

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	360
Number of Logic Elements/Cells	2880
Total RAM Bits	20480
Number of I/O	274
Number of Gates	116000
Voltage - Supply	3V ~ 3.6V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	356-LBGA
Supplier Device Package	356-BGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epf10k50vbc356-4n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

LE Operating Modes

The FLEX 10K LE can operate in the following four modes:

- Normal mode
- Arithmetic mode
- Up/down counter mode
- Clearable counter mode

Each of these modes uses LE resources differently. In each mode, seven available inputs to the LE—the four data inputs from the LAB local interconnect, the feedback from the programmable register, and the carry-in and cascade-in from the previous LE—are directed to different destinations to implement the desired logic function. Three inputs to the LE provide clock, clear, and preset control for the register. The Altera software, in conjunction with parameterized functions such as LPM and DesignWare functions, automatically chooses the appropriate mode for common functions such as counters, adders, and multipliers. If required, the designer can also create special-purpose functions which use a specific LE operating mode for optimal performance.

The architecture provides a synchronous clock enable to the register in all four modes. The Altera software can set DATA1 to enable the register synchronously, providing easy implementation of fully synchronous designs.

Figure 9 shows the LE operating modes.

Table 8. EPF10K10, EPF10K20,	EPF10K30, EPF	10K40 & EPF10	K50 Periphera	l Bus Sources	
Peripheral Control Signal	EPF10K10 EPF10K10A	EPF10K20	EPF10K30 EPF10K30A	EPF10K40	EPF10K50 EPF10K50V
OE0	Row A	Row A	Row A	Row A	Row A
OE1	Row A	Row B	Row B	Row C	Row B
OE2	Row B	Row C	Row C	Row D	Row D
OE3	Row B	Row D	Row D	Row E	Row F
OE4	Row C	Row E	Row E	Row F	Row H
OE5	Row C	Row F	Row F	Row G	Row J
CLKENA0/CLK0/GLOBAL0	Row A	Row A	Row A	Row B	Row A
CLKENA1/OE6/GLOBAL1	Row A	Row B	Row B	Row C	Row C
CLKENA2/CLR0	Row B	Row C	Row C	Row D	Row E
CLKENA3/OE7/GLOBAL2	Row B	Row D	Row D	Row E	Row G
CLKENA4/CLR1	Row C	Row E	Row E	Row F	Row I
CLKENA5/CLK1/GLOBAL3	Row C	Row F	Row F	Row H	Row J

Peripheral Control Signal	EPF10K70	EPF10K100 EPF10K100A	EPF10K130V	EPF10K250A
OE 0	Row A	Row A	Row C	Row E
OE1	Row B	Row C	Row E	Row G
OE2	Row D	Row E	Row G	Row I
OE3	Row I	Row L	Row N	Row P
OE 4	Row G	Row I	Row K	Row M
OE5	Row H	Row K	Row M	Row O
CLKENA0/CLK0/GLOBAL0	Row E	Row F	Row H	Row J
CLKENA1/OE6/GLOBAL1	Row C	Row D	Row F	Row H
CLKENA2/CLR0	Row B	Row B	Row D	Row F
CLKENA3/OE7/GLOBAL2	Row F	Row H	Row J	Row L
CLKENA4/CLR1	Row H	Row J	Row L	Row N
CLKENA5/CLK1/GLOBAL3	Row E	Row G	Row I	Row K

Table 10 lists the FLEX 10K row-to-IOE interconnect resources.

Device	Channels per Row (n)	Row Channels per Pin (<i>m</i>)
EPF10K10 EPF10K10A	144	18
EPF10K20	144	18
EPF10K30 EPF10K30A	216	27
EPF10K40	216	27
EPF10K50 EPF10K50V	216	27
EPF10K70	312	39
EPF10K100 EPF10K100A	312	39
EPF10K130V	312	39
EPF10K250A	456	57

Column-to-IOE Connections

When an IOE is used as an input, it can drive up to two separate column channels. When an IOE is used as an output, the signal is driven by a multiplexer that selects a signal from the column channels. Two IOEs connect to each side of the column channels. Each IOE can be driven by column channels via a multiplexer. The set of column channels that each IOE can access is different for each IOE. See Figure 15.

Figure 15. FLEX 10K Column-to-IOE Connections

The values for m and n are provided in Table 11.

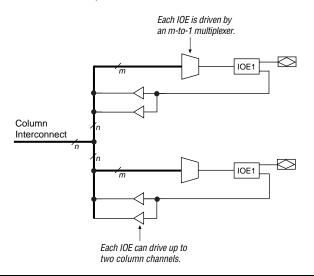


Table 11 lists the FLEX 10K column-to-IOE interconnect resources.

