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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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FLEX 10K Embedded Programmable Logic Device Family Data Sheet
Notes to tables:
(1) FLEX 10K and FLEX 10KA device package types include plastic J-lead chip carrier (PLCC), thin quad flat pack 

(TQFP), plastic quad flat pack (PQFP), power quad flat pack (RQFP), ball-grid array (BGA), pin-grid array (PGA), 
and FineLine BGATM packages.

(2) This option is supported with a 256-pin FineLine BGA package. By using SameFrame pin migration, all FineLine 
BGA packages are pin compatible. For example, a board can be designed to support both 256-pin and 484-pin 
FineLine BGA packages. The Altera software automatically avoids conflicting pins when future migration is set.

General 
Description

Altera’s FLEX 10K devices are the industry’s first embedded PLDs. Based 
on reconfigurable CMOS SRAM elements, the Flexible Logic Element 
MatriX (FLEX) architecture incorporates all features necessary to 
implement common gate array megafunctions. With up to 250,000 gates, 
the FLEX 10K family provides the density, speed, and features to integrate 
entire systems, including multiple 32-bit buses, into a single device.

FLEX 10K devices are reconfigurable, which allows 100% testing prior to 
shipment. As a result, the designer is not required to generate test vectors 
for fault coverage purposes. Additionally, the designer does not need to 
manage inventories of different ASIC designs; FLEX 10K devices can be 
configured on the board for the specific functionality required.

Table 6 shows FLEX 10K performance for some common designs. All 
performance values were obtained with Synopsys DesignWare or LPM 
functions. No special design technique was required to implement the 
applications; the designer simply inferred or instantiated a function in a 
Verilog HDL, VHDL, Altera Hardware Description Language (AHDL), or 
schematic design file.

Notes:
(1) The speed grade of this application is limited because of clock high and low specifications.
(2) This application uses combinatorial inputs and outputs.
(3) This application uses registered inputs and outputs.

Table 6. FLEX 10K & FLEX 10KA Performance

Application Resources 
Used

Performance Units

LEs EABs -1 Speed 
Grade

-2 Speed 
Grade

-3 Speed 
Grade

-4 Speed 
Grade

16-bit loadable 
counter (1)

16 0 204 166 125 95 MHz

16-bit accumulator (1) 16 0 204 166 125 95 MHz

16-to-1 multiplexer (2) 10 0 4.2 5.8 6.0 7.0 ns

256 × 8 RAM read 
cycle speed (3)

0 1 172 145 108 84 MHz

256 × 8 RAM write 
cycle speed (3)

0 1 106 89 68 63 MHz
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FLEX 10K Embedded Programmable Logic Device Family Data Sheet
The FLEX 10K architecture is similar to that of embedded gate arrays, the 
fastest-growing segment of the gate array market. As with standard gate 
arrays, embedded gate arrays implement general logic in a conventional 
“sea-of-gates” architecture. In addition, embedded gate arrays have 
dedicated die areas for implementing large, specialized functions. By 
embedding functions in silicon, embedded gate arrays provide reduced 
die area and increased speed compared to standard gate arrays. However, 
embedded megafunctions typically cannot be customized, limiting the 
designer’s options. In contrast, FLEX 10K devices are programmable, 
providing the designer with full control over embedded megafunctions 
and general logic while facilitating iterative design changes during 
debugging.

Each FLEX 10K device contains an embedded array and a logic array. The 
embedded array is used to implement a variety of memory functions or 
complex logic functions, such as digital signal processing (DSP), 
microcontroller, wide-data-path manipulation, and data-transformation 
functions. The logic array performs the same function as the sea-of-gates 
in the gate array: it is used to implement general logic, such as counters, 
adders, state machines, and multiplexers. The combination of embedded 
and logic arrays provides the high performance and high density of 
embedded gate arrays, enabling designers to implement an entire system 
on a single device.

FLEX 10K devices are configured at system power-up with data stored in 
an Altera serial configuration device or provided by a system controller. 
Altera offers the EPC1, EPC2, EPC16, and EPC1441 configuration devices, 
which configure FLEX 10K devices via a serial data stream. Configuration 
data can also be downloaded from system RAM or from Altera’s 
BitBlasterTM serial download cable or ByteBlasterMVTM parallel port 
download cable. After a FLEX 10K device has been configured, it can be 
reconfigured in-circuit by resetting the device and loading new data. 
Because reconfiguration requires less than 320 ms, real-time changes can 
be made during system operation.

