

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	216
Number of Logic Elements/Cells	1728
Total RAM Bits	12288
Number of I/O	189
Number of Gates	69000
Voltage - Supply	4.5V ~ 5.5V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	240-BFQFP Exposed Pad
Supplier Device Package	240-RQFP (32x32)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epf10k30ri240-4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Notes to tables:

- (1) FLEX 10K and FLEX 10KA device package types include plastic J-lead chip carrier (PLCC), thin quad flat pack (TQFP), plastic quad flat pack (PQFP), power quad flat pack (RQFP), ball-grid array (BGA), pin-grid array (PGA), and FineLine BGA™ packages.
- (2) This option is supported with a 256-pin FineLine BGA package. By using SameFrame pin migration, all FineLine BGA packages are pin compatible. For example, a board can be designed to support both 256-pin and 484-pin FineLine BGA packages. The Altera software automatically avoids conflicting pins when future migration is set.

General Description

Altera's FLEX 10K devices are the industry's first embedded PLDs. Based on reconfigurable CMOS SRAM elements, the Flexible Logic Element MatriX (FLEX) architecture incorporates all features necessary to implement common gate array megafunctions. With up to 250,000 gates, the FLEX 10K family provides the density, speed, and features to integrate entire systems, including multiple 32-bit buses, into a single device.

FLEX 10K devices are reconfigurable, which allows 100% testing prior to shipment. As a result, the designer is not required to generate test vectors for fault coverage purposes. Additionally, the designer does not need to manage inventories of different ASIC designs; FLEX 10K devices can be configured on the board for the specific functionality required.

Table 6 shows FLEX 10K performance for some common designs. All performance values were obtained with Synopsys DesignWare or LPM functions. No special design technique was required to implement the applications; the designer simply inferred or instantiated a function in a Verilog HDL, VHDL, Altera Hardware Description Language (AHDL), or schematic design file.

Application	Resources Used		Performance						
	LEs	EABs	-1 Speed Grade	-2 Speed Grade	-3 Speed Grade	-4 Speed Grade			
16-bit loadable counter (1)	16	0	204	166	125	95	MHz		
16-bit accumulator (1)	16	0	204	166	125	95	MHz		
16-to-1 multiplexer (2)	10	0	4.2	5.8	6.0	7.0	ns		
256 × 8 RAM read cycle speed (3)	0	1	172	145	108	84	MHz		
256 × 8 RAM write cycle speed (3)	0	1	106	89	68	63	MHz		

Notes:

- (1) The speed grade of this application is limited because of clock high and low specifications.
- (2) This application uses combinatorial inputs and outputs.
- (3) This application uses registered inputs and outputs.

The FLEX 10K architecture is similar to that of embedded gate arrays, the fastest-growing segment of the gate array market. As with standard gate arrays, embedded gate arrays implement general logic in a conventional "sea-of-gates" architecture. In addition, embedded gate arrays have dedicated die areas for implementing large, specialized functions. By embedding functions in silicon, embedded gate arrays provide reduced die area and increased speed compared to standard gate arrays. However, embedded megafunctions typically cannot be customized, limiting the designer's options. In contrast, FLEX 10K devices are programmable, providing the designer with full control over embedded megafunctions and general logic while facilitating iterative design changes during debugging.

Each FLEX 10K device contains an embedded array and a logic array. The embedded array is used to implement a variety of memory functions or complex logic functions, such as digital signal processing (DSP), microcontroller, wide-data-path manipulation, and data-transformation functions. The logic array performs the same function as the sea-of-gates in the gate array: it is used to implement general logic, such as counters, adders, state machines, and multiplexers. The combination of embedded and logic arrays provides the high performance and high density of embedded gate arrays, enabling designers to implement an entire system on a single device.

FLEX 10K devices are configured at system power-up with data stored in an Altera serial configuration device or provided by a system controller. Altera offers the EPC1, EPC2, EPC16, and EPC1441 configuration devices, which configure FLEX 10K devices via a serial data stream. Configuration data can also be downloaded from system RAM or from Altera's BitBlaster™ serial download cable or ByteBlasterMV™ parallel port download cable. After a FLEX 10K device has been configured, it can be reconfigured in-circuit by resetting the device and loading new data. Because reconfiguration requires less than 320 ms, real-time changes can be made during system operation.