Table 11. FLEX 10	OK Column-to-IOE Interconnec	ct Resources
Device	Channels per Column (n)	Column Channel per Pin (m)
EPF10K10 EPF10K10A	24	16
EPF10K20	24	16
EPF10K30 EPF10K30A	24	16
EPF10K40	24	16
EPF10K50 EPF10K50V	24	16
EPF10K70	24	16
EPF10K100 EPF10K100A	24	16
EPF10K130V	32	24
EPF10K250A	40	32

Table 12 describes the FLEX 10K device supply voltages and MultiVolt $\rm I/O$ support levels.

Devices	Supply Voltage (V)		MultiVolt I/O Support Levels (V)	
	V _{CCINT}	V _{CCIO}	Input	Output
FLEX 10K (1)	5.0	5.0	3.3 or 5.0	5.0
	5.0	3.3	3.3 or 5.0	3.3 or 5.0
EPF10K50V (1)	3.3	3.3	3.3 or 5.0	3.3 or 5.0
EPF10K130V	3.3	3.3	3.3 or 5.0	3.3 or 5.0
FLEX 10KA (1)	3.3	3.3	2.5, 3.3, or 5.0	3.3 or 5.0
	3.3	2.5	2.5, 3.3, or 5.0	2.5

Note

(1) 240-pin QFP packages do not support the MultiVolt I/O features, so they do not have separate V_{CCIO} pins.

Power Sequencing & Hot-Socketing

Because FLEX 10K devices can be used in a multi-voltage environment, they have been designed specifically to tolerate any possible power-up sequence. The $V_{\rm CCIO}$ and $V_{\rm CCINT}$ power supplies can be powered in any order.

Signals can be driven into FLEX 10KA devices before and during power up without damaging the device. Additionally, FLEX 10KA devices do not drive out during power up. Once operating conditions are reached, FLEX 10KA devices operate as specified by the user.

IEEE Std. 1149.1 (JTAG) Boundary-Scan Support All FLEX 10K devices provide JTAG BST circuitry that complies with the IEEE Std. 1149.1-1990 specification. All FLEX 10K devices can also be configured using the JTAG pins through the BitBlaster serial download cable, or ByteBlasterMV parallel port download cable, or via hardware that uses the JamTM programming and test language. JTAG BST can be performed before or after configuration, but not during configuration. FLEX 10K devices support the JTAG instructions shown in Table 13.

Figure 18 shows the timing requirements for the JTAG signals.

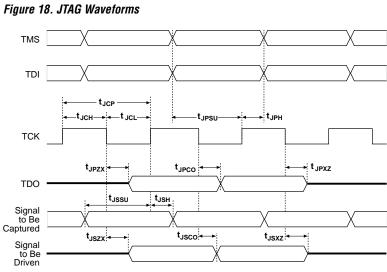
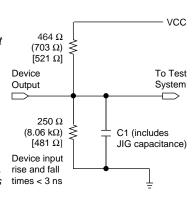


Table 16 shows the timing parameters and values for FLEX 10K devices.


Table 1	Table 16. JTAG Timing Parameters & Values						
Symbol	Parameter	Min	Max	Unit			
t _{JCP}	TCK clock period	100		ns			
t _{JCH}	TCK clock high time	50		ns			
t _{JCL}	TCK clock low time	50		ns			
t _{JPSU}	JTAG port setup time	20		ns			
t _{JPH}	JTAG port hold time	45		ns			
t _{JPCO}	JTAG port clock to output		25	ns			
t _{JPZX}	JTAG port high impedance to valid output		25	ns			
t _{JPXZ}	JTAG port valid output to high impedance		25	ns			
t _{JSSU}	Capture register setup time	20		ns			
t _{JSH}	Capture register hold time	45		ns			
t _{JSCO}	Update register clock to output		35	ns			
t _{JSZX}	Update register high-impedance to valid output		35	ns			
t _{JSXZ}	Update register valid output to high impedance		35	ns			

Generic Testing

Each FLEX 10K device is functionally tested. Complete testing of each configurable SRAM bit and all logic functionality ensures 100% yield. AC test measurements for FLEX 10K devices are made under conditions equivalent to those shown in Figure 19. Multiple test patterns can be used to configure devices during all stages of the production flow.

Figure 19. FLEX 10K AC Test Conditions

Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast-ground-current transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground, significant reductions in observable noise immunity can result. Numbers without parentheses are for 5.0-V devices or outputs. Numbers in parentheses are for 3.3-V devices or outputs. Numbers in brackets are for 2.5-V devices or outputs.