FLEX 10K devices contain an optimized interface that permits 
microprocessors to configure FLEX 10K devices serially or in parallel, and 
synchronously or asynchronously. The interface also enables 
microprocessors to treat a FLEX 10K device as memory and configure the 
device by writing to a virtual memory location, making it very easy for the 
designer to reconfigure the device.
6 Altera Corporation



FLEX 10K Embedded Programmable Logic Device Family Data Sheet
f For more information, see the following documents:

■ Configuration Devices for APEX & FLEX Devices Data Sheet
■ BitBlaster Serial Download Cable Data Sheet
■ ByteBlasterMV Parallel Port Download Cable Data Sheet
■ Application Note 116 (Configuring APEX 20K, FLEX 10K & FLEX 6000 

Devices) 

FLEX 10K devices are supported by Altera development systems; single, 
integrated packages that offer schematic, text (including AHDL), and 
waveform design entry, compilation and logic synthesis, full simulation 
and worst-case timing analysis, and device configuration. The Altera 
software provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and 
other interfaces for additional design entry and simulation support from 
other industry-standard PC- and UNIX workstation-based EDA tools.

The Altera software works easily with common gate array EDA tools for 
synthesis and simulation. For example, the Altera software can generate 
Verilog HDL files for simulation with tools such as Cadence Verilog-XL. 
Additionally, the Altera software contains EDA libraries that use device-
specific features such as carry chains which are used for fast counter and 
arithmetic functions. For instance, the Synopsys Design Compiler library 
supplied with the Altera development systems include DesignWare 
functions that are optimized for the FLEX 10K architecture.

The Altera development systems run on Windows-based PCs and Sun 
SPARCstation, and HP 9000 Series 700/800 workstations.

f See the MAX+PLUS II Programmable Logic Development System & Software 
Data Sheet for more information.

Functional 
Description

Each FLEX 10K device contains an embedded array to implement 
memory and specialized logic functions, and a logic array to implement 
general logic.

The embedded array consists of a series of EABs. When implementing 
memory functions, each EAB provides 2,048 bits, which can be used to 
create RAM, ROM, dual-port RAM, or first-in first-out (FIFO) functions. 
When implementing logic, each EAB can contribute 100 to 600 gates 
towards complex logic functions, such as multipliers, microcontrollers, 
state machines, and DSP functions. EABs can be used independently, or 
multiple EABs can be combined to implement larger functions. 
Altera Corporation  7
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Logic functions are implemented by programming the EAB with a read-
only pattern during configuration, creating a large LUT. With LUTs, 
combinatorial functions are implemented by looking up the results, rather 
than by computing them. This implementation of combinatorial functions 
can be faster than using algorithms implemented in general logic, a 
performance advantage that is further enhanced by the fast access times 
of EABs. The large capacity of EABs enables designers to implement 
complex functions in one logic level without the routing delays associated 
with linked LEs or field-programmable gate array (FPGA) RAM blocks. 
For example, a single EAB can implement a 4 × 4 multiplier with eight 
inputs and eight outputs. Parameterized functions such as LPM functions 
can automatically take advantage of the EAB.

The EAB provides advantages over FPGAs, which implement on-board 
RAM as arrays of small, distributed RAM blocks. These FPGA RAM 
blocks contain delays that are less predictable as the size of the RAM 
increases. In addition, FPGA RAM blocks are prone to routing problems 
because small blocks of RAM must be connected together to make larger 
blocks. In contrast, EABs can be used to implement large, dedicated blocks 
of RAM that eliminate these timing and routing concerns. 

EABs can be used to implement synchronous RAM, which is easier to use 
than asynchronous RAM. A circuit using asynchronous RAM must 
generate the RAM write enable (WE) signal, while ensuring that its data 
and address signals meet setup and hold time specifications relative to the 
WE signal. In contrast, the EAB’s synchronous RAM generates its own WE 
signal and is self-timed with respect to the global clock. A circuit using the 
EAB’s self-timed RAM need only meet the setup and hold time 
specifications of the global clock.

When used as RAM, each EAB can be configured in any of the following 
sizes: 256 × 8, 512 × 4, 1,024 × 2, or 2,048 × 1. See Figure 2. 