FLEX 10K devices contain an optimized interface that permits microprocessors to configure FLEX 10K devices serially or in parallel, and synchronously or asynchronously. The interface also enables microprocessors to treat a FLEX 10K device as memory and configure the device by writing to a virtual memory location, making it very easy for the designer to reconfigure the device.

For more information, see the following documents:

- Configuration Devices for APEX & FLEX Devices Data Sheet
- BitBlaster Serial Download Cable Data Sheet
- ByteBlasterMV Parallel Port Download Cable Data Sheet
- Application Note 116 (Configuring APEX 20K, FLEX 10K & FLEX 6000 Devices)

FLEX 10K devices are supported by Altera development systems; single, integrated packages that offer schematic, text (including AHDL), and waveform design entry, compilation and logic synthesis, full simulation and worst-case timing analysis, and device configuration. The Altera software provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and other interfaces for additional design entry and simulation support from other industry-standard PC- and UNIX workstation-based EDA tools.

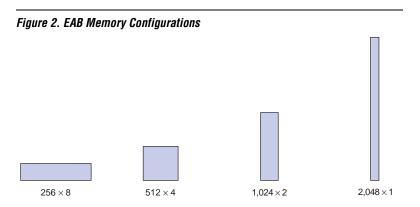
The Altera software works easily with common gate array EDA tools for synthesis and simulation. For example, the Altera software can generate Verilog HDL files for simulation with tools such as Cadence Verilog-XL. Additionally, the Altera software contains EDA libraries that use device-specific features such as carry chains which are used for fast counter and arithmetic functions. For instance, the Synopsys Design Compiler library supplied with the Altera development systems include DesignWare functions that are optimized for the FLEX 10K architecture.

The Altera development systems run on Windows-based PCs and Sun SPARCstation, and HP 9000 Series 700/800 workstations.

See the MAX+PLUS II Programmable Logic Development System & Software Data Sheet for more information.

Functional Description

Each FLEX 10K device contains an embedded array to implement memory and specialized logic functions, and a logic array to implement general logic.

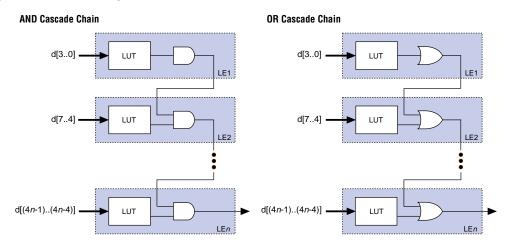

The embedded array consists of a series of EABs. When implementing memory functions, each EAB provides 2,048 bits, which can be used to create RAM, ROM, dual-port RAM, or first-in first-out (FIFO) functions. When implementing logic, each EAB can contribute 100 to 600 gates towards complex logic functions, such as multipliers, microcontrollers, state machines, and DSP functions. EABs can be used independently, or multiple EABs can be combined to implement larger functions.

Logic functions are implemented by programming the EAB with a readonly pattern during configuration, creating a large LUT. With LUTs, combinatorial functions are implemented by looking up the results, rather than by computing them. This implementation of combinatorial functions can be faster than using algorithms implemented in general logic, a performance advantage that is further enhanced by the fast access times of EABs. The large capacity of EABs enables designers to implement complex functions in one logic level without the routing delays associated with linked LEs or field-programmable gate array (FPGA) RAM blocks. For example, a single EAB can implement a 4×4 multiplier with eight inputs and eight outputs. Parameterized functions such as LPM functions can automatically take advantage of the EAB.

The EAB provides advantages over FPGAs, which implement on-board RAM as arrays of small, distributed RAM blocks. These FPGA RAM blocks contain delays that are less predictable as the size of the RAM increases. In addition, FPGA RAM blocks are prone to routing problems because small blocks of RAM must be connected together to make larger blocks. In contrast, EABs can be used to implement large, dedicated blocks of RAM that eliminate these timing and routing concerns.

