Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. # **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 360 | | Number of Logic Elements/Cells | 2880 | | Total RAM Bits | 20480 | | Number of I/O | 274 | | Number of Gates | 116000 | | Voltage - Supply | 3V ~ 3.6V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 70°C (TA) | | Package / Case | 356-LBGA | | Supplier Device Package | 356-BGA (35x35) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/epf10k50vbc356-3 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Dedicated Inputs & Global Signals Chip-Wide Reset Row Interconnect 2, 4, 8, 16 Data Data Out 8, 4, 2, 1 2, 4, 8, 16 Address D 8, 9, 10, 11 RAM/ROM 256×8 512 × 4 $1,024 \times 2$ Column 2,048 × 1 Interconnect WE D Figure 4. FLEX 10K Embedded Array Block ## Note: EAB Local Interconnect (1) (1) EPF10K10, EPF10K10A, EPF10K20, EPF10K30, EPF10K30A, EPF10K40, EPF10K50, and EPF10K50V devices have 22 EAB local interconnect channels; EPF10K70, EPF10K100, EPF10K100A, EPF10K130V, and EPF10K250A devices have 26. # **Logic Array Block** Each LAB consists of eight LEs, their associated carry and cascade chains, LAB control signals, and the LAB local interconnect. The LAB provides the coarse-grained structure to the FLEX 10K architecture, facilitating efficient routing with optimum device utilization and high performance. See Figure 5. Figure 5. FLEX 10K LAB #### Notes: - (1) EPF10K10, EPF10K10A, EPF10K20, EPF10K30, EPF10K30A, EPF10K40, EPF10K50, and EPF10K50V devices have 22 inputs to the LAB local interconnect channel from the row; EPF10K70, EPF10K100, EPF10K100A, EPF10K130V, and EPF10K250A devices have 26. - (2) EPF10K10, EPF10K10A, EPF10K20, EPF10K30, EPF10K30A, EPF10K40, EPF10K50, and EPF10K50V devices have 30 LAB local interconnect channels; EPF10K70, EPF10K100, EPF10K100A, EPF10K130V, and EPF10K250A devices have 34 LABs. ## Up/Down Counter Mode The up/down counter mode offers counter enable, clock enable, synchronous up/down control, and data loading options. These control signals are generated by the data inputs from the LAB local interconnect, the carry-in signal, and output feedback from the programmable register. The Up/down counter mode uses 2 three-input LUTs: one generates the counter data, and the other generates the fast carry bit. A 2-to-1 multiplexer provides synchronous loading. Data can also be loaded asynchronously with the clear and preset register control signals, without using the LUT resources. #### Clearable Counter Mode The clearable counter mode is similar to the up/down counter mode, but supports a synchronous clear instead of the up/down control. The clear function is substituted for the cascade-in signal in the up/down counter mode. Clearable counter mode uses 2 three-input LUTs: one generates the counter data, and the other generates the fast carry bit. Synchronous loading is provided by a 2-to-1 multiplexer. The output of this multiplexer is ANDed with a synchronous clear signal. ## Internal Tri-State Emulation Internal tri-state emulation provides internal tri-stating without the limitations of a physical tri-state bus. In a physical tri-state bus, the tri-state buffers' output enable (OE) signals select which signal drives the bus. However, if multiple OE signals are