Figure 2. EAB Memory Configurations

256 × 8 512 × 4 1,024 × 2 2,048 × 1
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Cascade Chain

With the cascade chain, the FLEX 10K architecture can implement 
functions that have a very wide fan-in. Adjacent LUTs can be used to 
compute portions of the function in parallel; the cascade chain serially 
connects the intermediate values. The cascade chain can use a logical AND 
or logical OR (via De Morgan’s inversion) to connect the outputs of 
adjacent LEs. Each additional LE provides four more inputs to the 
effective width of a function, with a delay as low as 0.7 ns per LE. Cascade 
chain logic can be created automatically by the Compiler during design 
processing, or manually by the designer during design entry.

Cascade chains longer than eight bits are implemented automatically by 
linking several LABs together. For easier routing, a long cascade chain 
skips every other LAB in a row. A cascade chain longer than one LAB 
skips either from even-numbered LAB to even-numbered LAB, or from 
odd-numbered LAB to odd-numbered LAB (e.g., the last LE of the first 
LAB in a row cascades to the first LE of the third LAB). The cascade chain 
does not cross the center of the row (e.g., in the EPF10K50 device, the 
cascade chain stops at the eighteenth LAB and a new one begins at the 
nineteenth LAB). This break is due to the EAB’s placement in the middle 
of the row.

Figure 8 shows how the cascade function can connect adjacent LEs to form 
functions with a wide fan-in. These examples show functions of 4n 
variables implemented with n LEs. The LE delay is as low as 1.6 ns; the 
cascade chain delay is as low as 0.7 ns. With the cascade chain, 3.7 ns is 
needed to decode a 16-bit address.

Figure 8. Cascade Chain Operation
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Asynchronous Preset

An asynchronous preset is implemented as either an asynchronous load, 
or with an asynchronous clear. If DATA3 is tied to VCC, asserting 
LABCTRL1 asynchronously loads a one into the register. Alternatively, the 
Altera software can provide preset control by using the clear and 
inverting the input and output of the register. Inversion control is 
available for the inputs to both LEs and IOEs. Therefore, if a register is 
preset by only one of the two LABCTRL signals, the DATA3 input is not 
needed and can be used for one of the LE operating modes.

Asynchronous Preset & Clear

When implementing asynchronous clear and preset, LABCTRL1 controls 
the preset and LABCTRL2 controls the clear. DATA3 is tied to VCC, 
therefore, asserting LABCTRL1 asynchronously loads a one into the 
register, effectively presetting the register. Asserting LABCTRL2 clears the 
register.

Asynchronous Load with Clear

When implementing an asynchronous load in conjunction with the clear, 
LABCTRL1 implements the asynchronous load of DATA3 by controlling 
the register preset and clear. LABCTRL2 implements the clear by 
controlling the register clear; LABCTRL2 does not have to feed the preset 
circuits.

Asynchronous Load with Preset

When implementing an asynchronous load in conjunction with preset, the 
Altera software provides preset control by using the clear and inverting 
the input and output of the register. Asserting LABCTRL2 presets the 
register, while asserting LABCTRL1 loads the register. The Altera software 
inverts the signal that drives DATA3 to account for the inversion of the 
register’s output.

Asynchronous Load without Preset or Clear

When implementing an asynchronous load without preset or clear, 
LABCTRL1 implements the asynchronous load of DATA3 by controlling 
the register preset and clear.
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Figure 11. LAB Connections to Row & Column Interconnect
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Figure 12 shows the interconnection of adjacent LABs and EABs with row, 
column, and local interconnects, as well as the associated cascade and 
carry chains. Each LAB is labeled according to its location: a letter 
represents the row and a number represents the column. For example, 
LAB B3 is in row B, column 3.

Figure 12. Interconnect Resources
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I/O Element

An I/O element (IOE) contains a bidirectional I/O buffer and a register 
that can be used either as an input register for external data that requires 
a fast setup time, or as an output register for data that requires fast clock-
to-output performance. In some cases, using an LE register for an input 
register will result in a faster setup time than using an IOE register. IOEs 
can be used as input, output, or bidirectional pins. For bidirectional 
registered I/O implementation, the output register should be in the IOE 
and, the data input and output enable register should be LE registers 
placed adjacent to the bidirectional pin. The Compiler uses the 
programmable inversion option to invert signals from the row and 
column interconnect automatically where appropriate. Figure 13 shows 
the bidirectional I/O registers.
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Figure 15. FLEX 10K Column-to-IOE Connections

Table 11 lists the FLEX 10K column-to-IOE interconnect resources. 