EABs can be used to implement synchronous RAM, which is easier to use than asynchronous RAM. A circuit using asynchronous RAM must generate the RAM write enable (WE) signal, while ensuring that its data and address signals meet setup and hold time specifications relative to the WE signal. In contrast, the EAB's synchronous RAM generates its own WE signal and is self-timed with respect to the global clock. A circuit using the EAB's self-timed RAM need only meet the setup and hold time specifications of the global clock.

When used as RAM, each EAB can be configured in any of the following sizes: 256×8 , 512×4 , $1,024 \times 2$, or $2,048 \times 1$. See Figure 2.


Cascade Chain

With the cascade chain, the FLEX 10K architecture can implement functions that have a very wide fan-in. Adjacent LUTs can be used to compute portions of the function in parallel; the cascade chain serially connects the intermediate values. The cascade chain can use a logical AND or logical OR (via De Morgan's inversion) to connect the outputs of adjacent LEs. Each additional LE provides four more inputs to the effective width of a function, with a delay as low as 0.7 ns per LE. Cascade chain logic can be created automatically by the Compiler during design processing, or manually by the designer during design entry.

Cascade chains longer than eight bits are implemented automatically by linking several LABs together. For easier routing, a long cascade chain skips every other LAB in a row. A cascade chain longer than one LAB skips either from even-numbered LAB to even-numbered LAB, or from odd-numbered LAB to odd-numbered LAB (e.g., the last LE of the first LAB in a row cascades to the first LE of the third LAB). The cascade chain does not cross the center of the row (e.g., in the EPF10K50 device, the cascade chain stops at the eighteenth LAB and a new one begins at the nineteenth LAB). This break is due to the EAB's placement in the middle of the row.

Figure 8 shows how the cascade function can connect adjacent LEs to form functions with a wide fan-in. These examples show functions of 4n variables implemented with n LEs. The LE delay is as low as 1.6 ns; the cascade chain delay is as low as 0.7 ns. With the cascade chain, 3.7 ns is needed to decode a 16-bit address.

Asynchronous Preset

An asynchronous preset is implemented as either an asynchronous load, or with an asynchronous clear. If DATA3 is tied to V_{CC} , asserting LABCTRL1 asynchronously loads a one into the register. Alternatively, the Altera software can provide preset control by using the clear and inverting the input and output of the register. Inversion control is available for the inputs to both LEs and IOEs. Therefore, if a register is preset by only one of the two LABCTRL signals, the DATA3 input is not needed and can be used for one of the LE operating modes.

Asynchronous Preset & Clear

When implementing asynchronous clear and preset, LABCTRL1 controls the preset and LABCTRL2 controls the clear. DATA3 is tied to V_{CC} , therefore, asserting LABCTRL1 asynchronously loads a one into the register, effectively presetting the register. Asserting LABCTRL2 clears the register.

Asynchronous Load with Clear

When implementing an asynchronous load in conjunction with the clear, LABCTRL1 implements the asynchronous load of DATA3 by controlling the register preset and clear. LABCTRL2 implements the clear by controlling the register clear; LABCTRL2 does not have to feed the preset circuits.

Asynchronous Load with Preset

When implementing an asynchronous load in conjunction with preset, the Altera software provides preset control by using the clear and inverting the input and output of the register. Asserting LABCTRL2 presets the register, while asserting LABCTRL1 loads the register. The Altera software inverts the signal that drives DATA3 to account for the inversion of the register's output.

Asynchronous Load without Preset or Clear

When implementing an asynchronous load without preset or clear, LABCTRL1 implements the asynchronous load of DATA3 by controlling the register preset and clear.

