2IOE 6.9 8.7 ns

tDIN2LE 3.6 4.8 ns

tDIN2DATA 5.5 7.2 ns

tDCLK2IOE 4.6 6.2 ns

tDCLK2LE 3.6 4.8 ns

tSAMELAB 0.3 0.3 ns

tSAMEROW 3.3 3.7 ns

tSAMECOLUMN 2.5 2.7 ns

tDIFFROW 5.8 6.4 ns

tTWOROWS 9.1 10.1 ns

tLEPERIPH 6.2 7.1 ns

tLABCARRY 0.4 0.6 ns

tLABCASC 2.4 3.0 ns

Table 53. EPF10K40 Device Interconnect Timing Microparameters Note (1)

Symbol -3 Speed Grade -4 Speed Grade Unit

Min Max Min Max

tDIN2IOE 7.6 9.4 ns

tDIN2LE 3.6 4.8 ns

tDIN2DATA 5.5 7.2 ns

tDCLK2IOE 4.6 6.2 ns

tDCLK2LE 3.6 4.8 ns

tSAMELAB 0.3 0.3 ns

tSAMEROW 3.3 3.7 ns

tSAMECOLUMN 3.1 3.2 ns

tDIFFROW 6.4 6.4 ns

tTWOROWS 9.7 10.6 ns

tLEPERIPH 6.4 7.1 ns

tLABCARRY 0.4 0.6 ns

tLABCASC 2.4 3.0 ns
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Table 60. EPF10K70 Device EAB Internal Timing Macroparameters Note (1)

Symbol -2 Speed Grade -3 Speed Grade -4 Speed Grade Unit

Min Max Min Max Min Max

tEABAA 12.1 13.7 17.0 ns

tEABRCCOMB 12.1 13.7 17.0 ns

tEABRCREG 8.6 9.7 11.9 ns

tEABWP 5.2 5.8 7.2 ns

tEABWCCOMB 6.5 7.3 9.0 ns

tEABWCREG 11.6 13.0 16.0 ns

tEABDD 8.8 10.0 12.5 ns

tEABDATACO 1.7 2.0 3.4 ns

tEABDATASU 4.7 5.3 5.6 ns

tEABDATAH 0.0 0.0 0.0 ns

tEABWESU 4.9 5.5 5.8 ns

tEABWEH 0.0 0.0 0.0 ns

tEABWDSU 1.8 2.1 2.7 ns

tEABWDH 0.0 0.0 0.0 ns

tEABWASU 4.1 4.7 5.8 ns

tEABWAH 0.0 0.0 0.0 ns

tEABWO 8.4 9.5 11.8 ns
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Table 88. EPF10K10A Device EAB Internal Timing Macroparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tEABAA 8.1 9.8 13.1 ns

tEABRCCOMB 8.1 9.8 13.1 ns

tEABRCREG 5.8 6.9 9.3 ns

tEABWP 2.0 2.4 3.2 ns

tEABWCCOMB 3.5 4.2 5.6 ns

tEABWCREG 9.4 11.2 14.8 ns

tEABDD 6.9 8.3 11.0 ns

tEABDATACO 1.3 1.5 2.0 ns

tEABDATASU 2.4 3.0 3.9 ns

tEABDATAH 0.0 0.0 0.0 ns

tEABWESU 4.1 4.9 6.5 ns

tEABWEH 0.0 0.0 0.0 ns

tEABWDSU 1.4 1.6 2.2 ns

tEABWDH 0.0 0.0 0.0 ns

tEABWASU 2.5 3.0 4.1 ns

tEABWAH 0.0 0.0 0.0 ns

tEABWO 6.2 7.5 9.9 ns
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Table 95. EPF10K30A Device EAB Internal Timing Macroparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tEABAA 9.7 11.6 16.2 ns

tEABRCCOMB 9.7 11.6 16.2 ns

tEABRCREG 5.9 7.1 9.7 ns

tEABWP 3.8 4.5 5.9 ns

tEABWCCOMB 4.0 4.7 6.3 ns

tEABWCREG 9.8 11.6 16.6 ns

tEABDD 9.2 11.0 16.1 ns

tEABDATACO 1.7 2.1 3.4 ns

tEABDATASU 2.3 2.7 3.5 ns

tEABDATAH 0.0 0.0 0.0 ns

tEABWESU 3.3 3.9 4.9 ns

tEABWEH 0.0 0.0 0.0 ns

tEABWDSU 3.2 3.8 5.0 ns

tEABWDH 0.0 0.0 0.0 ns

tEABWASU 3.7 4.4 5.1 ns

tEABWAH 0.0 0.0 0.0 ns

tEABWO 6.1 7.3 11.3 ns
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Figure 32. ICCACTIVE vs. Operating Frequency (Part 3 of 3)

Configuration & 
Operation

The FLEX 10K architecture supports several configuration schemes. This 
section summarizes the device operating modes and available device 
configuration schemes. 

f See Application Note 116 (Configuring APEX 20K, FLEX 10K & FLEX 6000 
Devices) for detailed descriptions of device configuration options, device 
configuration pins, and for information on configuring FLEX 10K devices, 
including sample schematics, timing diagrams, and configuration 
parameters.

Operating Modes

The FLEX 10K architecture uses SRAM configuration elements that 
require configuration data to be loaded every time the circuit powers up. 
The process of physically loading the SRAM data into the device is called 
configuration. Before configuration, as VCC rises, the device initiates a 
Power-On Reset (POR). This POR event clears the device and prepares it 
for configuration. The FLEX 10K POR time does not exceed 50 µs.

During initialization, which occurs immediately after configuration, the 
device resets registers, enables I/O pins, and begins to operate as a logic 
device. The I/O pins are tri-stated during power-up, and before and 
during configuration. Together, the configuration and initialization 
processes are called command mode; normal device operation is called user 
mode.
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