E·XFL

Intel - EPF10K40RC240-4N Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	288
Number of Logic Elements/Cells	2304
Total RAM Bits	16384
Number of I/O	189
Number of Gates	93000
Voltage - Supply	4.75V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	240-BFQFP Exposed Pad
Supplier Device Package	240-RQFP (32x32)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epf10k40rc240-4n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FLEX 10K Embedded Programmable Logic Device Family Data Sheet

Device	84-Pin PLCC	100-Pin TQFP	144-Pin TQFP	208-Pin PQFP RQFP	240-Pin PQFP RQFP
EPF10K10	59		102	134	
EPF10K10A		66	102	134	
EPF10K20			102	147	189
EPF10K30				147	189
EPF10K30A			102	147	189
EPF10K40				147	189
EPF10K50					189
EPF10K50V					189
EPF10K70					189
EPF10K100					
EPF10K100A					189
EPF10K130V					
EPF10K250A					

Device	503-Pin	599-Pin	256-Pin	356-Pin	484-Pin	600-Pin	403-Pin
	PGA	PGA	FineLine BGA	BGA	FineLine BGA	BGA	PGA
EPF10K10							
EPF10K10A			150		150 (2)		
EPF10K20							
EPF10K30				246			
EPF10K30A			191	246	246		
EPF10K40							
EPF10K50				274			310
EPF10K50V				274			
EPF10K70	358						
EPF10K100	406						
EPF10K100A				274	369	406	
EPF10K130V		470				470	
EPF10K250A		470				470	

Г

For more information, see the following documents:

- Configuration Devices for APEX & FLEX Devices Data Sheet
- BitBlaster Serial Download Cable Data Sheet
- ByteBlasterMV Parallel Port Download Cable Data Sheet
- Application Note 116 (Configuring APEX 20K, FLEX 10K & FLEX 6000 Devices)

FLEX 10K devices are supported by Altera development systems; single, integrated packages that offer schematic, text (including AHDL), and waveform design entry, compilation and logic synthesis, full simulation and worst-case timing analysis, and device configuration. The Altera software provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and other interfaces for additional design entry and simulation support from other industry-standard PC- and UNIX workstation-based EDA tools.

The Altera software works easily with common gate array EDA tools for synthesis and simulation. For example, the Altera software can generate Verilog HDL files for simulation with tools such as Cadence Verilog-XL. Additionally, the Altera software contains EDA libraries that use devicespecific features such as carry chains which are used for fast counter and arithmetic functions. For instance, the Synopsys Design Compiler library supplied with the Altera development systems include DesignWare functions that are optimized for the FLEX 10K architecture.

The Altera development systems run on Windows-based PCs and Sun SPARCstation, and HP 9000 Series 700/800 workstations.

See the MAX+PLUS II Programmable Logic Development System & Software Data Sheet for more information.

Functional Description

Each FLEX 10K device contains an embedded array to implement memory and specialized logic functions, and a logic array to implement general logic.

The embedded array consists of a series of EABs. When implementing memory functions, each EAB provides 2,048 bits, which can be used to create RAM, ROM, dual-port RAM, or first-in first-out (FIFO) functions. When implementing logic, each EAB can contribute 100 to 600 gates towards complex logic functions, such as multipliers, microcontrollers, state machines, and DSP functions. EABs can be used independently, or multiple EABs can be combined to implement larger functions.

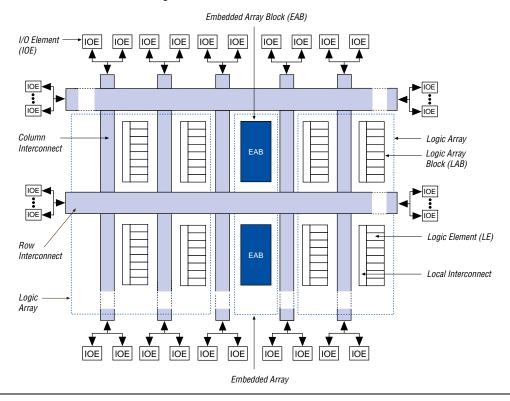
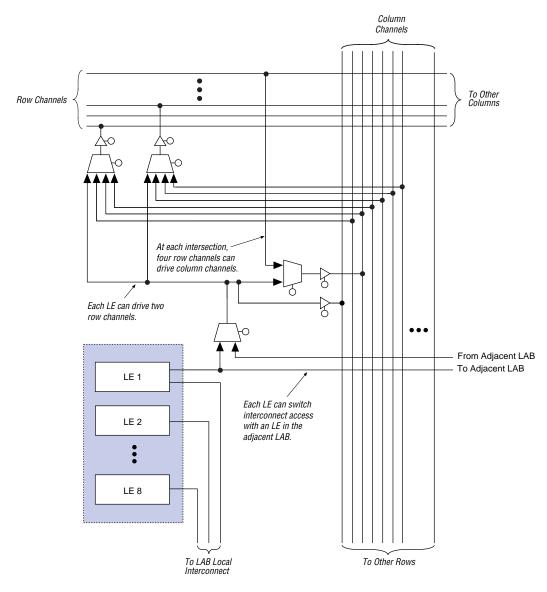



