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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.

Details

Product Status Obsolete

Number of LABs/CLBs 360

Number of Logic Elements/Cells 2880

Total RAM Bits 20480

Number of I/O 274

Number of Gates 116000

Voltage - Supply 3V ~ 3.6V

Mounting Type Surface Mount

Operating Temperature 0°C ~ 70°C (TA)

Package / Case 356-LBGA

Supplier Device Package 356-BGA (35x35)

Purchase URL https://www.e-xfl.com/product-detail/intel/epf10k50vbc356-4

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/epf10k50vbc356-4-4496115
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-fpgas-field-programmable-gate-array


FLEX 10K Embedded Programmable Logic Device Family Data Sheet
Logic Array Block

Each LAB consists of eight LEs, their associated carry and cascade chains, 
LAB control signals, and the LAB local interconnect. The LAB provides 
the coarse-grained structure to the FLEX 10K architecture, facilitating 
efficient routing with optimum device utilization and high performance. 
See Figure 5. 

Figure 5. FLEX 10K LAB

Notes:
(1) EPF10K10, EPF10K10A, EPF10K20, EPF10K30, EPF10K30A, EPF10K40, EPF10K50, and EPF10K50V devices have 

22 inputs to the LAB local interconnect channel from the row; EPF10K70, EPF10K100, EPF10K100A, EPF10K130V, 
and EPF10K250A devices have 26.

(2) EPF10K10, EPF10K10A, EPF10K20, EPF10K30, EPF10K30A, EPF10K40, EPF10K50, and EPF10K50V devices have 
30 LAB local interconnect channels; EPF10K70, EPF10K100, EPF10K100A, EPF10K130V, and EPF10K250A devices 
have 34 LABs.
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Figure 7 shows how an n-bit full adder can be implemented in n + 1 LEs 
with the carry chain. One portion of the LUT generates the sum of two bits 
using the input signals and the carry-in signal; the sum is routed to the 
output of the LE. The register can either be bypassed for simple adders or 
be used for an accumulator function. The carry chain logic generates the 
carry-out signal, which is routed directly to the carry-in signal of the next-
higher-order bit. The final carry-out signal is routed to an LE, where it can 
be used as a general-purpose signal. 

Figure 7. Carry Chain Operation (n-bit Full Adder)
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Normal Mode

The normal mode is suitable for general logic applications and wide 
decoding functions that can take advantage of a cascade chain. In normal 
mode, four data inputs from the LAB local interconnect and the carry-in 
are inputs to a four-input LUT. The Compiler automatically selects the 
carry-in or the DATA3 signal as one of the inputs to the LUT. The LUT 
output can be combined with the cascade-in signal to form a cascade chain 
through the cascade-out signal. Either the register or the LUT can be used 
to drive both the local interconnect and the FastTrack Interconnect at the 
same time. 

The LUT and the register in the LE can be used independently; this feature 
is known as register packing. To support register packing, the LE has two 
outputs; one drives the local interconnect and the other drives the 
FastTrack Interconnect. The DATA4 signal can drive the register directly, 
allowing the LUT to compute a function that is independent of the 
registered signal; a three-input function can be computed in the LUT, and 
a fourth independent signal can be registered. Alternatively, a four-input 
function can be generated, and one of the inputs to this function can be 
used to drive the register. The register in a packed LE can still use the clock 
enable, clear, and preset signals in the LE. In a packed LE, the register can 
drive the FastTrack Interconnect while the LUT drives the local 
interconnect, or vice versa.