active, contending signals can be driven onto the bus. Conversely, if no OE signals are active, the bus will float. Internal tri-state emulation resolves contending tri-state buffers to a low value and floating buses to a high value, thereby eliminating these problems. The Altera software automatically implements tri-state bus functionality with a multiplexer. ## Clear & Preset Logic Control Logic for the programmable register's clear and preset functions is controlled by the DATA3, LABCTRL1, and LABCTRL2 inputs to the LE. The clear and preset control structure of the LE asynchronously loads signals into a register. Either LABCTRL1 or LABCTRL2 can control the asynchronous clear. Alternatively, the register can be set up so that LABCTRL1 implements an asynchronous load. The data to be loaded is driven to DATA3; when LABCTRL1 is asserted, DATA3 is loaded into the register. Figure 10. LE Clear & Preset Modes # **Asynchronous Load with Clear** ### labctrl1 (Asynchronous Load) PRN data3 (Data) NOT CLRN labctrl2 (Clear) Chip-Wide Reset #### **Asynchronous Load without Clear or Preset** ## **Asynchronous Load with Preset** ## Asynchronous Clear The flipflop can be cleared by either LABCTRL1 or LABCTRL2. In this mode, the preset signal is tied to V_{CC} to deactivate it. For improved routing, the row interconnect is comprised of a combination of full-length and half-length channels. The full-length channels connect to all LABs in a row; the half-length channels connect to the LABs in half of the row. The EAB can be driven by the half-length channels in the left half of the row and by the full-length channels. The EAB drives out to the full-length channels. In addition to providing a predictable, row-wide interconnect, this architecture provides increased routing resources. Two neighboring LABs can be connected using a half-row channel, thereby saving the other half of the channel for the other half of the row. Table 7 summarizes the FastTrack Interconnect resources available in each FLEX $10 \mathrm{K}$ device. | Table 7. FLEX 1 | OK FastTrac | k Interconnect Res | ources | | |-------------------------|-------------|---------------------|---------|------------------------| | Device | Rows | Channels per
Row | Columns | Channels per
Column | | EPF10K10
EPF10K10A | 3 | 144 | 24 | 24 | | EPF10K20 | 6 | 144 | 24 | 24 | | EPF10K30
EPF10K30A | 6 | 216 | 36 | 24 | | EPF10K40 | 8 | 216 | 36 | 24 | | EPF10K50
EPF10K50V | 10 | 216 | 36 | 24 | | EPF10K70 | 9 | 312 | 52 | 24 | | EPF10K100
EPF10K100A | 12 | 312 | 52 | 24 | | EPF10K130V | 16 | 312 | 52 | 32 | | EPF10K250A | 20 | 456 | 76 | 40 | In addition to general-purpose I/O pins, FLEX 10K devices have six dedicated input pins that provide low-skew signal distribution across the device. These six inputs can be used for global clock, clear, preset, and peripheral output enable and clock enable control signals. These signals are available as control signals for all LABs and IOEs in the device. The dedicated inputs can also be used as general-purpose data inputs because they can feed the local interconnect of each LAB in the device. However, the use of dedicated inputs as data inputs can introduce additional delay into the control signal network. ## I/O Element An I/O element (IOE) contains a bidirectional I/O buffer and a register that can be used either as an input register for external data that requires a fast setup time, or as an output register for data that requires fast clock-to-output performance. In some cases, using an LE register for an input register will result in a faster setup time than using an IOE register. IOEs can be used as input, output, or bidirectional pins. For bidirectional registered I/O implementation, the output register should be in the IOE and, the data input and output enable register should be LE registers placed adjacent to the bidirectional pin. The Compiler uses the programmable inversion option to invert signals from the row and column interconnect automatically where appropriate. Figure 13 shows the bidirectional I/O registers. Figure 13. Bidirectional I/O Registers Signals on the peripheral control bus can also drive the four global signals, referred to as GLOBAL0 through GLOBAL3 in Tables 8 and 9. The internally generated signal can drive the global signal, providing the same low-skew, low-delay characteristics for an internally generated signal as for a signal driven by an input. This feature is ideal for internally generated clear or clock signals with high fan-out. When a global signal is driven by internal logic, the dedicated input pin that drives that global signal cannot be used. The dedicated input pin should be driven to a known logic state (such as ground) and not be allowed to float. When the chip-wide output enable pin is held low, it will tri-state all pins on the device. This option can be set in the Global Project Device Options menu. Additionally, the registers in the IOE can be reset by holding the chip-wide reset pin low. ## Row-to-IOE Connections When an IOE is used as an input signal, it can drive two separate row channels. The signal is accessible by all LEs within that row. When an IOE is used as an output, the signal is driven by a multiplexer that selects a signal from the row channels. Up to eight IOEs connect to each side of each row channel. See Figure 14. Figure 14. FLEX 10K Row-to-IOE Connections The values for m and n are provided in Table 10. | Table 2 | 77. FLEX 10KA 3.3-V Device Rec | ommended Operating Conditions | | | | |--------------------|---|-------------------------------|-------------|-------------------|------| | Symbol | Parameter | Conditions | Min | Max | Unit | | V _{CCINT} | Supply voltage for internal logic and input buffers | (3), (4) | 3.00 (3.00) | 3.60 (3.60) | V | | V _{CCIO} | Supply voltage for output buffers, 3.3-V operation | (3), (4) | 3.00 (3.00) | 3.60 (3.60) | ٧ | | | Supply voltage for output buffers, 2.5-V operation | (3), (4) | 2.30 (2.30) | 2.70 (2.70) | ٧ | | VI | Input voltage | (5) | -0.5 | 5.75 | V | | Vo | Output voltage | | 0 | V _{CCIO} | V | | T _A | Ambient temperature | For commercial use | 0 | 70 | ° C | | | | For industrial use | -40 | 85 | °C | | T _J | Operating temperature | For commercial use | 0 | 85 | °C | | | | For industrial use | -40 | 100 | °C | | t _R | Input rise time | | | 40 | ns | | t _F | Input fall time | | | 40 | ns | Timing simulation and delay prediction are available with the MAX+PLUS II Simulator and Timing Analyzer, or with industry-standard EDA