Figure 1. FLEX 10K Device Block Diagram

FLEX 10K devices provide six dedicated inputs that drive the flipflops' control inputs to ensure the efficient distribution of high-speed, low-skew (less than 1.5 ns) control signals. These signals use dedicated routing channels that provide shorter delays and lower skews than the FastTrack Interconnect. Four of the dedicated inputs drive four global signals. These four global signals can also be driven by internal logic, providing an ideal solution for a clock divider or an internally generated asynchronous clear signal that clears many registers in the device.

Embedded Array Block

The EAB is a flexible block of RAM with registers on the input and output ports, and is used to implement common gate array megafunctions. The EAB is also suitable for functions such as multipliers, vector scalars, and error correction circuits, because it is large and flexible. These functions can be combined in applications such as digital filters and microcontrollers.

Figure 11. LAB Connections to Row & Column Interconnect

Each IOE selects the clock, clear, clock enable, and output enable controls from a network of I/O control signals called the peripheral control bus. The peripheral control bus uses high-speed drivers to minimize signal skew across devices; it provides up to 12 peripheral control signals that can be allocated as follows:

- Up to eight output enable signals
- Up to six clock enable signals
- Up to two clock signals
- Up to two clear signals

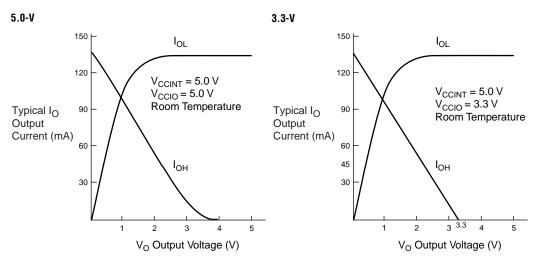
If more than six clock enable or eight output enable signals are required, each IOE on the device can be controlled by clock enable and output enable signals driven by specific LEs. In addition to the two clock signals available on the peripheral control bus, each IOE can use one of two dedicated clock pins. Each peripheral control signal can be driven by any of the dedicated input pins or the first LE of each LAB in a particular row. In addition, an LE in a different row can drive a column interconnect, which causes a row interconnect to drive the peripheral control signal. The chip-wide reset signal will reset all IOE registers, overriding any other control signals.

Tables 8 and 9 list the sources for each peripheral control signal, and the rows that can drive global signals. These tables also show how the output enable, clock enable, clock, and clear signals share 12 peripheral control signals.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IH}	High-level input voltage		2.0		V _{CCINT} + 0.5	V
VIL	Low-level input voltage		-0.5		0.8	V
V _{OH}	5.0-V high-level TTL output voltage	$I_{OH} = -4 \text{ mA DC}, V_{CCIO} = 4.75 \text{ V}$ (7)	2.4			V
	3.3-V high-level TTL output voltage	I _{OH} = -4 mA DC, V _{CCIO} = 3.00 V (7)	2.4			V
	3.3-V high-level CMOS output voltage	$I_{OH} = -0.1 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V}$ (7)	V _{CCIO} – 0.2			V
V _{OL}	5.0-V low-level TTL output voltage	I _{OL} = 12 mA DC, V _{CCIO} = 4.75 V (8)			0.45	V
	3.3-V low-level TTL output voltage	I _{OL} = 12 mA DC, V _{CCIO} = 3.00 V (8)			0.45	V
	3.3-V low-level CMOS output voltage	$I_{OL} = 0.1 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V}$ (8)			0.2	V
I _I	Input pin leakage current	$V_1 = V_{CC}$ or ground (9)	-10		10	μA
I _{OZ}	Tri-stated I/O pin leakage current	$V_{O} = V_{CC}$ or ground (9)	-40		40	μA
I _{CC0}	V _{CC} supply current (standby)	V _I = ground, no load		0.5	10	mA