Arithmetic Mode

The arithmetic mode offers 2 three-input LUTs that are ideal for 
implementing adders, accumulators, and comparators. One LUT 
computes a three-input function, and the other generates a carry output. 
As shown in Figure 9 on page 19, the first LUT uses the carry-in signal and 
two data inputs from the LAB local interconnect to generate a 
combinatorial or registered output. For example, in an adder, this output 
is the sum of three signals: a, b, and carry-in. The second LUT uses the 
same three signals to generate a carry-out signal, thereby creating a carry 
chain. The arithmetic mode also supports simultaneous use of the cascade 
chain.
20 Altera Corporation
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Figure 13. Bidirectional I/O Registers
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Signals on the peripheral control bus can also drive the four global signals, 
referred to as GLOBAL0 through GLOBAL3 in Tables 8 and 9. The 
internally generated signal can drive the global signal, providing the same 
low-skew, low-delay characteristics for an internally generated signal as 
for a signal driven by an input. This feature is ideal for internally 
generated clear or clock signals with high fan-out. When a global signal is 
driven by internal logic, the dedicated input pin that drives that global 
signal cannot be used. The dedicated input pin should be driven to a 
known logic state (such as ground) and not be allowed to float.

When the chip-wide output enable pin is held low, it will tri-state all pins 
on the device. This option can be set in the Global Project Device Options 
menu. Additionally, the registers in the IOE can be reset by holding the 
chip-wide reset pin low.

Row-to-IOE Connections

When an IOE is used as an input signal, it can drive two separate row 
channels. The signal is accessible by all LEs within that row. When an IOE 
is used as an output, the signal is driven by a multiplexer that selects a 
signal from the row channels. Up to eight IOEs connect to each side of 
each row channel. See Figure 14.

Figure 14. FLEX 10K Row-to-IOE Connections
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The values for m and n are provided in Table 10.
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ClockLock & 
ClockBoost 
Features

To support high-speed designs, selected FLEX 10K devices offer optional 
ClockLock and ClockBoost circuitry containing a phase-locked loop (PLL) 
that is used to increase design speed and reduce resource usage. The 
ClockLock circuitry uses a synchronizing PLL that reduces the clock delay 
and skew within a device. This reduction minimizes clock-to-output and 
setup times while maintaining zero hold times. The ClockBoost circuitry, 
which provides a clock multiplier, allows the designer to enhance device 
area efficiency by sharing resources within the device. The ClockBoost 
feature allows the designer to distribute a low-speed clock and multiply 
that clock on-device. Combined, the ClockLock and ClockBoost features 
provide significant improvements in system performance and 
bandwidth.

The ClockLock and ClockBoost features in FLEX 10K devices are enabled 
through the Altera software. External devices are not required to use these 
features. The output of the ClockLock and ClockBoost circuits is not 
available at any of the device pins. 

The ClockLock and ClockBoost circuitry locks onto the rising edge of the 
incoming clock. The circuit output can only drive the clock inputs of 
registers; the generated clock cannot be gated or inverted.

The dedicated clock pin (GCLK1) supplies the clock to the ClockLock and 
ClockBoost circuitry. When the dedicated clock pin is driving the 
ClockLock or ClockBoost circuitry, it cannot drive elsewhere in the device.

In designs that require both a multiplied and non-multiplied clock, the 
clock trace on the board can be connected to GCLK1. With the Altera 
software, GCLK1 can feed both the ClockLock and ClockBoost circuitry in 
the FLEX 10K device. However, when both circuits are used, the other 
clock pin (GCLK0) cannot be used. Figure 17 shows a block diagram of 
how to enable both the ClockLock and ClockBoost circuits in the Altera 
software. The example shown is a schematic, but a similar approach 
applies for designs created in AHDL, VHDL, and Verilog HDL. When the 
ClockLock and ClockBoost circuits are used simultaneously, the input 
frequency parameter must be the same for both circuits. In Figure 17, the 
input frequency must meet the requirements specified when the 
ClockBoost multiplication factor is two.
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Generic Testing Each FLEX 10K device is functionally tested. Complete testing of each 
configurable SRAM bit and all logic functionality ensures 100% yield. 
AC test measurements for FLEX 10K devices are made under conditions 
equivalent to those shown in Figure 19. Multiple test patterns can be used 
to configure devices during all stages of the production flow.