Operating Conditions

Tables 17 through 21 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for 5.0-V FLEX 10K devices.

Table 17. FLEX 10K 5.0-V Device Absolute Maximum Ratings Note (1)					
Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	Supply voltage	With respect to ground (2)	-2.0	7.0	V
V _I	DC input voltage		-2.0	7.0	V
I _{OUT}	DC output current, per pin		-25	25	mA
T _{STG}	Storage temperature	No bias	-65	150	° C
T _{AMB}	Ambient temperature	Under bias	-65	135	° C
T _J	Junction temperature	Ceramic packages, under bias		150	° C
		PQFP, TQFP, RQFP, and BGA		135	° C
		packages, under bias			

Tables 22 through 25 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for EPF10K50V and EPF10K130V devices.

Table 22. EPF10K50V & EPF10K130V Device Absolute Maximum Ratings Note (1)					
Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	Supply voltage	With respect to ground (2)	-0.5	4.6	V
VI	DC input voltage		-2.0	5.75	V
I _{OUT}	DC output current, per pin		-25	25	mA
T _{STG}	Storage temperature	No bias	-65	150	° C
T _{AMB}	Ambient temperature	Under bias	-65	135	° C
TJ	Junction temperature	Ceramic packages, under bias		150	° C
		RQFP and BGA packages, under bias		135	° C

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CCINT}	Supply voltage for internal logic and input buffers	(3), (4)	3.00 (3.00)	3.60 (3.60)	V
V _{CCIO}	Supply voltage for output buffers	(3), (4)	3.00 (3.00)	3.60 (3.60)	V
V _I	Input voltage	(5)	-0.5	5.75	V
Vo	Output voltage		0	V _{CCIO}	V
T _A	Ambient temperature	For commercial use	0	70	°C
		For industrial use	-40	85	° C
TJ	Operating temperature	For commercial use	0	85	° C
		For industrial use	-40	100	° C
t _R	Input rise time			40	ns
t _F	Input fall time			40	ns

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
V _{IH}	High-level input voltage		2.0		5.75	V
V _{IL}	Low-level input voltage		-0.5		0.8	V
V _{OH}	3.3-V high-level TTL output voltage	$I_{OH} = -8 \text{ mA DC } (8)$	2.4			V
	3.3-V high-level CMOS output voltage	$I_{OH} = -0.1 \text{ mA DC } (8)$	V _{CCIO} - 0.2			V
V _{OL}	3.3-V low-level TTL output voltage	I _{OL} = 8 mA DC (9)			0.45	V
	3.3-V low-level CMOS output voltage	I _{OL} = 0.1 mA DC (9)			0.2	V
I _I	Input pin leakage current	$V_1 = 5.3 \text{ V to } -0.3 \text{ V } (10)$	-10		10	μА
I _{OZ}	Tri-stated I/O pin leakage current	$V_O = 5.3 \text{ V to } -0.3 \text{ V } (10)$	-10		10	μΑ
I _{CC0}	V _{CC} supply current (standby)	V _I = ground, no load		0.3	10	mA
		V_I = ground, no load (11)		10		mA

Table 25. EPF10K50V & EPF10K130V Device Capacitance (12)						
Symbol	Parameter	Conditions	Min	Max	Unit	
C _{IN}	Input capacitance	V _{IN} = 0 V, f = 1.0 MHz		10	pF	
C _{INCLK}	Input capacitance on dedicated clock pin	V _{IN} = 0 V, f = 1.0 MHz		15	pF	
C _{OUT}	Output capacitance	V _{OUT} = 0 V, f = 1.0 MHz		10	pF	

Notes to tables:

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- (2) Minimum DC input voltage is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 5.75 V for input currents less than 100 mA and periods shorter than 20 ns.
- (3) Numbers in parentheses are for industrial-temperature-range devices.
- (4) Maximum V_{CC} rise time is 100 ms. V_{CC} must rise monotonically.
- (5) EPF10K50V and EPF10K130V device inputs may be driven before V_{CCINT} and V_{CCIO} are powered.
- (6) Typical values are for $T_A = 25^{\circ}$ C and $V_{CC} = 3.3$ V.
- (7) These values are specified under the EPF10K50V and EPF10K130V device Recommended Operating Conditions in Table 23 on page 48.
- (8) The I_{OH} parameter refers to high-level TTL or CMOS output current.
- (9) The I_{OL} parameter refers to low-level TTL or CMOS output current. This parameter applies to open-drain pins as well as output pins.
- (10) This value is specified for normal device operation. The value may vary during power-up.
- (11) This parameter applies to -1 speed grade EPF10K50V devices, -2 speed grade EPF10K50V industrial temperature devices, and -2 speed grade EPF10K130V devices.
- (12) Capacitance is sample-tested only.