Table 2	0. 5.0-V Device Capacitance of	EPF10K10, EPF10K20 & EPF10K30) Devices	Note (10)	
Symbol	Parameter	Conditions	Min	Max	Unit

C _{IN}	Input capacitance	V _{IN} = 0 V, f = 1.0 MHz	8	pF
INCLIV	Input capacitance on dedicated clock pin	V _{IN} = 0 V, f = 1.0 MHz	12	pF
C _{OUT}	Output capacitance	V _{OUT} = 0 V, f = 1.0 MHz	8	pF


Table 2	Table 21. 5.0-V Device Capacitance of EPF10K40, EPF10K50, EPF10K70 & EPF10K100 Devices Note (10)										
Symbol	Parameter	Conditions	Min	Max	Unit						
C _{IN}	Input capacitance	V _{IN} = 0 V, f = 1.0 MHz		10	pF						
C _{INCLK}	Input capacitance on dedicated clock pin	V _{IN} = 0 V, f = 1.0 MHz		15	pF						
C _{OUT}	Output capacitance	V _{OUT} = 0 V, f = 1.0 MHz		10	pF						

Notes to tables:

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- (2) Minimum DC input voltage is -0.5 V. During transitions, the inputs may undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns.
- (3) Numbers in parentheses are for industrial-temperature-range devices.
- (4) Maximum \hat{V}_{CC} rise time is 100 ms. V_{CC} must rise monotonically.
- (5) Typical values are for $T_A = 25^\circ \text{ C}$ and $V_{CC} = 5.0 \text{ V}$.
- (6) These values are specified under the Recommended Operation Condition shown in Table 18 on page 45.
- (7) The I_{OH} parameter refers to high-level TTL or CMOS output current.
- (8) The I_{OL} parameter refers to low-level TTL or CMOS output current. This parameter applies to open-drain pins as well as output pins.
- (9) This value is specified for normal device operation. The value may vary during power-up.
- (10) Capacitance is sample-tested only.

Figure 20 shows the typical output drive characteristics of FLEX 10K devices with 5.0-V and 3.3-V V_{CCIO} . The output driver is compliant with the 5.0-V *PCI Local Bus Specification, Revision 2.2* (for 5.0-V V_{CCIO}).

Figure 20. Output Drive Characteristics of FLEX 10K Devices

Tables 22 through 25 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for EPF10K50V and EPF10K130V devices.

Table 22. EPF10K50V & EPF10K130V Device Absolute Maximum Ratings Note (1)							
Symbol	Parameter	Conditions	Min	Max	Unit		
V _{CC}	Supply voltage	With respect to ground (2)	-0.5	4.6	V		
VI	DC input voltage		-2.0	5.75	V		
I _{OUT}	DC output current, per pin		-25	25	mA		
T _{STG}	Storage temperature	No bias	-65	150	°C		
T _{AMB}	Ambient temperature	Under bias	-65	135	°C		
ТJ	Junction temperature	Ceramic packages, under bias		150	°C		
		RQFP and BGA packages, under		135	°C		
		bias					

Table 2	Table 23. EPF10K50V & EPF10K130V Device Recommended Operating Conditions									
Symbol	Parameter	Conditions	Min	Max	Unit					
V _{CCINT}	Supply voltage for internal logic and input buffers	(3), (4)	3.00 (3.00)	3.60 (3.60)	V					
V _{CCIO}	Supply voltage for output buffers	(3), (4)	3.00 (3.00)	3.60 (3.60)	V					
VI	Input voltage	(5)	-0.5	5.75	V					
Vo	Output voltage		0	V _{CCIO}	V					
Τ _A	Ambient temperature	For commercial use	0	70	°C					
		For industrial use	-40	85	°C					
ΤJ	Operating temperature	For commercial use	0	85	°C					
		For industrial use	-40	100	°C					
t _R	Input rise time			40	ns					
t _F	Input fall time			40	ns					

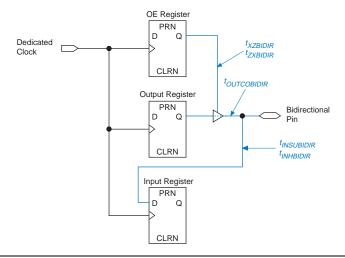


Figure 28. Synchronous Bidirectional Pin External Timing Model

Tables 32 through 36 describe the FLEX 10K device internal timing parameters. These internal timing parameters are expressed as worst-case values. Using hand calculations, these parameters can be used to estimate design performance. However, before committing designs to silicon, actual worst-case performance should be modeled using timing simulation and analysis. Tables 37 through 38 describe FLEX 10K external timing parameters.