Figure 11. LAB Connections to Row & Column Interconnect

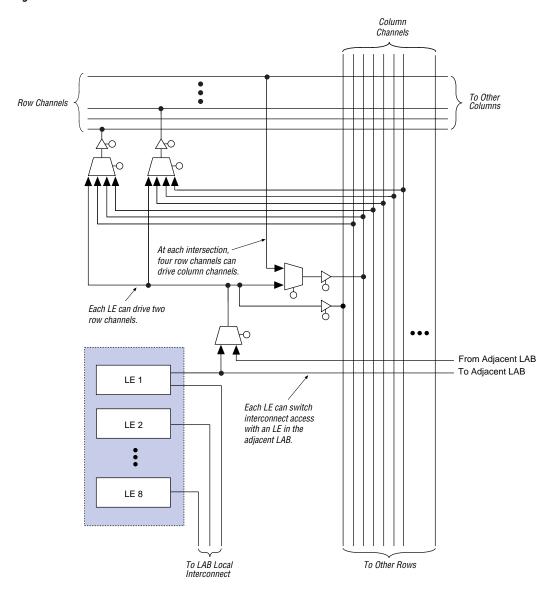
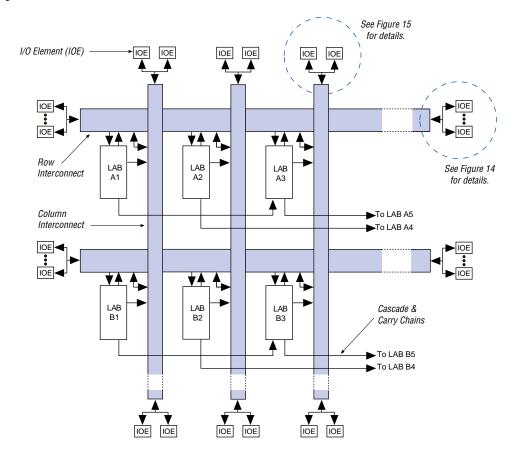



Figure 12 shows the interconnection of adjacent LABs and EABs with row, column, and local interconnects, as well as the associated cascade and carry chains. Each LAB is labeled according to its location: a letter represents the row and a number represents the column. For example, LAB B3 is in row B, column 3.

Figure 12. Interconnect Resources

I/O Element

An I/O element (IOE) contains a bidirectional I/O buffer and a register that can be used either as an input register for external data that requires a fast setup time, or as an output register for data that requires fast clock-to-output performance. In some cases, using an LE register for an input register will result in a faster setup time than using an IOE register. IOEs can be used as input, output, or bidirectional pins. For bidirectional registered I/O implementation, the output register should be in the IOE and, the data input and output enable register should be LE registers placed adjacent to the bidirectional pin. The Compiler uses the programmable inversion option to invert signals from the row and column interconnect automatically where appropriate. Figure 13 shows the bidirectional I/O registers.

Figure 15. FLEX 10K Column-to-IOE Connections

The values for m and n are provided in Table 11.

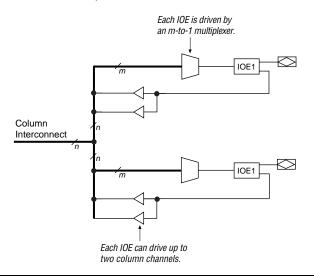


Table 11 lists the FLEX 10K column-to-IOE interconnect resources.

Table 11. FLEX 10	OK Column-to-IOE Interconnec	ct Resources
Device	Channels per Column (n)	Column Channel per Pin (m)
EPF10K10 EPF10K10A	24	16
EPF10K20	24	16
EPF10K30 EPF10K30A	24	16
EPF10K40	24	16
EPF10K50 EPF10K50V	24	16
EPF10K70	24	16
EPF10K100 EPF10K100A	24	16
EPF10K130V	32	24
EPF10K250A	40	32

ClockLock & ClockBoost Features

To support high-speed designs, selected FLEX 10K devices offer optional ClockLock and ClockBoost circuitry containing a phase-locked loop (PLL) that is used to increase design speed and reduce resource usage. The ClockLock circuitry uses a synchronizing PLL that reduces the clock delay and skew within a device. This reduction minimizes clock-to-output and setup times while maintaining zero hold times. The ClockBoost circuitry, which provides a clock multiplier, allows the designer to enhance device area efficiency by sharing resources within the device. The ClockBoost feature allows the designer to distribute a low-speed clock and multiply that clock on-device. Combined, the ClockLock and ClockBoost features provide significant improvements in system performance and bandwidth.

The ClockLock and ClockBoost features in FLEX 10K devices are enabled through the Altera software. External devices are not required to use these features. The output of the ClockLock and ClockBoost circuits is not available at any of the device pins.

The ClockLock and ClockBoost circuitry locks onto the rising edge of the incoming clock. The circuit output can only drive the clock inputs of registers; the generated clock cannot be gated or inverted.

