

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	288
Number of Logic Elements/Cells	2304
Total RAM Bits	16384
Number of I/O	189
Number of Gates	93000
Voltage - Supply	4.75V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	240-BFQFP Exposed Pad
Supplier Device Package	240-RQFP (32x32)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epf10k40rc240-4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The logic array consists of logic array blocks (LABs). Each LAB contains eight LEs and a local interconnect. An LE consists of a 4-input look-up table (LUT), a programmable flipflop, and dedicated signal paths for carry and cascade functions. The eight LEs can be used to create medium-sized blocks of logic—8-bit counters, address decoders, or state machines—or combined across LABs to create larger logic blocks. Each LAB represents about 96 usable gates of logic.

Signal interconnections within FLEX 10K devices and to and from device pins are provided by the FastTrack Interconnect, a series of fast, continuous row and column channels that run the entire length and width of the device.

Each I/O pin is fed by an I/O element (IOE) located at the end of each row and column of the FastTrack Interconnect. Each IOE contains a bidirectional I/O buffer and a flipflop that can be used as either an output or input register to feed input, output, or bidirectional signals. When used with a dedicated clock pin, these registers provide exceptional performance. As inputs, they provide setup times as low as 1.6 ns and hold times of 0 ns; as outputs, these registers provide clock-to-output times as low as 5.3 ns. IOEs provide a variety of features, such as JTAG BST support, slew-rate control, tri-state buffers, and open-drain outputs.

Figure 1 shows a block diagram of the FLEX 10K architecture. Each group of LEs is combined into an LAB; LABs are arranged into rows and columns. Each row also contains a single EAB. The LABs and EABs are interconnected by the FastTrack Interconnect. IOEs are located at the end of each row and column of the FastTrack Interconnect.

Figure 12 shows the interconnection of adjacent LABs and EABs with row, column, and local interconnects, as well as the associated cascade and carry chains. Each LAB is labeled according to its location: a letter represents the row and a number represents the column. For example, LAB B3 is in row B, column 3.

Figure 12. Interconnect Resources

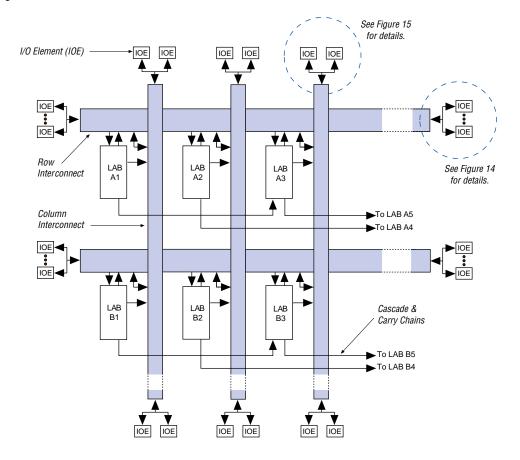


Table 12 describes the FLEX 10K device supply voltages and MultiVolt $\rm I/O$ support levels.

Devices	Supply Vo	oltage (V)	MultiVolt I/O Sup	port Levels (V)
	V _{CCINT}	V _{CCIO}	Input	Output
FLEX 10K (1)	5.0	5.0	3.3 or 5.0	5.0
	5.0	3.3	3.3 or 5.0	3.3 or 5.0
EPF10K50V (1)	3.3	3.3	3.3 or 5.0	3.3 or 5.0
EPF10K130V	3.3	3.3	3.3 or 5.0	3.3 or 5.0
FLEX 10KA (1)	3.3	3.3	2.5, 3.3, or 5.0	3.3 or 5.0
	3.3	2.5	2.5, 3.3, or 5.0	2.5

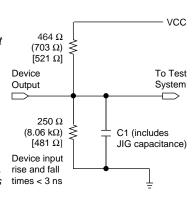
Note

(1) 240-pin QFP packages do not support the MultiVolt I/O features, so they do not have separate V_{CCIO} pins.