Symbol	Parameter	Conditions
t _{LUT}	LUT delay for data-in	
t _{CLUT}	LUT delay for carry-in	
t _{RLUT}	LUT delay for LE register feedback	
t _{PACKED}	Data-in to packed register delay	
t _{EN}	LE register enable delay	
tcico	Carry-in to carry-out delay	
t _{CGEN}	Data-in to carry-out delay	
t _{CGENR}	LE register feedback to carry-out delay	
t _{CASC}	Cascade-in to cascade-out delay	
t _C	LE register control signal delay	
t _{CO}	LE register clock-to-output delay	
t _{COMB}	Combinatorial delay	

Symbol	-2 Speed Grade		-3 Speed Grade		-4 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{DIN2IOE}		6.6		7.3		8.8	ns
t _{DIN2LE}		4.2		4.8		6.0	ns
t _{DIN2DATA}		6.5		7.1		10.8	ns
t _{DCLK2IOE}		5.5		6.2		7.7	ns
t _{DCLK2LE}		4.2		4.8		6.0	ns
t _{SAMELAB}		0.4		0.4		0.5	ns
t _{SAMEROW}		4.8		4.9		5.5	ns
t _{SAMECOLUMN}		3.3		3.4		3.7	ns
t _{DIFFROW}		8.1		8.3		9.2	ns
t _{TWOROWS}		12.9		13.2		14.7	ns
t _{LEPERIPH}		5.5		5.7		6.5	ns
t _{LABCARRY}		0.8		0.9		1.1	ns
t _{LABCASC}		2.7		3.0		3.2	ns

Table 62. EPF10K70 Device External Timing Parameters Note (1)											
Symbol	-2 Spee	-2 Speed Grade		ed Grade	-4 Speed Grade		Unit				
	Min	Max	Min	Max	Min	Max					
t _{DRR}		17.2		19.1		24.2	ns				
t _{INSU} (2), (3)	6.6		7.3		8.0		ns				
t _{INH} (3)	0.0		0.0		0.0		ns				
t _{оитсо} (3)	2.0	9.9	2.0	11.1	2.0	14.3	ns				

 Table 63. EPF10K70 Device External Bidirectional Timing Parameters
 Note (1)

Symbol	-2 Speed Grade		-3 Spee	ed Grade	-4 Spee	Unit	
	Min	Max	Min	Max	Min	Max	
t _{INSUBIDIR}	7.4		8.1		10.4		ns
t _{INHBIDIR}	0.0		0.0		0.0		ns
toutcobidir	2.0	9.9	2.0	11.1	2.0	14.3	ns
t _{XZBIDIR}		13.7		15.4		18.5	ns
t _{ZXBIDIR}		13.7		15.4		18.5	ns

Г

Table 68. EPF10K100 Device Interconn	-		1	Note (1)			
Symbol	-3DX Spe	eed Grade	-3 Spee	ed Grade	-4 Spee	Unit	
	Min	Max	Min	Max	Min	Max	
t _{DIN2IOE}		10.3		10.3		12.2	ns
t _{DIN2LE}		4.8		4.8		6.0	ns
t _{DIN2DATA}		7.3		7.3		11.0	ns
t _{DCLK2IOE} without ClockLock or ClockBoost circuitry		6.2		6.2		7.7	ns
<i>t_{DCLK2IOE}</i> with ClockLock or ClockBoost circuitry		2.3		-		_	ns
<i>t_{DCLK2LE}</i> without ClockLock or ClockBoost circuitry		4.8		4.8		6.0	ns
<i>t_{DCLK2LE}</i> with ClockLock or ClockBoost circuitry		2.3		-		_	ns
t _{SAMELAB}		0.4		0.4		0.5	ns
t _{SAMEROW}		4.9		4.9		5.5	ns
t _{SAMECOLUMN}		5.1		5.1		5.4	ns
t _{DIFFROW}		10.0		10.0		10.9	ns
t _{TWOROWS}		14.9		14.9		16.4	ns
t _{LEPERIPH}		6.9		6.9		8.1	ns
t _{LABCARRY}		0.9		0.9		1.1	ns
t _{LABCASC}		3.0		3.0		3.2	ns