The dedicated clock pin (GCLK1) supplies the clock to the ClockLock and ClockBoost circuitry. When the dedicated clock pin is driving the ClockLock or ClockBoost circuitry, it cannot drive elsewhere in the device.

In designs that require both a multiplied and non-multiplied clock, the clock trace on the board can be connected to GCLK1. With the Altera software, GCLK1 can feed both the ClockLock and ClockBoost circuitry in the FLEX 10K device. However, when both circuits are used, the other clock pin (GCLK0) cannot be used. Figure 17 shows a block diagram of how to enable both the ClockLock and ClockBoost circuits in the Altera software. The example shown is a schematic, but a similar approach applies for designs created in AHDL, VHDL, and Verilog HDL. When the ClockLock and ClockBoost circuits are used simultaneously, the input frequency parameter must be the same for both circuits. In Figure 17, the input frequency must meet the requirements specified when the ClockBoost multiplication factor is two.

Symbol	-3 Spee	d Grade	-4 Spee	d Grade	Unit
	Min	Max	Min	Max	
t_{IOD}		1.3		1.6	ns
t _{IOC}		0.5		0.7	ns
t _{IOCO}		0.2		0.2	ns
t _{IOCOMB}		0.0		0.0	ns
t _{IOSU}	2.8		3.2		ns
t _{IOH}	1.0		1.2		ns
t _{IOCLR}		1.0		1.2	ns
t _{OD1}		2.6		3.5	ns
t_{OD2}		4.9		6.4	ns
t_{OD3}		6.3		8.2	ns
t_{XZ}		4.5		5.4	ns
t _{ZX1}		4.5		5.4	ns
t _{ZX2}		6.8		8.3	ns
t _{ZX3}		8.2		10.1	ns
t _{INREG}		6.0		7.5	ns
t _{IOFD}		3.1		3.5	ns
t _{INCOMB}		3.1		3.5	ns

Symbol	-3 Spee	d Grade	-4 Spee	d Grade	Unit
	Min	Max	Min	Max	
t _{EABDATA1}		1.5		1.9	ns
t _{EABDATA2}		4.8		6.0	ns
t _{EABWE1}		1.0		1.2	ns
t _{EABWE2}		5.0		6.2	ns
t _{EABCLK}		1.0		2.2	ns
t _{EABCO}		0.5		0.6	ns
t _{EABBYPASS}		1.5		1.9	ns
t _{EABSU}	1.5		1.8		ns
t _{EABH}	2.0		2.5		ns
t_{AA}		8.7		10.7	ns
t_{WP}	5.8		7.2		ns
t _{WDSU}	1.6		2.0		ns
t _{WDH}	0.3		0.4		ns
t _{WASU}	0.5		0.6		ns
t_{WAH}	1.0		1.2		ns
t_{WO}		5.0		6.2	ns
t_{DD}		5.0		6.2	ns
t _{EABOUT}		0.5		0.6	ns
t _{EABCH}	4.0		4.0		ns
t _{EABCL}	5.8		7.2		ns

Symbol	-3DX Spe	ed Grade	-3 Spee	d Grade	-4 Spee	d Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{DIN2IOE}		10.3		10.3		12.2	ns
t _{DIN2LE}		4.8		4.8		6.0	ns
t _{DIN2DATA}		7.3		7.3		11.0	ns
t _{DCLK2IOE} without ClockLock or ClockBoost circuitry		6.2		6.2		7.7	ns
$t_{DCLK2IOE}$ with ClockLock or ClockBoost circuitry		2.3		_		_	ns
t _{DCLK2LE} without ClockLock or ClockBoost circuitry		4.8		4.8		6.0	ns
$t_{DCLK2LE}$ with ClockLock or ClockBoost circuitry		2.3		_		_	ns
^t SAMELAB		0.4		0.4		0.5	ns
^t SAMEROW		4.9		4.9		5.5	ns
^t SAMECOLUMN		5.1		5.1		5.4	ns
t _{DIFFROW}		10.0		10.0		10.9	ns
t _{TWOROWS}		14.9		14.9		16.4	ns
t _{LEPERIPH}		6.9		6.9		8.1	ns
t _{LABCARRY}		0.9		0.9		1.1	ns
t _{LABCASC}		3.0		3.0		3.2	ns