Figure 19. FLEX 10K AC Test Conditions

Operating 
Conditions

Tables 17 through 21 provide information on absolute maximum ratings, 
recommended operating conditions, DC operating conditions, and 
capacitance for 5.0-V FLEX 10K devices.
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rise and fall
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(703 Ω)
[521 Ω]

Power supply transients can affect AC
measurements. Simultaneous transitions of
multiple outputs should be avoided for
accurate measurement. Threshold tests must
not be performed under AC conditions.
Large-amplitude, fast-ground-current
transients normally occur as the device
outputs discharge the load capacitances.
When these transients flow through the
parasitic inductance between the device
ground pin and the test system ground,
significant reductions in observable noise
immunity can result. Numbers without 
parentheses are for 5.0-V devices or outputs. 
Numbers in parentheses are for 3.3-V devices 
or outputs. Numbers in brackets are for 
2.5-V devices or outputs.

Table 17. FLEX 10K 5.0-V Device Absolute Maximum Ratings Note (1)

Symbol Parameter Conditions Min Max Unit

VCC Supply voltage With respect to ground (2) –2.0 7.0 V

VI DC input voltage –2.0 7.0 V

IOUT DC output current, per pin –25 25 mA

TSTG Storage temperature No bias –65 150 ° C

TAMB Ambient temperature Under bias –65 135 ° C

TJ Junction temperature Ceramic packages, under bias 150 ° C

PQFP, TQFP, RQFP, and BGA 
packages, under bias

135 ° C
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Notes to tables:
(1) See the Operating Requirements for Altera Devices Data Sheet.
(2) Minimum DC voltage input is –0.5 V. During transitions, the inputs may undershoot to –2.0 V or overshoot to 5.75 V 

for input currents less than 100 mA and periods shorter than 20 ns.
(3) Numbers in parentheses are for industrial-temperature-range devices.
(4) Maximum VCC rise time is 100 ms, and VCC must rise monotonically.
(5) FLEX 10KA device inputs may be driven before VCCINT and VCCIO are powered.
(6) Typical values are for TA = 25° C and VCC = 3.3 V.
(7) These values are specified under the Recommended Operating Conditions shown in Table 27 on page 51.
(8) The IOH parameter refers to high-level TTL, PCI, or CMOS output current.
(9) The IOL parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins 

as well as output pins.
(10) This value is specified for normal device operation. The value may vary during power-up.
(11) This parameter applies to all -1 speed grade commercial temperature devices and all -2 speed grade 

industrial-temperature devices.
(12) Capacitance is sample-tested only.

Table 29. 3.3-V Device Capacitance of EPF10K10A & EPF10K30A Devices Note (12)

Symbol Parameter Conditions Min Max Unit

CIN Input capacitance VIN = 0 V, f = 1.0 MHz 8 pF

CINCLK Input capacitance on dedicated 
clock pin

VIN = 0 V, f = 1.0 MHz 12 pF

COUT Output capacitance VOUT = 0 V, f = 1.0 MHz 8 pF

Table 30. 3.3-V Device Capacitance of EPF10K100A Devices Note (12) 

Symbol Parameter Conditions Min Max Unit

CIN Input capacitance VIN = 0 V, f = 1.0 MHz 10 pF

CINCLK Input capacitance on dedicated 
clock pin

VIN = 0 V, f = 1.0 MHz 15 pF

COUT Output capacitance VOUT = 0 V, f = 1.0 MHz 10 pF

Table 31. 3.3-V Device Capacitance of EPF10K250A Devices Note (12)

Symbol Parameter Conditions Min Max Unit

CIN Input capacitance VIN = 0 V, f = 1.0 MHz 10 pF

CINCLK Input capacitance on dedicated 
clock pin

VIN = 0 V, f = 1.0 MHz 15 pF

COUT Output capacitance VOUT = 0 V, f = 1.0 MHz 10 pF
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Figure 30. EAB Synchronous Timing Waveforms
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Tables 39 through 47 show EPF10K10 and EPF10K20 device internal and 
external timing parameters.