Symbol	-2 Spee	d Grade	-3 Speed Grade		-4 Spee	Unit	
	Min	Max	Min	Max	Min	Max	
t _{IOD}		1.3		1.6		2.0	ns
t _{IOC}		0.4		0.5		0.7	ns
t _{IOCO}		0.3		0.4		0.5	ns
t _{IOCOMB}		0.0		0.0		0.0	ns
t _{IOSU}	2.6		3.3		3.8		ns
t _{IOH}	0.0		0.0		0.0		ns
t _{IOCLR}		1.7		2.2		2.7	ns
t _{OD1}		3.5		4.4		5.0	ns
t _{OD2}		-		-		-	ns
t _{OD3}		8.2		8.1		9.7	ns
t _{XZ}		4.9		6.3		7.4	ns
t _{ZX1}		4.9		6.3		7.4	ns
t _{ZX2}		_		-		-	ns
t _{ZX3}		9.6		10.0		12.1	ns
t _{INREG}		7.9		10.0		12.6	ns
t _{IOFD}		6.2		7.9		9.9	ns
t _{INCOMB}		6.2		7.9		9.9	ns

FLEX 10K Embedded Programmable Logic Device Family Data Sheet

Symbol	-1 Spee	d Grade	-2 Spee	d Grade	-3 Spee	ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{EABDATA1}		5.5		6.5		8.5	ns
t _{EABDATA2}		1.1		1.3		1.8	ns
t _{EABWE1}		2.4		2.8		3.7	ns
t _{EABWE2}		2.1		2.5		3.2	ns
t _{EABCLK}		0.0		0.0		0.2	ns
t _{EABCO}		1.7		2.0		2.6	ns
t _{EABBYPASS}		0.0		0.0		0.3	ns
t _{EABSU}	1.2		1.4		1.9		ns
t _{EABH}	0.1		0.1		0.3		ns
t _{AA}		4.2		5.0		6.5	ns
t _{WP}	3.8		4.5		5.9		ns
t _{WDSU}	0.1		0.1		0.2		ns
t _{WDH}	0.1		0.1		0.2		ns
t _{WASU}	0.1		0.1		0.2		ns
t _{WAH}	0.1		0.1		0.2		ns
t _{WO}		3.7		4.4		6.4	ns
t _{DD}		3.7		4.4		6.4	ns
t _{EABOUT}		0.0		0.1		0.6	ns
t _{EABCH}	3.0		3.5		4.0		ns
t _{EABCL}	3.8		4.5		5.9		ns

Symbol	OK100A Device EAB Intern -1 Speed Grade		-2 Snee	-2 Speed Grade		-3 Speed Grade		
	Min	Max	Min	Max	Min	Max	Unit	
t _{EABAA}		6.8		7.8		9.2	ns	
t _{EABRCCOMB}	6.8		7.8		9.2		ns	
t _{EABRCREG}	5.4		6.2		7.4		ns	
t _{EABWP}	3.2		3.7		4.4		ns	
t _{EABWCCOMB}	3.4		3.9		4.7		ns	
t _{EABWCREG}	9.4		10.8		12.8		ns	
t _{EABDD}		6.1		6.9		8.2	ns	
t _{EABDATACO}		2.1		2.3		2.9	ns	
t _{EABDATASU}	3.7		4.3		5.1		ns	
t _{EABDATAH}	0.0		0.0		0.0		ns	
t _{EABWESU}	2.8		3.3		3.8		ns	
t _{EABWEH}	0.0		0.0		0.0		ns	
t _{EABWDSU}	3.4		4.0		4.6		ns	
t _{EABWDH}	0.0		0.0		0.0		ns	
t _{EABWASU}	1.9		2.3		2.6		ns	
t _{EABWAH}	0.0		0.0		0.0		ns	
t _{EABWO}		5.1		5.7		6.9	ns	

Notes to tables:

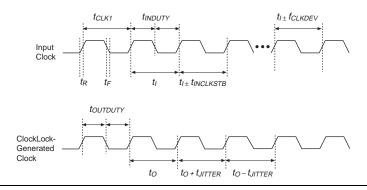
- (1) All timing parameters are described in Tables 32 through 38 in this data sheet.
- (2) Using an LE to register the signal may provide a lower setup time.
- (3) This parameter is specified by characterization.