Figure 22 shows the typical output drive characteristics of EPF10K10A, EPF10K30A, EPF10K100A, and EPF10K250A devices with 3.3-V and 2.5-V V_{CCIO}. The output driver is compliant with the 3.3-V *PCI Local Bus Specification, Revision 2.2* (with 3.3-V V_{CCIO}). Moreover, device analysis shows that the EPF10K10A, EPF10K30A, and EPF 10K100A devices can drive a 5.0-V PCI bus with eight or fewer loads.

60 H 60 H I_{OL} I_{OL} 50 50 40 40 $V_{CCINT} = 3.3 V$ $V_{CCINT} = 3.3 V$ $V_{CCIO} = 3.3 V$ $V_{CCIO} = 2.5 V$ Typical I_O Typical I_O Room Temperature Room Temperature 30 30 Output Output Current (mA) Current (mA) 20 20 10 10 I_{OH} I_{OH} V_O Output Voltage (V) Vo Output Voltage (V)

Figure 22. Output Drive Characteristics for EPF10K10A, EPF10K30A & EPF10K100A Devices

Figure 23 shows the typical output drive characteristics of the EPF10K250A device with 3.3-V and 2.5-V $V_{\rm CCIO}$.

Symbol	-3 Spee	d Grade	-4 Spee	d Grade	Unit
	Min	Max	Min	Max	
t _{EABDATA1}		1.5		1.9	ns
t _{EABDATA2}		4.8		6.0	ns
t _{EABWE1}		1.0		1.2	ns
t _{EABWE2}		5.0		6.2	ns
t _{EABCLK}		1.0		2.2	ns
t _{EABCO}		0.5		0.6	ns
t _{EABBYPASS}		1.5		1.9	ns
t _{EABSU}	1.5		1.8		ns
t _{EABH}	2.0		2.5		ns
t_{AA}		8.7		10.7	ns
t_{WP}	5.8		7.2		ns
t _{WDSU}	1.6		2.0		ns
t _{WDH}	0.3		0.4		ns
t _{WASU}	0.5		0.6		ns
t_{WAH}	1.0		1.2		ns
t_{WO}		5.0		6.2	ns
t_{DD}		5.0		6.2	ns
t _{EABOUT}		0.5		0.6	ns
t _{EABCH}	4.0		4.0		ns
t _{EABCL}	5.8		7.2		ns

Table 45. EPF10K10 & EPF1	OK20 Device Exter	nal Timing Para	ameters No	te (1)	
Symbol	-3 Spe	ed Grade	-4 Spee	ed Grade	Unit
	Min	Max	Min	Max	
t _{DRR}		16.1		20.0	ns
t _{INSU} (2), (3)	5.5		6.0		ns
t _{INH} (3)	0.0		0.0		ns
t _{оитсо} (3)	2.0	6.7	2.0	8.4	ns

Table 46. EPF10K10 Device	External Bidirectio	nal Timing Par	ameters No	te (1)	
Symbol	-3 Spe	ed Grade	-4 Spee	ed Grade	Unit
	Min	Max	Min	Max	
t _{INSUBIDIR}	4.5		5.6		ns
t _{INHBIDIR}	0.0		0.0		ns
t _{OUTCOBIDIR}	2.0	6.7	2.0	8.4	ns
t _{XZBIDIR}		10.5		13.4	ns
t _{ZXBIDIR}		10.5		13.4	ns

Symbol	-3 Spec	ed Grade	-4 Spee	d Grade	Unit
	Min	Max	Min	Max	
t _{INSUBIDIR}	4.6		5.7		ns
t _{INHBIDIR}	0.0		0.0		ns
t _{OUTCOBIDIR}	2.0	6.7	2.0	8.4	ns
t _{XZBIDIR}		10.5		13.4	ns
t _{ZXBIDIR}		10.5		13.4	ns

Notes to tables:

- All timing parameters are described in Tables 32 through 38 in this data sheet.
 Using an LE to register the signal may provide a lower setup time.
 This parameter is specified by characterization.