Each IOE is driven by
an m-to-1 multiplexer. 

Each IOE can drive up to
two column channels.

Column
Interconnect

n

n

m

m

n

IOE1

IOE1

The values for m and n are provided in Table 11.

Table 11. FLEX 10K Column-to-IOE Interconnect Resources

Device Channels per Column (n) Column Channel per Pin (m)

EPF10K10
EPF10K10A

24 16

EPF10K20 24 16

EPF10K30
EPF10K30A

24 16

EPF10K40 24 16

EPF10K50
EPF10K50V

24 16

EPF10K70 24 16

EPF10K100
EPF10K100A

24 16

EPF10K130V 32 24

EPF10K250A 40 32
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ClockLock & 
ClockBoost 
Features

To support high-speed designs, selected FLEX 10K devices offer optional 
ClockLock and ClockBoost circuitry containing a phase-locked loop (PLL) 
that is used to increase design speed and reduce resource usage. The 
ClockLock circuitry uses a synchronizing PLL that reduces the clock delay 
and skew within a device. This reduction minimizes clock-to-output and 
setup times while maintaining zero hold times. The ClockBoost circuitry, 
which provides a clock multiplier, allows the designer to enhance device 
area efficiency by sharing resources within the device. The ClockBoost 
feature allows the designer to distribute a low-speed clock and multiply 
that clock on-device. Combined, the ClockLock and ClockBoost features 
provide significant improvements in system performance and 
bandwidth.

The ClockLock and ClockBoost features in FLEX 10K devices are enabled 
through the Altera software. External devices are not required to use these 
features. The output of the ClockLock and ClockBoost circuits is not 
available at any of the device pins. 

The ClockLock and ClockBoost circuitry locks onto the rising edge of the 
incoming clock. The circuit output can only drive the clock inputs of 
registers; the generated clock cannot be gated or inverted.

The dedicated clock pin (GCLK1) supplies the clock to the ClockLock and 
ClockBoost circuitry. When the dedicated clock pin is driving the 
ClockLock or ClockBoost circuitry, it cannot drive elsewhere in the device.

In designs that require both a multiplied and non-multiplied clock, the 
clock trace on the board can be connected to GCLK1. With the Altera 
software, GCLK1 can feed both the ClockLock and ClockBoost circuitry in 
the FLEX 10K device. However, when both circuits are used, the other 
clock pin (GCLK0) cannot be used. Figure 17 shows a block diagram of 
how to enable both the ClockLock and ClockBoost circuits in the Altera 
software. The example shown is a schematic, but a similar approach 
applies for designs created in AHDL, VHDL, and Verilog HDL. When the 
ClockLock and ClockBoost circuits are used simultaneously, the input 
frequency parameter must be the same for both circuits. In Figure 17, the 
input frequency must meet the requirements specified when the 
ClockBoost multiplication factor is two.
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Table 40. EPF10K10 & EPF10K20 Device IOE Timing Microparameters Note (1)

Symbol -3 Speed Grade -4 Speed Grade Unit

Min Max Min Max

tIOD 1.3 1.6 ns

tIOC 0.5 0.7 ns

tIOCO 0.2 0.2 ns

tIOCOMB 0.0 0.0 ns

tIOSU 2.8 3.2 ns

tIOH 1.0 1.2 ns

tIOCLR 1.0 1.2 ns

tOD1 2.6 3.5 ns

tOD2 4.9 6.4 ns

tOD3 6.3 8.2 ns

tXZ 4.5 5.4 ns

tZX1 4.5 5.4 ns

tZX2 6.8 8.3 ns

tZX3 8.2 10.1 ns

tINREG 6.0 7.5 ns

tIOFD 3.1 3.5 ns

tINCOMB 3.1 3.5 ns
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Table 41. EPF10K10 & EPF10K20 Device EAB Internal Microparameters Note (1)