Tables 106 through 112 show EPF10K250A device internal and external timing parameters.

Table 106. EPF10K250A Device LE Timing Microparameters Note (1)							
Symbol	-1 Spee	-1 Speed Grade		ed Grade	-3 Spee	Unit	
	Min	Max	Min	Max	Min	Max	
t _{LUT}		0.9		1.0		1.4	ns
t _{CLUT}		1.2		1.3		1.6	ns
t _{RLUT}		2.0		2.3		2.7	ns
t _{PACKED}		0.4		0.4		0.5	ns
t _{EN}		1.4		1.6		1.9	ns
t _{CICO}		0.2		0.3		0.3	ns
t _{CGEN}		0.4		0.6		0.6	ns
t _{CGENR}		0.8		1.0		1.1	ns
t _{CASC}		0.7		0.8		1.0	ns
t _C		1.2		1.3		1.6	ns
t _{CO}		0.6		0.7		0.9	ns
t _{COMB}		0.5		0.6		0.7	ns
t _{SU}	1.2		1.4		1.7		ns
t _H	1.2		1.3		1.6		ns
t _{PRE}		0.7		0.8		0.9	ns
t _{CLR}		0.7		0.8		0.9	ns
t _{CH}	2.5		3.0		3.5		ns
t _{CL}	2.5		3.0		3.5		ns

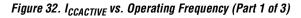
Table 109. EPF1	IOK250A Devi	ce EAB Intern	al Timing Ma	acroparamete	ers Note (1)	-
Symbol	-1 Spee	-1 Speed Grade		d Grade	-3 Spee	Unit	
	Min	Max	Min	Max	Min	Max	
t _{EABAA}		6.1		6.8		8.2	ns
t _{EABRCCOMB}	6.1		6.8		8.2		ns
t _{EABRCREG}	4.6		5.1		6.1		ns
t _{EABWP}	5.6		6.4		7.5		ns
t _{EABWCCOMB}	5.8		6.6		7.9		ns
t _{EABWCREG}	15.8		17.8		21.0		ns
t _{EABDD}		5.7		6.4		7.8	ns
t _{EABDATACO}		0.7		0.8		1.0	ns
t _{EABDATASU}	4.5		5.1		5.9		ns
t _{EABDATAH}	0.0		0.0		0.0		ns
t _{EABWESU}	8.2		9.3		10.9		ns
t _{EABWEH}	0.0		0.0		0.0		ns
t _{EABWDSU}	1.7		1.8		2.1		ns
t _{EABWDH}	0.0		0.0		0.0		ns
t _{EABWASU}	0.9		0.9		1.0		ns
t _{EABWAH}	0.0		0.0		0.0		ns
t _{EABWO}		5.3		6.0		7.4	ns

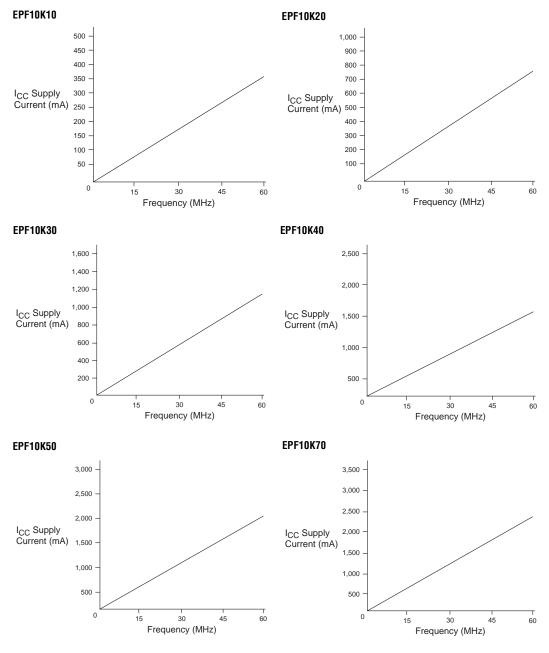
Notes to tables:


- (1) All timing parameters are described in Tables 32 through 37 in this data sheet.
- (2) Using an LE to register the signal may provide a lower setup time.
- (3) This parameter is specified by characterization.