Symbol	-1 Spee	ed Grade	-2 Spee	d Grade	-3 Spee	ed Grade	-4 Spee	d Grade	Unit
•,	Min	Max	Min	Max	Min	Max	Min	Max	-
t _{DIN2IOE}		4.7		6.0		7.1		8.2	ns
t _{DIN2LE}		2.5		2.6		3.1		3.9	ns
t _{DIN2DATA}		4.4		5.9		6.8		7.7	ns
t _{DCLK2IOE}		2.5		3.9		4.7		5.5	ns
t _{DCLK2LE}		2.5		2.6		3.1		3.9	ns
t _{SAMELAB}		0.2		0.2		0.3		0.3	ns
t _{SAMEROW}		2.8		3.0		3.2		3.4	ns
t _{SAME} COLUMN		3.0		3.2		3.4		3.6	ns
t _{DIFFROW}		5.8		6.2		6.6		7.0	ns
t _{TWOROWS}		8.6		9.2		9.8		10.4	ns
t _{LEPERIPH}		4.5		5.5		6.1		7.0	ns
t _{LABCARRY}		0.3		0.4		0.5		0.7	ns
t _{LABCASC}		0.0		1.3		1.6		2.0	ns

Table 76. EPF	Table 76. EPF10K50V Device External Timing Parameters Note (1)											
Symbol	-1 Spee	d Grade	-2 Spee	-2 Speed Grade		-3 Speed Grade		-4 Speed Grade				
	Min	Max	Min	Max	Min	Max	Min	Max				
t _{DRR}		11.2		14.0		17.2		21.1	ns			
t _{INSU} (2), (3)	5.5		4.2		5.2		6.9		ns			
t _{INH} (3)	0.0		0.0		0.0		0.0		ns			
t _{оитсо} (3)	2.0	5.9	2.0	7.8	2.0	9.5	2.0	11.1	ns			

Table 77. EPF10K50V Device External Bidirectional Timing Parameters Note (1)											
Symbol	-1 Spee	d Grade	-2 Speed Grade		-3 Speed Grade		-4 Speed Grade		Unit		
	Min	Max	Min	Max	Min	Max	Min	Max]		
t _{INSUBIDIR}	2.0		2.8		3.5		4.1		ns		
t _{INHBIDIR}	0.0		0.0		0.0		0.0		ns		
t _{OUTCOBIDIR}	2.0	5.9	2.0	7.8	2.0	9.5	2.0	11.1	ns		
t _{XZBIDIR}		8.0		9.8		11.8		14.3	ns		
t _{ZXBIDIR}		8.0		9.8		11.8		14.3	ns		

Symbol	-2 Spee	d Grade	-3 Speed Grade		-4 Spee	Unit	
	Min	Max	Min	Max	Min	Max	
t_{IOD}		1.3		1.6		2.0	ns
t _{IOC}		0.4		0.5		0.7	ns
t _{IOCO}		0.3		0.4		0.5	ns
t_{IOCOMB}		0.0		0.0		0.0	ns
t_{IOSU}	2.6		3.3		3.8		ns
t_{IOH}	0.0		0.0		0.0		ns
t _{IOCLR}		1.7		2.2		2.7	ns
t_{OD1}		3.5		4.4		5.0	ns
t_{OD2}		-		-		-	ns
t_{OD3}		8.2		8.1		9.7	ns
t_{XZ}		4.9		6.3		7.4	ns
t_{ZX1}		4.9		6.3		7.4	ns
t_{ZX2}		-		-		-	ns
t_{ZX3}		9.6		10.0		12.1	ns
t _{INREG}		7.9		10.0		12.6	ns
t_{IOFD}		6.2		7.9		9.9	ns
t _{INCOMB}		6.2		7.9		9.9	ns

Notes to tables:

- (1) All timing parameters are described in Tables 32 through 38 in this data sheet.
- (2) Using an LE to register the signal may provide a lower setup time.
- (3) This parameter is specified by characterization.

Tables 85 through 91 show EPF10K10A device internal and external timing parameters.