Symbol -3 Speed Grade -4 Speed Grade Unit

Min Max Min Max

tEABDATA1 1.5 1.9 ns

tEABDATA2 4.8 6.0 ns

tEABWE1 1.0 1.2 ns

tEABWE2 5.0 6.2 ns

tEABCLK 1.0 2.2 ns

tEABCO 0.5 0.6 ns

tEABBYPASS 1.5 1.9 ns

tEABSU 1.5 1.8 ns

tEABH 2.0 2.5 ns

tAA 8.7 10.7 ns

tWP 5.8 7.2 ns

tWDSU 1.6 2.0 ns

tWDH 0.3 0.4 ns

tWASU 0.5 0.6 ns

tWAH 1.0 1.2 ns

tWO 5.0 6.2 ns

tDD 5.0 6.2 ns

tEABOUT 0.5 0.6 ns

tEABCH 4.0 4.0 ns

tEABCL 5.8 7.2 ns
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Table 68. EPF10K100 Device Interconnect Timing Microparameters Note (1)

Symbol -3DX Speed Grade -3 Speed Grade -4 Speed Grade Unit

Min Max Min Max Min Max

tDIN2IOE 10.3 10.3 12.2 ns

tDIN2LE 4.8 4.8 6.0 ns

tDIN2DATA 7.3 7.3 11.0 ns

tDCLK2IOE without ClockLock or 
ClockBoost circuitry

6.2 6.2 7.7 ns

tDCLK2IOE with ClockLock or ClockBoost 
circuitry

2.3 – – ns

tDCLK2LE without ClockLock or 
ClockBoost circuitry

4.8 4.8 6.0 ns

tDCLK2LE with ClockLock or ClockBoost 
circuitry

2.3 – – ns

tSAMELAB 0.4 0.4 0.5 ns

tSAMEROW 4.9 4.9 5.5 ns

tSAMECOLUMN 5.1 5.1 5.4 ns

tDIFFROW 10.0 10.0 10.9 ns

tTWOROWS 14.9 14.9 16.4 ns

tLEPERIPH 6.9 6.9 8.1 ns

tLABCARRY 0.9 0.9 1.1 ns

tLABCASC 3.0 3.0 3.2 ns
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Table 75. EPF10K50V Device Interconnect Timing Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade -4 Speed Grade Unit

Min Max Min Max Min Max Min Max

tDIN2IOE 4.7 6.0 7.1 8.2 ns

tDIN2LE 2.5 2.6 3.1 3.9 ns

tDIN2DATA 4.4 5.9 6.8 7.7 ns

tDCLK2IOE 2.5 3.9 4.7 5.5 ns

tDCLK2LE 2.5 2.6 3.1 3.9 ns

tSAMELAB 0.2 0.2 0.3 0.3 ns

tSAMEROW 2.8 3.0 3.2 3.4 ns

tSAMECOLUMN 3.0 3.2 3.4 3.6 ns

tDIFFROW 5.8 6.2 6.6 7.0 ns

tTWOROWS 8.6 9.2 9.8 10.4 ns

tLEPERIPH 4.5 5.5 6.1 7.0 ns

tLABCARRY 0.3 0.4 0.5 0.7 ns

tLABCASC 0.0 1.3 1.6 2.0 ns

Table 76. EPF10K50V Device External Timing Parameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade -4 Speed Grade Unit

Min Max Min Max Min Max Min Max

tDRR 11.2 14.0 17.2 21.1 ns

tINSU (2), (3) 5.5 4.2 5.2 6.9 ns

tINH (3) 0.0 0.0 0.0 0.0 ns

tOUTCO (3) 2.0 5.9 2.0 7.8 2.0 9.5 2.0 11.1 ns

Table 77. EPF10K50V Device External Bidirectional Timing Parameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade -4 Speed Grade Unit

Min Max Min Max Min Max Min Max

tINSUBIDIR 2.0 2.8 3.5 4.1 ns

tINHBIDIR 0.0 0.0 0.0 0.0 ns

tOUTCOBIDIR 2.0 5.9 2.0 7.8 2.0 9.5 2.0 11.1 ns

tXZBIDIR 8.0 9.8 11.8 14.3 ns

tZXBIDIR 8.0 9.8 11.8 14.3 ns
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Table 79. EPF10K130V Device IOE Timing Microparameters Note (1)

Symbol -2 Speed Grade -3 Speed Grade -4 Speed Grade Unit

Min Max Min Max Min Max

tIOD 1.3 1.6 2.0 ns

tIOC 0.4 0.5 0.7 ns

tIOCO 0.3 0.4 0.5 ns

tIOCOMB 0.0 0.0 0.0 ns

tIOSU 2.6 3.3 3.8 ns

tIOH 0.0 0.0 0.0 ns

tIOCLR 1.7 2.2 2.7 ns

tOD1 3.5 4.4 5.0 ns

tOD2 – – – ns

tOD3 8.2 8.1 9.7 ns

tXZ 4.9 6.3 7.4 ns

tZX1 4.9 6.3 7.4 ns

tZX2 – – – ns

tZX3 9.6 10.0 12.1 ns

tINREG 7.9 10.0 12.6 ns

tIOFD 6.2 7.9 9.9 ns

tINCOMB 6.2 7.9 9.9 ns
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Notes to tables:
(1) All timing parameters are described in Tables 32 through 38 in this data sheet.
(2) Using an LE to register the signal may provide a lower setup time.
(3) This parameter is specified by characterization.