ClockLock & ClockBoost Timing Parameters

For the ClockLock and ClockBoost circuitry to function properly, the incoming clock must meet certain requirements. If these specifications are not met, the circuitry may not lock onto the incoming clock, which generates an erroneous clock within the device. The clock generated by the ClockLock and ClockBoost circuitry must also meet certain specifications. If the incoming clock meets these requirements during configuration, the ClockLock and ClockBoost circuitry will lock onto the clock during configuration. The circuit will be ready for use immediately after configuration. Figure 31 illustrates the incoming and generated clock specifications.


Figure 31. Specifications for the Incoming & Generated Clocks


The t_l parameter refers to the nominal input clock period; the t_0 parameter refers to the nominal output clock period.

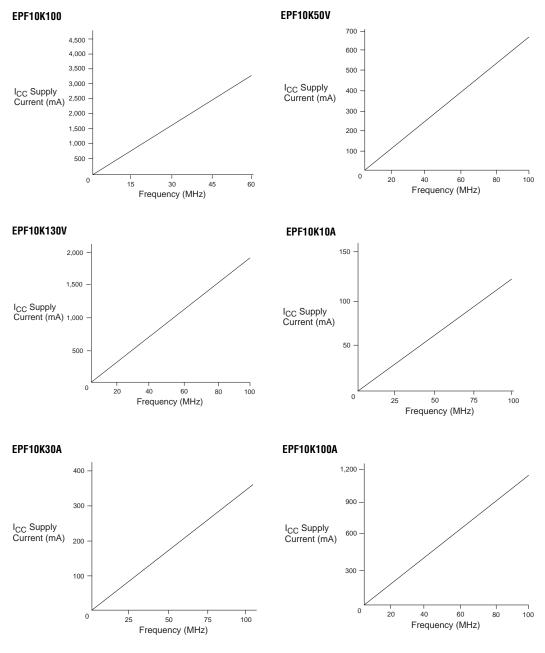


Table 113 summarizes the ClockLock and ClockBoost parameters.

Table 113. ClockLock & ClockBoost Parameters (Part 1 of 2)								
Symbol	I Parameter Min Typ Max				Unit			
t _R	Input rise time			2	ns			
t _F	Input fall time			2	ns			
t _{INDUTY}	Input duty cycle	45		55	%			
f _{CLK1}	Input clock frequency (ClockBoost clock multiplication factor equals 1)	30		80	MHz			
t _{CLK1}	Input clock period (ClockBoost clock multiplication factor equals 1) 12.5 33.3 n				ns			
f _{CLK2}	Input clock frequency (ClockBoost clock multiplication factor equals 2)	16		50	MHz			
t _{CLK2}	Input clock period (ClockBoost clock multiplication factor equals 2)	20		62.5	ns			

Figure 32. I_{CCACTIVE} vs. Operating Frequency (Part 2 of 3)

Multiple FLEX 10K devices can be configured in any of the five configuration schemes by connecting the configuration enable (nCE) and configuration enable output (nCEO) pins on each device.

Table 116. Data Sources for Configuration						
Configuration Scheme	Data Source					
Configuration device	EPC1, EPC2, EPC16, or EPC1441 configuration device					
Passive serial (PS)	BitBlaster, MasterBlaster, or ByteBlasterMV download cable, or serial data source					
Passive parallel asynchronous (PPA)	Parallel data source					
Passive parallel synchronous (PPS)	Parallel data source					
JTAG	BitBlaster, MasterBlaster, or ByteBlasterMV download cable, or microprocessor with Jam STAPL file or Jam Byte-Code file					

Device Pin-Outs

Revision History

The information contained in the *FLEX 10K Embedded Programmable Logic Device Family Data Sheet* version 4.2 supersedes information published in previous versions.

See the Altera web site (http://www.altera.com) or the Altera Digital

Version 4.2 Changes

Library for pin-out information.

The following change was made to version 4.2 of the *FLEX 10K Embedded Programmable Logic Device Family Data Sheet*: updated Figure 13.

Version 4.1 Changes

The following changes were made to version 4.1 of the *FLEX 10K Embedded Programmable Logic Device Family Data Sheet.*

- Updated General Description section
- Updated I/O Element section
- Updated SameFrame Pin-Outs section
- Updated Figure 16
- Updated Tables 13 and 116
- Added Note 9 to Table 19
- Added Note 10 to Table 24
- Added Note 10 to Table 28