Power Sequencing & Hot-Socketing

Because FLEX 10K devices can be used in a multi-voltage environment, they have been designed specifically to tolerate any possible power-up sequence. The $V_{\rm CCIO}$ and $V_{\rm CCINT}$ power supplies can be powered in any order.

Signals can be driven into FLEX 10KA devices before and during power up without damaging the device. Additionally, FLEX 10KA devices do not drive out during power up. Once operating conditions are reached, FLEX 10KA devices operate as specified by the user.


IEEE Std. 1149.1 (JTAG) Boundary-Scan Support All FLEX 10K devices provide JTAG BST circuitry that complies with the IEEE Std. 1149.1-1990 specification. All FLEX 10K devices can also be configured using the JTAG pins through the BitBlaster serial download cable, or ByteBlasterMV parallel port download cable, or via hardware that uses the JamTM programming and test language. JTAG BST can be performed before or after configuration, but not during configuration. FLEX 10K devices support the JTAG instructions shown in Table 13.

Generic Testing

Each FLEX 10K device is functionally tested. Complete testing of each configurable SRAM bit and all logic functionality ensures 100% yield. AC test measurements for FLEX 10K devices are made under conditions equivalent to those shown in Figure 19. Multiple test patterns can be used to configure devices during all stages of the production flow.

Figure 19. FLEX 10K AC Test Conditions

Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast-ground-current transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground, significant reductions in observable noise immunity can result. Numbers without parentheses are for 5.0-V devices or outputs. Numbers in parentheses are for 3.3-V devices or outputs. Numbers in brackets are for 2.5-V devices or outputs.

Operating Conditions

Tables 17 through 21 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for 5.0-V FLEX 10K devices.

Table 1	7. FLEX 10K 5.0-V Device Abs	solute Maximum Ratings Note (1)			
Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	Supply voltage	With respect to ground (2)	-2.0	7.0	V
VI	DC input voltage		-2.0	7.0	V
I _{OUT}	DC output current, per pin		-25	25	mA
T _{STG}	Storage temperature	No bias	-65	150	° C
T _{AMB}	Ambient temperature	Under bias	-65	135	° C
T _J	Junction temperature	Ceramic packages, under bias		150	° C
		PQFP, TQFP, RQFP, and BGA		135	° C
		packages, under bias			

Table 1	9. FLEX 10K 5.0-V Devi	ce DC Operating Conditions No	tes (5), (6)			
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IH}	High-level input voltage		2.0		V _{CCINT} + 0.5	V
V _{IL}	Low-level input voltage		-0.5		0.8	V
V _{OH}	5.0-V high-level TTL output voltage	$I_{OH} = -4 \text{ mA DC}, V_{CCIO} = 4.75 \text{ V}$ (7)	2.4			V
	3.3-V high-level TTL output voltage	$I_{OH} = -4 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V}$ (7)	2.4			V
	3.3-V high-level CMOS output voltage	$I_{OH} = -0.1 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V}$ (7)	V _{CCIO} - 0.2			V
V _{OL}	5.0-V low-level TTL output voltage	I_{OL} = 12 mA DC, V_{CCIO} = 4.75 V (8)			0.45	V
	3.3-V low-level TTL output voltage	I_{OL} = 12 mA DC, V_{CCIO} = 3.00 V (8)			0.45	V
	3.3-V low-level CMOS output voltage	$I_{OL} = 0.1 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V}$ (8)			0.2	V
I _I	Input pin leakage current	V _I = V _{CC} or ground (9)	-10		10	μΑ
I _{OZ}	Tri-stated I/O pin leakage current	$V_O = V_{CC}$ or ground (9)	-40		40	μΑ
I _{CC0}	V _{CC} supply current (standby)	V _I = ground, no load		0.5	10	mA