Tables 85 through 91 show EPF10K10A device internal and external 
timing parameters.

Table 85. EPF10K10A Device LE Timing Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tLUT 0.9 1.2 1.6 ns

tCLUT 1.2 1.4 1.9 ns

tRLUT 1.9 2.3 3.0 ns

tPACKED 0.6 0.7 0.9 ns

tEN 0.5 0.6 0.8 ns

tCICO 02 0.3 0.4 ns

tCGEN 0.7 0.9 1.1 ns

tCGENR 0.7 0.9 1.1 ns

tCASC 1.0 1.2 1.7 ns

tC 1.2 1.4 1.9 ns

tCO 0.5 0.6 0.8 ns

tCOMB 0.5 0.6 0.8 ns

tSU 1.1 1.3 1.7 ns

tH 0.6 0.7 0.9 ns

tPRE 0.5 0.6 0.9 ns

tCLR 0.5 0.6 0.9 ns

tCH 3.0 3.5 4.0 ns

tCL 3.0 3.5 4.0 ns

Table 86. EPF10K10A Device IOE Timing Microparameters Note (1) (Part 1 of 2)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

1.3 1.5 2.0 ns

tIOC 0.2 0.3 0.3 ns

tIOCO 0.2 0.3 0.4 ns

tIOCOMB 0.6 0.7 0.9 ns

tIOSU 0.8 1.0 1.3 ns
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Table 95. EPF10K30A Device EAB Internal Timing Macroparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tEABAA 9.7 11.6 16.2 ns

tEABRCCOMB 9.7 11.6 16.2 ns

tEABRCREG 5.9 7.1 9.7 ns

tEABWP 3.8 4.5 5.9 ns

tEABWCCOMB 4.0 4.7 6.3 ns

tEABWCREG 9.8 11.6 16.6 ns

tEABDD 9.2 11.0 16.1 ns

tEABDATACO 1.7 2.1 3.4 ns

tEABDATASU 2.3 2.7 3.5 ns

tEABDATAH 0.0 0.0 0.0 ns

tEABWESU 3.3 3.9 4.9 ns

tEABWEH 0.0 0.0 0.0 ns

tEABWDSU 3.2 3.8 5.0 ns

tEABWDH 0.0 0.0 0.0 ns

tEABWASU 3.7 4.4 5.1 ns

tEABWAH 0.0 0.0 0.0 ns

tEABWO 6.1 7.3 11.3 ns
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fMAX = Maximum operating frequency in MHz
N = Total number of logic cells used in the device
togLC = Average percent of logic cells toggling at each clock 

(typically 12.5%)
K = Constant, shown in Tables 114 and 115

This calculation provides an ICC estimate based on typical conditions with 
no output load. The actual ICC should be verified during operation 
because this measurement is sensitive to the actual pattern in the device 
and the environmental operating conditions.

To better reflect actual designs, the power model (and the constant K in 
the power calculation equations) for continuous interconnect FLEX 
devices assumes that logic cells drive FastTrack Interconnect channels. In 
contrast, the power model of segmented FPGAs assumes that all logic 
cells drive only one short interconnect segment. This assumption may 
lead to inaccurate results, compared to measured power consumption for 
an actual design in a segmented interconnect FPGA.

Figure 32 shows the relationship between the current and operating 
frequency of FLEX 10K devices.

Table 114. FLEX 10K K Constant Values

Device K Value

EPF10K10 82

EPF10K20 89

EPF10K30 88

EPF10K40 92

EPF10K50 95

EPF10K70 85

EPF10K100 88

Table 115. FLEX 10KA K Constant Values

Device K Value

EPF10K10A 17

EPF10K30A 17

EPF10K50V 19

EPF10K100A 19

EPF10K130V 22

EPF10K250A 23
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