Table 39. EPF10K10 & EPF10K20 Device LE Timing Microparameters Note (1)

Symbol -3 Speed Grade -4 Speed Grade Unit

Min Max Min Max

tLUT 1.4 1.7 ns

tCLUT 0.6 0.7 ns

tRLUT 1.5 1.9 ns

tPACKED 0.6 0.9 ns

tEN 1.0 1.2 ns

tCICO 0.2 0.3 ns

tCGEN 0.9 1.2 ns

tCGENR 0.9 1.2 ns

tCASC 0.8 0.9 ns

tC 1.3 1.5 ns

tCO 0.9 1.1 ns

tCOMB 0.5 0.6 ns

tSU 1.3 2.5 ns

tH 1.4 1.6 ns

tPRE 1.0 1.2 ns

tCLR 1.0 1.2 ns

tCH 4.0 4.0 ns

tCL 4.0 4.0 ns
66 Altera Corporation



FLEX 10K Embedded Programmable Logic Device Family Data Sheet
Table 42. EPF10K10 & EPF10K20 Device EAB Internal Timing Macroparameters Note (1)

Symbol -3 Speed Grade -4 Speed Grade Unit

Min Max Min Max

tEABAA 13.7 17.0 ns

tEABRCCOMB 13.7 17.0 ns

tEABRCREG 9.7 11.9 ns

tEABWP 5.8 7.2 ns

tEABWCCOMB 7.3 9.0 ns

tEABWCREG 13.0 16.0 ns

tEABDD 10.0 12.5 ns

tEABDATACO 2.0 3.4 ns

tEABDATASU 5.3 5.6 ns

tEABDATAH 0.0 0.0 ns

tEABWESU 5.5 5.8 ns

tEABWEH 0.0 0.0 ns

tEABWDSU 5.5 5.8 ns

tEABWDH 0.0 0.0 ns

tEABWASU 2.1 2.7 ns

tEABWAH 0.0 0.0 ns

tEABWO 9.5 11.8 ns
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Table 43. EPF10K10 Device Interconnect Timing Microparameters Note (1)

Symbol -3 Speed Grade -4 Speed Grade Unit

Min Max Min Max

tDIN2IOE 4.8 6.2 ns

tDIN2LE 2.6 3.8 ns

tDIN2DATA 4.3 5.2 ns

tDCLK2IOE 3.4 4.0 ns

tDCLK2LE 2.6 3.8 ns

tSAMELAB 0.6 0.6 ns

tSAMEROW 3.6 3.8 ns

tSAMECOLUMN 0.9 1.1 ns

tDIFFROW 4.5 4.9 ns

tTWOROWS 8.1 8.7 ns

tLEPERIPH 3.3 3.9 ns

tLABCARRY 0.5 0.8 ns

tLABCASC 2.7 3.0 ns

Table 44. EPF10K20 Device Interconnect Timing Microparameters Note (1)

Symbol -3 Speed Grade -4 Speed Grade Unit

Min Max Min Max

tDIN2IOE 5.2 6.6 ns

tDIN2LE 2.6 3.8 ns

tDIN2DATA 4.3 5.2 ns

tDCLK2IOE 4.3 4.0 ns

tDCLK2LE 2.6 3.8 ns

tSAMELAB 0.6 0.6 ns

tSAMEROW 3.7 3.9 ns

tSAMECOLUMN 1.4 1.6 ns

tDIFFROW 5.1 5.5 ns

tTWOROWS 8.8 9.4 ns

tLEPERIPH 4.7 5.6 ns

tLABCARRY 0.5 0.8 ns

tLABCASC 2.7 3.0 ns
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80 Altera Corporation

Table 59. EPF10K70 Device EAB Internal Microparameters Note (1)