Table 2	Table 20. 5.0-V Device Capacitance of EPF10K10, EPF10K20 & EPF10K30 Devices Note (10)						
Symbol	Parameter	Conditions	Min	Max	Unit		
C _{IN}	Input capacitance	V _{IN} = 0 V, f = 1.0 MHz		8	pF		
C _{INCLK}	Input capacitance on dedicated clock pin	V _{IN} = 0 V, f = 1.0 MHz		12	pF		
C _{OUT}	Output capacitance	V _{OUT} = 0 V, f = 1.0 MHz		8	pF		

Table 2	Table 21. 5.0-V Device Capacitance of EPF10K40, EPF10K50, EPF10K70 & EPF10K100 DevicesNote (10)							
Symbol	Parameter	Conditions	Min	Max	Unit			
C _{IN}	Input capacitance	V _{IN} = 0 V, f = 1.0 MHz		10	pF			
C _{INCLK}	Input capacitance on dedicated clock pin	V _{IN} = 0 V, f = 1.0 MHz		15	pF			
C _{OUT}	Output capacitance	V _{OUT} = 0 V, f = 1.0 MHz		10	pF			

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
V _{IH}	High-level input voltage		2.0		5.75	V
V _{IL}	Low-level input voltage		-0.5		0.8	V
V _{OH}	3.3-V high-level TTL output voltage	$I_{OH} = -8 \text{ mA DC } (8)$	2.4			V
	3.3-V high-level CMOS output voltage	$I_{OH} = -0.1 \text{ mA DC } (8)$	V _{CCIO} - 0.2			V
V _{OL}	3.3-V low-level TTL output voltage	I _{OL} = 8 mA DC (9)			0.45	V
	3.3-V low-level CMOS output voltage	I _{OL} = 0.1 mA DC (9)			0.2	V
I _I	Input pin leakage current	$V_1 = 5.3 \text{ V to } -0.3 \text{ V } (10)$	-10		10	μА
I _{OZ}	Tri-stated I/O pin leakage current	$V_O = 5.3 \text{ V to } -0.3 \text{ V } (10)$	-10		10	μΑ
I _{CC0}	V _{CC} supply current (standby)	V _I = ground, no load		0.3	10	mA
		V_I = ground, no load (11)		10		mA

Table 2	Table 25. EPF10K50V & EPF10K130V Device Capacitance (12)						
Symbol	Parameter	Conditions	Min	Max	Unit		
C _{IN}	Input capacitance	V _{IN} = 0 V, f = 1.0 MHz		10	pF		
C _{INCLK}	Input capacitance on dedicated clock pin	V _{IN} = 0 V, f = 1.0 MHz		15	pF		
C _{OUT}	Output capacitance	V _{OUT} = 0 V, f = 1.0 MHz		10	pF		

Notes to tables:

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- (2) Minimum DC input voltage is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 5.75 V for input currents less than 100 mA and periods shorter than 20 ns.
- (3) Numbers in parentheses are for industrial-temperature-range devices.
- (4) Maximum V_{CC} rise time is 100 ms. V_{CC} must rise monotonically.
- (5) EPF10K50V and EPF10K130V device inputs may be driven before V_{CCINT} and V_{CCIO} are powered.
- (6) Typical values are for $T_A = 25^{\circ}$ C and $V_{CC} = 3.3$ V.
- (7) These values are specified under the EPF10K50V and EPF10K130V device Recommended Operating Conditions in Table 23 on page 48.
- (8) The I_{OH} parameter refers to high-level TTL or CMOS output current.
- (9) The I_{OL} parameter refers to low-level TTL or CMOS output current. This parameter applies to open-drain pins as well as output pins.
- (10) This value is specified for normal device operation. The value may vary during power-up.
- (11) This parameter applies to -1 speed grade EPF10K50V devices, -2 speed grade EPF10K50V industrial temperature devices, and -2 speed grade EPF10K130V devices.
- (12) Capacitance is sample-tested only.