tools. The Simulator offers both pre-synthesis functional simulation to evaluate logic design accuracy and post-synthesis timing simulation with 0.1-ns resolution. The Timing Analyzer provides point-to-point timing delay information, setup and hold time analysis, and device-wide performance analysis. Figure 24 shows the overall timing model, which maps the possible paths to and from the various elements of the FLEX 10K device. Figure 24. FLEX 10K Device Timing Model Figures 25 through 27 show the delays that correspond to various paths and functions within the LE, IOE, and EAB timing models. Figure 25. FLEX 10K Device LE Timing Model | Symbol | Parameter | Conditions | | |--------------------------|--|------------|--| | t _{DIN2IOE} | Delay from dedicated input pin to IOE control input | | | | t _{DCLK2LE} | Delay from dedicated clock pin to LE or EAB clock | (7) | | | t _{DIN2DATA} | Delay from dedicated input or clock to LE or EAB data | (7) | | | t _{DCLK2IOE} | Delay from dedicated clock pin to IOE clock | (7) | | | t _{DIN2LE} | Delay from dedicated input pin to LE or EAB control input | (7) | | | t _{SAMELAB} | Routing delay for an LE driving another LE in the same LAB | | | | t _{SAMEROW} | Routing delay for a row IOE, LE, or EAB driving a row IOE, LE, or EAB in the same row | (7) | | | t _{SAME} COLUMN | Routing delay for an LE driving an IOE in the same column | (7) | | | t _{DIFFROW} | Routing delay for a column IOE, LE, or EAB driving an LE or EAB in a different row | (7) | | | t _{TWOROWS} | Routing delay for a row IOE or EAB driving an LE or EAB in a different row | (7) | | | t _{LEPERIPH} | Routing delay for an LE driving a control signal of an IOE via the peripheral control bus | (7) | | | t _{LABCARRY} | Routing delay for the carry-out signal of an LE driving the carry-in signal of a different LE in a different LAB | | | | t _{LABCASC} | Routing delay for the cascade-out signal of an LE driving the cascade-in signal of a different LE in a different LAB | | | | Table 37. Ex | ternal Timing Parameters Notes (8), (10) | | |--------------------|--|------------| | Symbol | Parameter | Conditions | | t _{DRR} | Register-to-register delay via four LEs, three row interconnects, and four local interconnects | (9) | | t _{INSU} | Setup time with global clock at IOE register | | | t _{INH} | Hold time with global clock at IOE register | | | t _{OUTCO} | Clock-to-output delay with global clock at IOE register | | | Table 38. External Bidirectional Timing Parameters Note (10) | | | | | | |--|--|-----------|--|--|--| | Symbol | Parameter | Condition | | | | | t _{INSUBIDIR} | Setup time for bidirectional pins with global clock at adjacent LE register | | | | | | t _{INHBIDIR} | Hold time for bidirectional pins with global clock at adjacent LE register | | | | | | t _{OUTCOBIDIR} | Clock-to-output delay for bidirectional pins with global clock at IOE register | | | | | | t _{XZBIDIR} | Synchronous IOE output buffer disable delay | | | | | | t _{ZXBIDIR} | Synchronous IOE output buffer enable delay, slow slew rate = off | | | | | Tables 39 through 47 show EPF10K10 and EPF10K20 device internal and external timing parameters. | Symbol | -3 Speed Grade | | -4 Spee | d Grade | Unit | |---------------------|----------------|-----|---------|---------|------| | | Min | Max | Min | Max | | | t_{LUT} | | 1.4 | | 1.7 | ns | | t _{CLUT} | | 0.6 | | 0.7 | ns | | t _{RLUT} | | 1.5 | | 1.9 | ns | | t _{PACKED} | | 0.6 | | 0.9 | ns | | t_{EN} | | 1.0 | | 1.2 | ns | | t _{CICO} | | 0.2 | | 0.3 | ns | | t _{CGEN} | | 0.9 | | 1.2 | ns | | t _{CGENR} | | 0.9 | | 1.2 | ns | | t _{CASC} | | 0.8 | | 0.9 | ns | | $t_{\mathbb{C}}$ | | 1.3 | | 1.5 | ns | | t_{CO} | | 0.9 | | 1.1 | ns | | t_{COMB} | | 0.5 | | 0.6 | ns | | t _{SU} | 1.3 | | 2.5 | | ns | | t_H | 1.4 | | 1.6 | | ns | | t _{PRE} | | 1.0 | | 1.2 | ns | | t _{CLR} | | 1.0 | | 1.2 | ns | | t _{CH} | 4.0 | | 4.0 | | ns | | t_{CL} | 4.0 | | 4.0 | | ns | | Symbol | -3 Speed Grade | | -4 Spee | d Grade | Unit | |------------------------|----------------|-----|---------|---------|------| | | Min | Max | Min | Max | | | t _{EABDATA1} | | 1.5 | | 1.9 | ns | | t _{EABDATA2} | | 4.8 | | 6.0 | ns | | t _{EABWE1} | | 1.0 | | 1.2 | ns | | t _{EABWE2} | | 5.0 | | 6.2 | ns | | t _{EABCLK} | | 1.0 | | 2.2 | ns | | t _{EABCO} | | 0.5 | | 0.6 | ns | | t _{EABBYPASS} | | 1.5 | | 1.9 | ns | | t _{EABSU} | 1.5 | | 1.8 | | ns | | t _{EABH} | 2.0 | | 2.5 | | ns | | t_{AA} | | 8.7 | | 10.7 | ns | | t_{WP} | 5.8 | | 7.2 | | ns | | t _{WDSU} | 1.6 | | 2.0 | | ns | | t _{WDH} | 0.3 | | 0.4 | | ns | | t _{WASU} | 0.5 | | 0.6 | | ns | | t_{WAH} | 1.0 | | 1.2 | | ns | | t_{WO} | | 5.0 | | 6.2 | ns | | t_{DD} | | 5.0 | | 6.2 | ns | | t _{EABOUT} | | 0.5 | | 0.6 | ns | | t _{EABCH} | 4.0 | | 4.0 | | ns | | t _{EABCL} | 5.8 | | 7.2 | | ns | | Symbol | -3 Speed Grade | | -4 Spee | d Grade | Unit | |------------------------|----------------|------|---------|---------|------| | | Min | Max | Min | Max | | | t _{EABAA} | | 13.7 | | 17.0 | ns | | t _{EABRCCOMB} | 13.7 | | 17.0 | | ns | | t _{EABRCREG} | 9.7 | | 11.9 | | ns | | t _{EABWP} | 5.8 | | 7.2 | | ns | | t _{EABWCCOMB} | 7.3 | | 9.0 | | ns | | t _{EABWCREG} | 13.0 | | 16.0 | | ns | | t _{EABDD} | | 10.0 | | 12.5 | ns | | t _{EABDATACO} | | 2.0 | | 3.4 | ns | | t _{EABDATASU} | 5.3 | | 5.6 | | ns | | t _{EABDATAH} | 0.0 | | 0.0 | | ns | | t _{EABWESU} | 5.5 | | 5.8 | | ns | | t _{EABWEH} | 0.0 | | 0.0 | | ns | | t _{EABWDSU} | 5.5 | | 5.8 | | ns | | t _{EABWDH} | 0.0 | | 0.0 | | ns | | t _{EABWASU} | 2.1 | | 2.7 | | ns | | t _{EABWAH} | 0.0 | | 0.0 | | ns | | t _{EABWO} | | 9.5 | | 11.8 | ns | | Symbol | -3 Speed Grade | | -4 Spee | d Grade | Unit | |-------------------------|----------------|-----|---------|---------|------| | | Min | Max | Min | Max | | | t _{DIN2IOE} | | 6.9 | | 8.7 | ns | | t _{DIN2LE} | | 3.6 | | 4.8 | ns | | t _{DIN2DATA} | | 5.5 | | 7.2 | ns | | t _{DCLK2IOE} | | 4.6 | _ | 6.2 | ns | | t _{DCLK2LE} | | 3.6 | | 4.8 | ns | | t _{SAMELAB} | | 0.3 | | 0.3 | ns | | t _{SAMEROW} | | 3.3 | | 3.7 | ns | | t _{SAMECOLUMN} | | 2.5 | | 2.7 | ns | | t _{DIFFROW} | | 5.8 | | 6.4 | ns | | t _{TWOROWS} | | 9.1 | | 10.1 | ns | | t _{LEPERIPH} | | 6.2 | | 7.1 | ns | | t _{LABCARRY} | | 0.4 | | 0.6 | ns | | t _{LABCASC} | | 2.4 | | 3.0 | ns | | Symbol | -3 Spee | -3 Speed Grade | | d Grade | Unit | |-------------------------|---------|----------------|-----|---------|------| | | Min | Max | Min | Max | | | t _{DIN2IOE} | | 7.6 | | 9.4 | ns | | t _{DIN2LE} | | 