Symbol -2 Speed Grade -3 Speed Grade -4 Speed Grade Unit

Min Max Min Max Min Max

tEABDATA1 1.3 1.5 1.9 ns

tEABDATA2 4.3 4.8 6.0 ns

tEABWE1 0.9 1.0 1.2 ns

tEABWE2 4.5 5.0 6.2 ns

tEABCLK 0.9 1.0 2.2 ns

tEABCO 0.4 0.5 0.6 ns

tEABBYPASS 1.3 1.5 1.9 ns

tEABSU 1.3 1.5 1.8 ns

tEABH 1.8 2.0 2.5 ns

tAA 7.8 8.7 10.7 ns

tWP 5.2 5.8 7.2 ns

tWDSU 1.4 1.6 2.0 ns

tWDH 0.3 0.3 0.4 ns

tWASU 0.4 0.5 0.6 ns

tWAH 0.9 1.0 1.2 ns

tWO 4.5 5.0 6.2 ns

tDD 4.5 5.0 6.2 ns

tEABOUT 0.4 0.5 0.6 ns

tEABCH 4.0 4.0 4.0 ns

tEABCL 5.2 5.8 7.2 ns
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Table 61. EPF10K70 Device Interconnect Timing Microparameters Note (1)

Symbol -2 Speed Grade -3 Speed Grade -4 Speed Grade Unit

Min Max Min Max Min Max

tDIN2IOE 6.6 7.3 8.8 ns

tDIN2LE 4.2 4.8 6.0 ns

tDIN2DATA 6.5 7.1 10.8 ns

tDCLK2IOE 5.5 6.2 7.7 ns

tDCLK2LE 4.2 4.8 6.0 ns

tSAMELAB 0.4 0.4 0.5 ns

tSAMEROW 4.8 4.9 5.5 ns

tSAMECOLUMN 3.3 3.4 3.7 ns

tDIFFROW 8.1 8.3 9.2 ns

tTWOROWS 12.9 13.2 14.7 ns

tLEPERIPH 5.5 5.7 6.5 ns

tLABCARRY 0.8 0.9 1.1 ns

tLABCASC 2.7 3.0 3.2 ns

Table 62. EPF10K70 Device External Timing Parameters Note (1)

Symbol -2 Speed Grade -3 Speed Grade -4 Speed Grade Unit

Min Max Min Max Min Max

tDRR 17.2 19.1 24.2 ns

tINSU (2), (3) 6.6 7.3 8.0 ns

tINH (3) 0.0 0.0 0.0 ns

tOUTCO (3) 2.0 9.9 2.0 11.1 2.0 14.3 ns

Table 63. EPF10K70 Device External Bidirectional Timing Parameters Note (1)

Symbol -2 Speed Grade -3 Speed Grade -4 Speed Grade Unit

Min Max Min Max Min Max

tINSUBIDIR 7.4 8.1 10.4 ns

tINHBIDIR 0.0 0.0 0.0 ns

tOUTCOBIDIR 2.0 9.9 2.0 11.1 2.0 14.3 ns

tXZBIDIR 13.7 15.4 18.5 ns

tZXBIDIR 13.7 15.4 18.5 ns
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Table 65. EPF10K100 Device IOE Timing Microparameters Note (1)

Symbol -3DX Speed Grade -3 Speed Grade -4 Speed Grade Unit

Min Max Min Max Min Max

tIOD 0.0 0.0 0.0 ns

tIOC 0.5 0.5 0.7 ns

tIOCO 0.4 0.4 0.9 ns

tIOCOMB 0.0 0.0 0.0 ns

tIOSU 5.5 5.5 6.7 ns

tIOH 0.5 0.5 0.7 ns

tIOCLR 0.7 0.7 1.6 ns

tOD1 4.0 4.0 5.0 ns

tOD2 6.3 6.3 7.3 ns

tOD3 7.7 7.7 8.7 ns

tXZ 6.2 6.2 6.8 ns

tZX1 6.2 6.2 6.8 ns

tZX2 8.5 8.5 9.1 ns

tZX3 9.9 9.9 10.5 ns

tINREG without ClockLock or 
ClockBoost circuitry

9.0 9.0 10.5 ns

tINREG with ClockLock or 
ClockBoost circuitry

3.0 – – ns

tIOFD 8.1 8.1 10.3 ns

tINCOMB 8.1 8.1 10.3 ns
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Tables 71 through 77 show EPF10K50V device internal and external 
timing parameters.