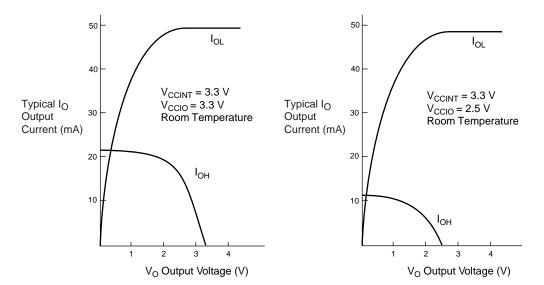


Figure 23. Output Drive Characteristics for EPF10K250A Device

Timing Model

The continuous, high-performance FastTrack Interconnect routing resources ensure predictable performance and accurate simulation and timing analysis. This predictable performance contrasts with that of FPGAs, which use a segmented connection scheme and therefore have unpredictable performance.

Device performance can be estimated by following the signal path from a source, through the interconnect, to the destination. For example, the registered performance between two LEs on the same row can be calculated by adding the following parameters:

- LE register clock-to-output delay (t_{CO})
- Interconnect delay ($t_{SAMEROW}$)
- LE look-up table delay (t_{LIIT})
- LE register setup time (t_{SU})

The routing delay depends on the placement of the source and destination LEs. A more complex registered path may involve multiple combinatorial LEs between the source and destination LEs.

Symbol	-3 Spee	d Grade	-4 Spee	Unit	
	Min	Max	Min	Max	
t_{IOD}		1.3		1.6	ns
t _{IOC}		0.5		0.7	ns
t _{IOCO}		0.2		0.2	ns
t _{IOCOMB}		0.0		0.0	ns
t _{IOSU}	2.8		3.2		ns
t _{IOH}	1.0		1.2		ns
t _{IOCLR}		1.0		1.2	ns
t_{OD1}		2.6		3.5	ns
t_{OD2}		4.9		6.4	ns
t_{OD3}		6.3		8.2	ns
t_{XZ}		4.5		5.4	ns
t _{ZX1}		4.5		5.4	ns
t _{ZX2}		6.8		8.3	ns
t _{ZX3}		8.2		10.1	ns
t _{INREG}		6.0		7.5	ns
t _{IOFD}		3.1		3.5	ns
t _{INCOMB}		3.1		3.5	ns

Symbol	-2 Speed Grade		-3 Speed Grade		-4 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{EABAA}		12.1		13.7		17.0	ns
t _{EABRCCOMB}	12.1		13.7		17.0		ns
t _{EABRCREG}	8.6		9.7		11.9		ns
t _{EABWP}	5.2		5.8		7.2		ns
t _{EABWCCOMB}	6.5		7.3		9.0		ns
t _{EABWCREG}	11.6		13.0		16.0		ns
t _{EABDD}		8.8		10.0		12.5	ns
t _{EABDATACO}		1.7		2.0		3.4	ns
t _{EABDATASU}	4.7		5.3		5.6		ns
t _{EABDATAH}	0.0		0.0		0.0		ns
t _{EABWESU}	4.9		5.5		5.8		ns
t _{EABWEH}	0.0		0.0		0.0		ns
t _{EABWDSU}	1.8		2.1		2.7		ns
t _{EABWDH}	0.0		0.0		0.0		ns
t _{EABWASU}	4.1		4.7		5.8		ns
t _{EABWAH}	0.0		0.0		0.0		ns
t _{EABWO}		8.4		9.5		11.8	ns

Symbol	-3DX Sp	-3DX Speed Grade		-3 Speed Grade		-4 Speed Grade	
	Min	Max	Min	Max	Min	Max	1
t _{DRR}		19.1		19.1		24.2	ns
t _{INSU} (2), (3), (4)	7.8		7.8		8.5		ns
t _{OUTCO} (3), (4)	2.0	11.1	2.0	11.1	2.0	14.3	ns
t _{INH} (3)	0.0		0.0		0.0		ns
t _{INSU} (2), (3), (5)	6.2		-		-		ns
t _{OUTCO} (3), (5)	2.0	6.7		_		_	ns