3.6 | | 4.8 | ns | | t _{DIN2DATA} | | 5.5 | | 7.2 | ns | | t _{DCLK2IOE} | | 4.6 | | 6.2 | ns | | t _{DCLK2LE} | | 3.6 | | 4.8 | ns | | t _{SAMELAB} | | 0.3 | | 0.3 | ns | | t _{SAMEROW} | | 3.3 | | 3.7 | ns | | t _{SAMECOLUMN} | | 3.1 | | 3.2 | ns | | t _{DIFFROW} | | 6.4 | | 6.4 | ns | | t _{TWOROWS} | | 9.7 | | 10.6 | ns | | t _{LEPERIPH} | | 6.4 | | 7.1 | ns | | t _{LABCARRY} | | 0.4 | | 0.6 | ns | | t _{LABCASC} | | 2.4 | | 3.0 | ns | | Table 66. EPF10K100 | Device EAB Int | ternal Microp | parameters | Note (1) | | | | |------------------------|----------------|------------------|------------|----------------|-----|----------------|----| | Symbol | -3DX Spe | -3DX Speed Grade | | -3 Speed Grade | | -4 Speed Grade | | | | Min | Max | Min | Max | Min | Max | | | t _{EABDATA1} | | 1.5 | | 1.5 | | 1.9 | ns | | t _{EABDATA2} | | 4.8 | | 4.8 | | 6.0 | ns | | t _{EABWE1} | | 1.0 | | 1.0 | | 1.2 | ns | | t _{EABWE2} | | 5.0 | | 5.0 | | 6.2 | ns | | t _{EABCLK} | | 1.0 | | 1.0 | | 2.2 | ns | | t _{EABCO} | | 0.5 | | 0.5 | | 0.6 | ns | | t _{EABBYPASS} | | 1.5 | | 1.5 | | 1.9 | ns | | t _{EABSU} | 1.5 | | 1.5 | | 1.8 | | ns | | t _{EABH} | 2.0 | | 2.0 | | 2.5 | | ns | | t_{AA} | | 8.7 | | 8.7 | | 10.7 | ns | | t_{WP} | 5.8 | | 5.8 | | 7.2 | | ns | | t _{WDSU} | 1.6 | | 1.6 | | 2.0 | | ns | | t _{WDH} | 0.3 | | 0.3 | | 0.4 | | ns | | t _{WASU} | 0.5 | | 0.5 | | 0.6 | | ns | | t _{WAH} | 1.0 | | 1.0 | | 1.2 | | ns | | t_{WO} | | 5.0 | | 5.0 | | 6.2 | ns | | t_{DD} | | 5.0 | | 5.0 | | 6.2 | ns | | t _{EABOUT} | | 0.5 | | 0.5 | | 0.6 | ns | | t _{EABCH} | 4.0 | | 4.0 | | 4.0 | | ns | | t _{EABCL} | 5.8 | | 5.8 | | 7.2 | | ns | | Symbol | -3DX Speed Grade | | -3 Spee | d Grade | -4 Spee | Unit | | |---------------------------------|------------------|------|---------|---------|---------|------|----| | | Min | Max | Min | Max | Min | Max | 1 | | t _{DRR} | | 19.1 | | 19.1 | | 24.2 | ns | | t _{INSU} (2), (3), (4) | 7.8 | | 7.8 | | 8.5 | | ns | | t _{OUTCO} (3), (4) | 2.0 | 11.1 | 2.0 | 11.1 | 2.0 | 14.3 | ns | | t _{INH} (3) | 0.0 | | 0.0 | | 0.0 | | ns | | t _{INSU} (2), (3), (5) | 6.2 | | - | | - | | ns | | t _{OUTCO} (3), (5) | 2.0 | 6.7 | | _ | | _ | ns | | Symbol | -3DX Sp | eed Grade | -3 Spee | ed Grade | -4 Speed Grade | | Unit | |----------------------------|---------|-----------|---------|----------|----------------|------|------| | | Min | Max | Min | Max | Min | Max | 1 | | t _{INSUBIDIR} (4) | 8.1 | | 8.1 | | 10.4 | | ns | | t _{INHBIDIR} (4) | 0.0 | | 0.0 | | 0.0 | | ns | | toutcobidir (4) | 2.0 | 11.1 | 2.0 | 11.1 | 2.0 | 14.3 | ns | | t _{XZBIDIR} (4) | | 15.3 | | 15.3 | | 18.4 | ns | | t _{ZXBIDIR} (4) | | 15.3 | | 15.3 | | 18.4 | ns | | t _{INSUBIDIR} (5) | 9.1 | | - | | - | | ns | | t _{INHBIDIR} (5) | 0.0 | | _ | | - | | ns | | toutcobidir (5) | 2.0 | 7.2 | - | - | _ | _ | ns | | t _{XZBIDIR} (5) | | 14.3 | | - | | - | ns | | t _{ZXBIDIR} (5) | | 14.3 | | _ | | _ | ns | ## Notes to tables: - (1) All timing parameters are described in Tables 32 through 38 in this data sheet. - (2) Using an LE to register the signal may provide a lower setup time. - (3) This parameter is specified by characterization. - (4) This parameter is measured without the use of the ClockLock or ClockBoost circuits. - (5) This