Symbol	1 Snoo	d Grade	2 Snoo	d Grade	2 Cno/	ed Grade	Unit
Syllibul	-1 Shee	u Graue	-2 Spec	u Graue	-o oper	eu Graue	UIIII
	Min	Max	Min	Max	Min	Max	
t _{LUT}		0.9		1.2		1.6	ns
t _{CLUT}		1.2		1.4		1.9	ns
t _{RLUT}		1.9		2.3		3.0	ns
t _{PACKED}		0.6		0.7		0.9	ns
t _{EN}		0.5		0.6		0.8	ns
t _{CICO}		02		0.3		0.4	ns
t _{CGEN}		0.7		0.9		1.1	ns
t _{CGENR}		0.7		0.9		1.1	ns
t _{CASC}		1.0		1.2		1.7	ns
t _C		1.2		1.4		1.9	ns
$t_{\rm CO}$		0.5		0.6		0.8	ns
t_{COMB}		0.5		0.6		0.8	ns
t _{SU}	1.1		1.3		1.7		ns
t _H	0.6		0.7		0.9		ns
t _{PRE}		0.5		0.6		0.9	ns
t _{CLR}		0.5		0.6		0.9	ns
t _{CH}	3.0		3.5		4.0	_	ns
t_{CL}	3.0		3.5		4.0		ns

Symbol	-1 Spee	d Grade	-2 Spee	d Grade	-3 Spee	d Grade	Unit
	Min	Max	Min	Max	Min	Max	
		1.3		1.5		2.0	ns
ioc		0.2		0.3		0.3	ns
ioco		0.2		0.3		0.4	ns
^t іосомв		0.6		0.7		0.9	ns
t _{iosu}	0.8		1.0		1.3		ns

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	•
t _{EABAA}		9.7		11.6		16.2	ns
t _{EABRCCOMB}	9.7		11.6		16.2		ns
t _{EABRCREG}	5.9		7.1		9.7		ns
t _{EABWP}	3.8		4.5		5.9		ns
t _{EABWCCOMB}	4.0		4.7		6.3		ns
t _{EABWCREG}	9.8		11.6		16.6		ns
t _{EABDD}		9.2		11.0		16.1	ns
^t EABDATACO		1.7		2.1		3.4	ns
t _{EABDATASU}	2.3		2.7		3.5		ns
t _{EABDATAH}	0.0		0.0		0.0		ns
t _{EABWESU}	3.3		3.9		4.9		ns
t _{EABWEH}	0.0		0.0		0.0		ns
t _{EABWDSU}	3.2		3.8		5.0		ns
t _{EABWDH}	0.0		0.0		0.0		ns
t _{EABWASU}	3.7		4.4		5.1		ns
t _{EABWAH}	0.0		0.0		0.0		ns
t _{EABWO}		6.1		7.3		11.3	ns

 f_{MAX} = Maximum operating frequency in MHz

N = Total number of logic cells used in the device

tog_{LC} = Average percent of logic cells toggling at each clock

(typically 12.5%)

K = Constant, shown in Tables 114 and 115

Table 114. FLEX 10K K Constant Values					
Device	K Value				
EPF10K10	82				
EPF10K20	89				
EPF10K30	88				
EPF10K40	92				
EPF10K50	95				
EPF10K70	85				
EPF10K100	88				

Table 115. FLEX 10KA K Constant Values					
Device	K Value				
EPF10K10A	17				
EPF10K30A	17				
EPF10K50V	19				
EPF10K100A	19				
EPF10K130V	22				
EPF10K250A	23				

This calculation provides an I_{CC} estimate based on typical conditions with no output load. The actual I_{CC} should be verified during operation because this measurement is sensitive to the actual pattern in the device and the environmental operating conditions.

To better reflect actual designs, the power model (and the constant *K* in the power calculation equations) for continuous interconnect FLEX devices assumes that logic cells drive FastTrack Interconnect channels. In contrast, the power model of segmented FPGAs assumes that all logic cells drive only one short interconnect segment. This assumption may lead to inaccurate results, compared to measured power consumption for an actual design in a segmented interconnect FPGA.

Figure 32 shows the relationship between the current and operating frequency of FLEX 10K devices.

101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com Applications Hotline: (800) 800-EPLD Customer Marketing: (408) 544-7104 Literature Services: lit_req@altera.com

Copyright © 2003 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to

current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

I.S. EN ISO 9001