Symbol	-3DX Speed Grade		-3 Speed Grade		-4 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{INSUBIDIR} (4)	8.1		8.1		10.4		ns
t _{INHBIDIR} (4)	0.0		0.0		0.0		ns
toutcobidir (4)	2.0	11.1	2.0	11.1	2.0	14.3	ns
t _{XZBIDIR} (4)		15.3		15.3		18.4	ns
t _{ZXBIDIR} (4)		15.3		15.3		18.4	ns
t _{INSUBIDIR} (5)	9.1		-		-		ns
t _{INHBIDIR} (5)	0.0		_		-		ns
toutcobidir (5)	2.0	7.2	-	-	_	_	ns
t _{XZBIDIR} (5)		14.3		-		-	ns
t _{ZXBIDIR} (5)		14.3		-		_	ns

Notes to tables:

- (1) All timing parameters are described in Tables 32 through 38 in this data sheet.
- (2) Using an LE to register the signal may provide a lower setup time.
- (3) This parameter is specified by characterization.
- (4) This parameter is measured without the use of the ClockLock or ClockBoost circuits.
- (5) This parameter is measured with the use of the ClockLock or ClockBoost circuits.

Tables 71 through 77 show EPF10K50V device internal and external timing parameters.

Symbol	-1 Spee	d Grade	-2 Spee	d Grade	-3 Speed Grade		-4 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	Min	Max	
t _{LUT}		0.9		1.0		1.3		1.6	ns
t _{CLUT}		0.1		0.5		0.6		0.6	ns
t _{RLUT}		0.5		0.8		0.9		1.0	ns
t _{PACKED}		0.4		0.4		0.5		0.7	ns
t _{EN}		0.7		0.9		1.1		1.4	ns
t _{CICO}		0.2		0.2		0.2		0.3	ns
t _{CGEN}		0.8		0.7		8.0		1.2	ns
t _{CGENR}		0.4		0.3		0.3		0.4	ns
t _{CASC}		0.7		0.7		8.0		0.9	ns
t_{C}		0.3		1.0		1.3		1.5	ns
t_{CO}		0.5		0.7		0.9		1.0	ns
t _{COMB}		0.4		0.4		0.5		0.6	ns
t_{SU}	0.8		1.6		2.2		2.5		ns
t_H	0.5		0.8		1.0		1.4		ns
t _{PRE}		0.8		0.4		0.5		0.5	ns
t _{CLR}		0.8		0.4		0.5		0.5	ns
t _{CH}	2.0		4.0		4.0		4.0		ns
t _{CL}	2.0		4.0		4.0		4.0		ns

Symbol	-2 Spee	d Grade	-3 Spe	ed Grade	-4 Spee	ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t_{IOD}		1.3		1.6		2.0	ns
t _{IOC}		0.4		0.5		0.7	ns
t _{IOCO}		0.3		0.4		0.5	ns
t_{IOCOMB}		0.0		0.0		0.0	ns
t_{IOSU}	2.6		3.3		3.8		ns
t_{IOH}	0.0		0.0		0.0		ns
t _{IOCLR}		1.7		2.2		2.7	ns
t_{OD1}		3.5		4.4		5.0	ns
t_{OD2}		_		-		-	ns
t_{OD3}		8.2		8.1		9.7	ns
t_{XZ}		4.9		6.3		7.4	ns
t_{ZX1}		4.9		6.3		7.4	ns
t_{ZX2}		_		-		-	ns
t_{ZX3}		9.6		10.0		12.1	ns
t _{INREG}		7.9		10.0		12.6	ns
t_{IOFD}		6.2		7.9		9.9	ns
t _{INCOMB}		6.2		7.9		9.9	ns