Table 71. EPF10K50V Device LE Timing Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade -4 Speed Grade Unit

Min Max Min Max Min Max Min Max

tLUT 0.9 1.0 1.3 1.6 ns

tCLUT 0.1 0.5 0.6 0.6 ns

tRLUT 0.5 0.8 0.9 1.0 ns

tPACKED 0.4 0.4 0.5 0.7 ns

tEN 0.7 0.9 1.1 1.4 ns

tCICO 0.2 0.2 0.2 0.3 ns

tCGEN 0.8 0.7 0.8 1.2 ns

tCGENR 0.4 0.3 0.3 0.4 ns

tCASC 0.7 0.7 0.8 0.9 ns

tC 0.3 1.0 1.3 1.5 ns

tCO 0.5 0.7 0.9 1.0 ns

tCOMB 0.4 0.4 0.5 0.6 ns

tSU 0.8 1.6 2.2 2.5 ns

tH 0.5 0.8 1.0 1.4 ns

tPRE 0.8 0.4 0.5 0.5 ns

tCLR 0.8 0.4 0.5 0.5 ns

tCH 2.0 4.0 4.0 4.0 ns

tCL 2.0 4.0 4.0 4.0 ns
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Table 81. EPF10K130V Device EAB Internal Timing Macroparameters Note (1)

Symbol -2 Speed Grade -3 Speed Grade -4 Speed Grade Unit

Min Max Min Max Min Max

tEABAA 11.2 14.2 14.2 ns

tEABRCCOMB 11.1 14.2 14.2 ns

tEABRCREG 8.5 10.8 10.8 ns

tEABWP 3.7 4.7 4.7 ns

tEABWCCOMB 7.6 9.7 9.7 ns

tEABWCREG 14.0 17.8 17.8 ns

tEABDD 11.1 14.2 14.2 ns

tEABDATACO 3.6 4.6 4.6 ns

tEABDATASU 4.4 5.6 5.6 ns

tEABDATAH 0.0 0.0 0.0 ns

tEABWESU 4.4 5.6 5.6 ns

tEABWEH 0.0 0.0 0.0 ns

tEABWDSU 4.6 5.9 5.9 ns

tEABWDH 0.0 0.0 0.0 ns

tEABWASU 3.9 5.0 5.0 ns

tEABWAH 0.0 0.0 0.0 ns

tEABWO 11.1 14.2 14.2 ns
Altera Corporation  97



FLEX 10K Embedded Programmable Logic Device Family Data Sheet
Table 110. EPF10K250A Device Interconnect Timing Microparameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tDIN2IOE 7.8 8.5 9.4 ns

tDIN2LE 2.7 3.1 3.5 ns

tDIN2DATA 1.6 1.6 1.7 ns

tDCLK2IOE 3.6 4.0 4.6 ns

tDCLK2LE 2.7 3.1 3.5 ns

tSAMELAB 0.2 0.3 0.3 ns

tSAMEROW 6.7 7.3 8.2 ns

tSAMECOLUMN 2.5 2.7 3.0 ns

tDIFFROW 9.2 10.0 11.2 ns

tTWOROWS 15.9 17.3 19.4 ns

tLEPERIPH 7.5 8.1 8.9 ns

tLABCARRY 0.3 0.4 0.5 ns

tLABCASC 0.4 0.4 0.5 ns

Table 111. EPF10K250A Device External Reference Timing Parameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tDRR 15.0 17.0 20.0 ns

tINSU (2), (3) 6.9 8.0 9.4 ns

tINH (3) 0.0 0.0 0.0 ns

tOUTCO (3) 2.0 8.0 2.0 8.9 2.0 10.4 ns

Table 112. EPF10K250A Device External Bidirectional Timing Parameters Note (1)