parameter is measured with the use of the ClockLock or ClockBoost circuits. | Table 74. EPF10K50V Device EAB Internal Timing Macroparameters Note (1) | | | | | | | | | | |---|----------------|-----|----------------|------|----------------|------|----------------|------|------| | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | -4 Speed Grade | | Unit | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t _{EABAA} | | 9.5 | | 13.6 | | 16.5 | | 20.8 | ns | | t _{EABRCCOMB} | 9.5 | | 13.6 | | 16.5 | | 20.8 | | ns | | t _{EABRCREG} | 6.1 | | 8.8 | | 10.8 | | 13.4 | | ns | | t _{EABWP} | 6.0 | | 4.9 | | 6.0 | | 7.4 | | ns | | t _{EABWCCOMB} | 6.2 | | 6.1 | | 7.5 | | 9.2 | | ns | | t _{EABWCREG} | 12.0 | | 11.6 | | 14.2 | | 17.4 | | ns | | t _{EABDD} | | 6.8 | | 9.7 | | 11.8 | | 14.9 | ns | | t _{EABDATA} CO | | 1.0 | | 1.4 | | 1.8 | | 2.2 | ns | | t _{EABDATASU} | 5.3 | | 4.6 | | 5.6 | | 6.9 | | ns | | t _{EABDATAH} | 0.0 | | 0.0 | | 0.0 | | 0.0 | | ns | | t _{EABWESU} | 4.4 | | 4.8 | | 5.8 | | 7.2 | | ns | | t _{EABWEH} | 0.0 | | 0.0 | | 0.0 | | 0.0 | | ns | | t _{EABWDSU} | 1.8 | | 1.1 | | 1.4 | | 2.1 | | ns | | t _{EABWDH} | 0.0 | | 0.0 | | 0.0 | | 0.0 | | ns | | t _{EABWASU} | 4.5 | | 4.6 | | 5.6 | | 7.4 | | ns | | t _{EABWAH} | 0.0 | | 0.0 | | 0.0 | | 0.0 | | ns | | t _{EABWO} | | 5.1 | | 9.4 | | 11.4 | | 14.0 | ns | | Symbol | -1 Speed Grade | | -2 Spee | d Grade | -3 Spee | Unit | | |--------------------------|----------------|-----|---------|---------|---------|------|----| | | Min | Max | Min | Max | Min | Max | | | t _{DIN2IOE} | | 3.9 | | 4.4 | | 5.1 | ns | | t _{DIN2LE} | | 1.2 | | 1.5 | | 1.9 | ns | | t _{DIN2DATA} | | 3.2 | | 3.6 | | 4.5 | ns | | t _{DCLK2IOE} | | 3.0 | | 3.5 | | 4.6 | ns | | t _{DCLK2LE} | | 1.2 | | 1.5 | | 1.9 | ns | | t _{SAMELAB} | | 0.1 | | 0.1 | | 0.2 | ns | | t _{SAMEROW} | | 2.3 | | 2.4 | | 2.7 | ns | | t _{SAME} COLUMN | | 1.3 | | 1.4 | | 1.9 | ns | | t _{DIFFROW} | | 3.6 | | 3.8 | | 4.6 | ns | | t _{TWOROWS} | | 5.9 | | 6.2 | | 7.3 | ns | | t _{LEPERIPH} | | 3.5 | | 3.8 | | 4.1 | ns | | t _{LABCARRY} | | 0.3 | | 0.4 | | 0.5 | ns | | t _{LABCASC} | | 0.9 | | 1.1 | | 1.4 | ns | | Table 97. EPF10K30A External Reference Timing Parameters Note (1) | | | | | | | | | | | |---|---------|----------------|-----|----------|---------|------|----|--|--|--| | Symbol | -1 Spec | -1 Speed Grade | | ed Grade | -3 Spee | Unit | | | | | | | Min | Max | Min | Max | Min | Max | | | | | | t _{DRR} | | 11.0 | | 13.0 | | 17.0 | ns | | | | | t _{INSU} (2), (3) | 2.5 | | 3.1 | | 3.9 | | ns | | | | | t _{INH} (3) | 0.0 | | 0.0 | | 0.0 | | ns | | | | | t _{оитсо} (3) | 2.0 | 5.4 | 2.0 | 6.2 | 2.0 | 8.3 | ns | | | | | Table 98. EPF10K30A Device External Bidirectional Timing Parameters Note (1) | | | | | | | | | | | |--|----------------|-----|---------|----------|---------|------|----|--|--|--| | Symbol | -1 Speed Grade | | -2 Spec | ed Grade | -3 Spee | Unit | | | | | | | Min | Max | Min | Max | Min | Max | 1 | | | | | t _{INSUBIDIR} | 4.2 | | 4.9 | | 6.8 | | ns | | | | | t _{INHBIDIR} | 0.0 | | 0.0 | | 0.0 | | ns | | | | | t _{OUTCOBIDIR} | 2.0 | 5.4 | 2.0 | 6.2 | 2.0 | 8.3 | ns | | | | | t _{XZBIDIR} | | 6.2 | | 7.5 | | 9.8 | ns | | | | | t _{ZXBIDIR} | | 6.2 | | 7.5 | | 9.8 | ns | | | |