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{DIN2IOE}		4.2		5.0		6.5	ns
t _{DIN2LE}		2.2		2.6		3.4	ns
t _{DIN2DATA}		4.3		5.2		7.1	ns
t _{DCLK2IOE}		4.2		4.9		6.6	ns
t _{DCLK2LE}		2.2		2.6		3.4	ns
t _{SAMELAB}		0.1		0.1		0.2	ns
t _{SAMEROW}		2.2		2.4		2.9	ns
t _{SAME} COLUMN		0.8		1.0		1.4	ns
t _{DIFFROW}		3.0		3.4		4.3	ns
t _{TWOROWS}		5.2		5.8		7.2	ns
t _{LEPERIPH}		1.8		2.2		2.8	ns
t _{LABCARRY}		0.5		0.5		0.7	ns
t _{LABCASC}		0.9		1.0		1.5	ns

Table 90. EPF10K10A External Reference Timing Parameters Note (1)								
Symbol	-1 Spec	-1 Speed Grade		-2 Speed Grade		d Grade	Unit	
	Min	Max	Min	Max	Min	Max		
t _{DRR}		10.0		12.0		16.0	ns	
t _{INSU} (2), (3)	1.6		2.1		2.8		ns	
t _{INH} (3)	0.0		0.0		0.0		ns	
t _{outco} (3)	2.0	5.8	2.0	6.9	2.0	9.2	ns	

Table 91. EPF10K10A Device External Bidirectional Timing Parameters Note (1)								
Symbol	-2 Spee	d Grade	-3 Speed Grade		-4 Spee	d Grade	Unit	
	Min	Max	Min	Max	Min	Max		
t _{INSUBIDIR}	2.4		3.3		4.5		ns	
t _{INHBIDIR}	0.0		0.0		0.0		ns	
toutcobidir	2.0	5.8	2.0	6.9	2.0	9.2	ns	
t _{XZBIDIR}		6.3		7.5		9.9	ns	
t _{ZXBIDIR}		6.3		7.5		9.9	ns	

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{DIN2IOE}		3.9		4.4		5.1	ns
t _{DIN2LE}		1.2		1.5		1.9	ns
t _{DIN2DATA}		3.2	_	3.6		4.5	ns
t _{DCLK2IOE}		3.0		3.5		4.6	ns
t _{DCLK2LE}		1.2		1.5		1.9	ns
t _{SAMELAB}		0.1		0.1		0.2	ns
t _{SAMEROW}		2.3		2.4		2.7	ns
t _{SAME} COLUMN		1.3		1.4		1.9	ns
t _{DIFFROW}		3.6		3.8		4.6	ns
t _{TWOROWS}		5.9		6.2		7.3	ns
t _{LEPERIPH}		3.5		3.8		4.1	ns
t _{LABCARRY}		0.3		0.4		0.5	ns
t _{LABCASC}		0.9		1.1		1.4	ns

Table 97. EPF10K30A External Reference Timing Parameters Note (1)								
Symbol	-1 Spee	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		
	Min	Max	Min	Max	Min	Max		
t _{DRR}		11.0		13.0		17.0	ns	
t _{INSU} (2), (3)	2.5		3.1		3.9		ns	
t _{INH} (3)	0.0		0.0		0.0		ns	
t _{outco} (3)	2.0	5.4	2.0	6.2	2.0	8.3	ns	

Table 98. EPF10K30A Device External Bidirectional Timing Parameters Note (1)								
Symbol	-1 Spec	ed Grade	-2 Speed Grade		-3 Spee	d Grade	Unit	
	Min	Max	Min	Max	Min	Max		
t _{INSUBIDIR}	4.2		4.9		6.8		ns	
t _{INHBIDIR}	0.0		0.0		0.0		ns	
t _{OUTCOBIDIR}	2.0	5.4	2.0	6.2	2.0	8.3	ns	
t _{XZBIDIR}		6.2		7.5		9.8	ns	
t _{ZXBIDIR}		6.2		7.5		9.8	ns	

Notes to tables:

- (1) All timing parameters are described in Tables 32 through 38 in this data sheet.
- (2) Using an LE to register the signal may provide a lower setup time.
- (3) This parameter is specified by characterization.

Tables 99 through 105 show EPF10K100A device internal and external timing parameters.