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tINSUBIDIR 9.3 10.6 12.7 ns

tINHBIDIR 0.0 0.0 0.0 ns

tOUTCOBIDIR 2.0 8.0 2.0 8.9 2.0 10.4 ns

tXZBIDIR 10.8 12.2 14.2 ns

tZXBIDIR 10.8 12.2 14.2 ns
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Notes to tables:
(1) All timing parameters are described in Tables 32 through 37 in this data sheet.
(2) Using an LE to register the signal may provide a lower setup time.
(3) This parameter is specified by characterization.

ClockLock & 
ClockBoost 
Timing 
Parameters

For the ClockLock and ClockBoost circuitry to function properly, the 
incoming clock must meet certain requirements. If these specifications are 
not met, the circuitry may not lock onto the incoming clock, which 
generates an erroneous clock within the device. The clock generated by 
the ClockLock and ClockBoost circuitry must also meet certain 
specifications. If the incoming clock meets these requirements during 
configuration, the ClockLock and ClockBoost circuitry will lock onto the 
clock during configuration. The circuit will be ready for use immediately 
after configuration. Figure 31 illustrates the incoming and generated clock 
specifications.

Figure 31. Specifications for the Incoming & Generated Clocks

The tI parameter refers to the nominal input clock period; the tO parameter refers to the 
nominal output clock period.

Table 113 summarizes the ClockLock and ClockBoost parameters.

tR tF

tCLK1 tINDUTY tI ± fCLKDEV

tI tI ± tINCLKSTB

tOUTDUTY

tO tO + tJITTER tO – tJITTER

Input
Clock

ClockLock-
Generated
Clock

Table 113.  ClockLock & ClockBoost Parameters   (Part 1 of 2) 

Symbol Parameter Min Typ Max Unit
tR Input rise time 2 ns

tF Input fall time 2 ns

t INDUTY Input duty cycle 45 55 %

fCLK1 Input clock frequency (ClockBoost clock multiplication factor equals 1) 30 80 MHz

tCLK1 Input clock period (ClockBoost clock multiplication factor equals 1) 12.5 33.3 ns

fCLK2 Input clock frequency (ClockBoost clock multiplication factor equals 2) 16 50 MHz

tCLK2 Input clock period (ClockBoost clock multiplication factor equals 2) 20 62.5 ns
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fMAX = Maximum operating frequency in MHz
N = Total number of logic cells used in the device
togLC = Average percent of logic cells toggling at each clock 

(typically 12.5%)
K = Constant, shown in Tables 114 and 115

This calculation provides an ICC estimate based on typical conditions with 
no output load. The actual ICC should be verified during operation 
because this measurement is sensitive to the actual pattern in the device 
and the environmental operating conditions.

To better reflect actual designs, the power model (and the constant K in 
the power calculation equations) for continuous interconnect FLEX 
devices assumes that logic cells drive FastTrack Interconnect channels. In 
contrast, the power model of segmented FPGAs assumes that all logic 
cells drive only one short interconnect segment. This assumption may 
lead to inaccurate results, compared to measured power consumption for 
an actual design in a segmented interconnect FPGA.

Figure 32 shows the relationship between the current and operating 
frequency of FLEX 10K devices.

Table 114. FLEX 10K K Constant Values

Device K Value

EPF10K10 82

EPF10K20 89

EPF10K30 88

EPF10K40 92

EPF10K50 95

EPF10K70 85

EPF10K100 88

Table 115. FLEX 10KA K Constant Values

Device K Value

EPF10K10A 17

EPF10K30A 17

EPF10K50V 19

EPF10K100A 19

EPF10K130V 22

EPF10K250A 23
Altera Corporation  121