Symbol	-1 Snee	d Grade	-2 Snee	d Grade	-3 Snee	ed Grade	Unit
Oymboi	Min	Max	Min	Max	Min	Max	- Oilin
t_{LUT}		1.0		1.2		1.4	ns
t _{CLUT}		0.8		0.9		1.1	ns
t _{RLUT}		1.4		1.6		1.9	ns
t _{PACKED}		0.4		0.5		0.5	ns
t_{EN}		0.6		0.7		0.8	ns
t _{CICO}		0.2		0.2		0.3	ns
t _{CGEN}		0.4		0.4		0.6	ns
t _{CGENR}		0.6		0.7		0.8	ns
t _{CASC}		0.7		0.9		1.0	ns
t _C		0.9		1.0		1.2	ns
t _{CO}		0.2		0.3		0.3	ns
t _{COMB}		0.6		0.7		0.8	ns
t_{SU}	0.8		1.0		1.2		ns
t _H	0.3		0.5		0.5		ns
t _{PRE}		0.3		0.3		0.4	ns
t _{CLR}		0.3		0.3		0.4	ns
t _{CH}	2.5		3.5		4.0		ns
t_{CL}	2.5		3.5		4.0		ns

Symbol	-1 Spee	d Grade	-2 Spee	d Grade	-3 Spee	ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t_{IOD}		2.5		2.9		3.4	ns
t _{IOC}		0.3		0.3		0.4	ns
t_{IOCO}		0.2		0.2		0.3	ns
t_{IOCOMB}		0.5		0.6		0.7	ns
t_{IOSU}	1.3		1.7		1.8		ns
t_{IOH}	0.2		0.2		0.3		ns
t _{IOCLR}		1.0		1.2		1.4	ns
t_{OD1}		2.2		2.6		3.0	ns
t_{OD2}		4.5		5.3		6.1	ns
t _{OD3}		6.8		7.9		9.3	ns
t_{XZ}		2.7		3.1		3.7	ns
t_{ZX1}		2.7		3.1		3.7	ns
t _{ZX2}		5.0		5.8		6.8	ns
t_{ZX3}		7.3		8.4		10.0	ns
t _{INREG}	_	5.3	_	6.1		7.2	ns
t _{IOFD}		4.7		5.5		6.4	ns
t _{INCOMB}		4.7	_	5.5		6.4	ns

 f_{MAX} = Maximum operating frequency in MHz

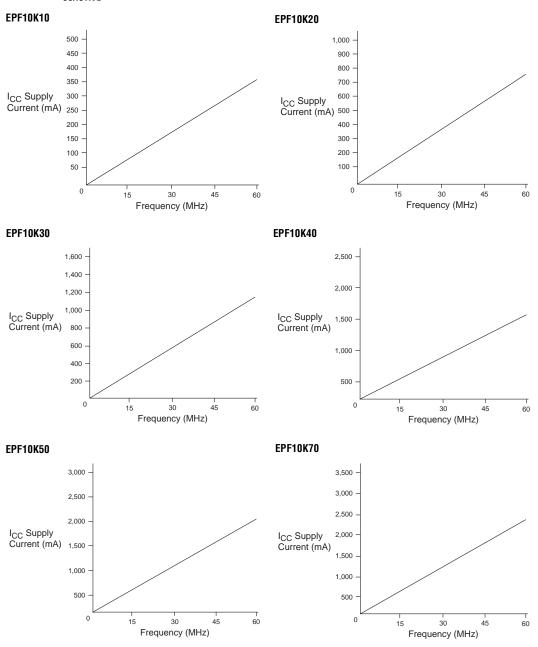
N = Total number of logic cells used in the device

tog_{LC} = Average percent of logic cells toggling at each clock

(typically 12.5%)

K = Constant, shown in Tables 114 and 115

Table 114. FLEX 10K K Constant Values						
Device	K Value					
EPF10K10	82					
EPF10K20	89					
EPF10K30	88					
EPF10K40	92					
EPF10K50	95					
EPF10K70	85					
EPF10K100	88					


Table 115. FLEX 10KA K Constant Values						
Device	K Value					
EPF10K10A	17					
EPF10K30A	17					
EPF10K50V	19					
EPF10K100A	19					
EPF10K130V	22					
EPF10K250A	23					

This calculation provides an I_{CC} estimate based on typical conditions with no output load. The actual I_{CC} should be verified during operation because this measurement is sensitive to the actual pattern in the device and the environmental operating conditions.

To better reflect actual designs, the power model (and the constant *K* in the power calculation equations) for continuous interconnect FLEX devices assumes that logic cells drive FastTrack Interconnect channels. In contrast, the power model of segmented FPGAs assumes that all logic cells drive only one short interconnect segment. This assumption may lead to inaccurate results, compared to measured power consumption for an actual design in a segmented interconnect FPGA.

Figure 32 shows the relationship between the current and operating frequency of FLEX 10K devices.

Figure 32. I_{CCACTIVE} vs. Operating Frequency (Part 1 of 3)

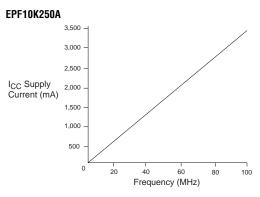


Figure 32. I_{CCACTIVE} vs. Operating Frequency (Part 3 of 3)

Configuration & Operation

The FLEX 10K architecture supports several configuration schemes. This section summarizes the device operating modes and available device configuration schemes.

See *Application Note 116 (Configuring APEX 20K, FLEX 10K & FLEX 6000 Devices)* for detailed descriptions of device configuration options, device configuration pins, and for information on configuring FLEX 10K devices, including sample schematics, timing diagrams, and configuration parameters.

Operating Modes

The FLEX 10K architecture uses SRAM configuration elements that require configuration data to be loaded every time the circuit powers up. The process of physically loading the SRAM data into the device is called *configuration*. Before configuration, as VCC rises, the device initiates a Power-On Reset (POR). This POR event clears the device and prepares it for configuration. The FLEX 10K POR time does not exceed 50 μs .

During initialization, which occurs immediately after configuration, the device resets registers, enables I/O pins, and begins to operate as a logic device. The I/O pins are tri-stated during power-up, and before and during configuration. Together, the configuration and initialization processes are called *command mode*; normal device operation is called *user mode*.

Multiple FLEX 10K devices can be configured in any of the five configuration schemes by connecting the configuration enable (nCE) and configuration enable output (nCEO) pins on each device.

Table 116. Data Sources for Configuration	
Configuration Scheme	Data Source
Configuration device	EPC1, EPC2, EPC16, or EPC1441 configuration device
Passive serial (PS)	BitBlaster, MasterBlaster, or ByteBlasterMV download cable, or serial data source
Passive parallel asynchronous (PPA)	Parallel data source
Passive parallel synchronous (PPS)	Parallel data source
JTAG	BitBlaster, MasterBlaster, or ByteBlasterMV download cable, or microprocessor with Jam STAPL file or Jam Byte-Code file

Device Pin-Outs

See the Altera web site (http://www.altera.com) or the Altera Digital Library for pin-out information.

Revision History

The information contained in the *FLEX 10K Embedded Programmable Logic Device Family Data Sheet* version 4.2 supersedes information published in previous versions.

Version 4.2 Changes

The following change was made to version 4.2 of the *FLEX 10K Embedded Programmable Logic Device Family Data Sheet*: updated Figure 13.

Version 4.1 Changes

The following changes were made to version 4.1 of the FLEX 10K Embedded Programmable Logic Device Family Data Sheet.

- Updated General Description section
- Updated I/O Element section
- Updated SameFrame Pin-Outs section
- Updated Figure 16
- Updated Tables 13 and 116
- Added Note 9 to Table 19
- Added Note 10 to Table 24
- Added Note 10 to Table 28