Symbol	-3 Snee	d Grade	-4 Spee	Unit	
Symbol	-				Oiiit
	Min	Max	Min	Max	
t _{EABAA}		13.7		17.0	ns
t _{EABRCCOMB}	13.7		17.0		ns
t _{EABRCREG}	9.7		11.9		ns
t _{EABWP}	5.8		7.2		ns
t _{EABWCCOMB}	7.3		9.0		ns
t _{EABWCREG}	13.0		16.0		ns
t _{EABDD}		10.0		12.5	ns
t _{EABDATACO}		2.0		3.4	ns
t _{EABDATASU}	5.3		5.6		ns
t _{EABDATAH}	0.0		0.0		ns
t _{EABWESU}	5.5		5.8		ns
t _{EABWEH}	0.0		0.0		ns
t _{EABWDSU}	5.5		5.8		ns
t _{EABWDH}	0.0		0.0		ns
t _{EABWASU}	2.1		2.7		ns
t _{EABWAH}	0.0		0.0		ns
t_{EABWO}		9.5		11.8	ns

Tables 71 through 77 show EPF10K50V device internal and external timing parameters.

Symbol	-1 Spee	ed Grade	-2 Spee	d Grade	-3 Spee	ed Grade	-4 Spee	d Grade	Unit
	Min	Max	Min	Max	Min	Max	Min	Max	
t _{LUT}		0.9		1.0		1.3		1.6	ns
t _{CLUT}		0.1		0.5		0.6		0.6	ns
t _{RLUT}		0.5		8.0		0.9		1.0	ns
t _{PACKED}		0.4		0.4		0.5		0.7	ns
t _{EN}		0.7		0.9		1.1		1.4	ns
t _{CICO}		0.2		0.2		0.2		0.3	ns
t _{CGEN}		0.8		0.7		8.0		1.2	ns
t _{CGENR}		0.4		0.3		0.3		0.4	ns
t _{CASC}		0.7		0.7		8.0		0.9	ns
t_{C}		0.3		1.0		1.3		1.5	ns
$t_{\rm CO}$		0.5		0.7		0.9		1.0	ns
t _{COMB}		0.4		0.4		0.5		0.6	ns
t_{SU}	0.8		1.6		2.2		2.5		ns
t_H	0.5		0.8		1.0		1.4		ns
t _{PRE}		0.8		0.4		0.5		0.5	ns
t _{CLR}		0.8		0.4		0.5		0.5	ns
t _{CH}	2.0		4.0		4.0		4.0		ns
t_{CL}	2.0		4.0		4.0		4.0		ns

Symbol	-1 Spee	ed Grade	-2 Spee	d Grade	-3 Spee	ed Grade	-4 Spee	d Grade	Unit
•,	Min	Max	Min	Max	Min	Max	Min	Max	-
t _{DIN2IOE}		4.7		6.0		7.1		8.2	ns
t _{DIN2LE}		2.5		2.6		3.1		3.9	ns
t _{DIN2DATA}		4.4		5.9		6.8		7.7	ns
t _{DCLK2IOE}		2.5		3.9		4.7		5.5	ns
t _{DCLK2LE}		2.5		2.6		3.1		3.9	ns
t _{SAMELAB}		0.2		0.2		0.3		0.3	ns
t _{SAMEROW}		2.8		3.0		3.2		3.4	ns
t _{SAME} COLUMN		3.0		3.2		3.4		3.6	ns
t _{DIFFROW}		5.8		6.2		6.6		7.0	ns
t _{TWOROWS}		8.6		9.2		9.8		10.4	ns
t _{LEPERIPH}		4.5		5.5		6.1		7.0	ns
t _{LABCARRY}		0.3		0.4		0.5		0.7	ns
t _{LABCASC}		0.0		1.3		1.6		2.0	ns

Table 76. EPF	10K50V De	vice Exter	nal Timing	Paramete	ers Not	e (1)			
Symbol	-1 Spee	d Grade	-2 Spee	d Grade	-3 Spee	d Grade	-4 Spee	d Grade	Unit
	Min	Max	Min	Max	Min	Max	Min	Max	
t _{DRR}		11.2		14.0		17.2		21.1	ns
t _{INSU} (2), (3)	5.5		4.2		5.2		6.9		ns
t _{INH} (3)	0.0		0.0		0.0		0.0		ns
t _{оитсо} (3)	2.0	5.9	2.0	7.8	2.0	9.5	2.0	11.1	ns

Table 77. EPF	10K50V De	vice Exter	nal Bidired	ctional Tim	ing Param	neters	Vote (1)		
Symbol	-1 Spee	-1 Speed Grade		ed Grade -3 Speed		d Grade	-4 Spee	-4 Speed Grade	
	Min	Max	Min	Max	Min	Max	Min	Max]
t _{INSUBIDIR}	2.0		2.8		3.5		4.1		ns
t _{INHBIDIR}	0.0		0.0		0.0		0.0		ns
t _{OUTCOBIDIR}	2.0	5.9	2.0	7.8	2.0	9.5	2.0	11.1	ns
t _{XZBIDIR}		8.0		9.8		11.8		14.3	ns
t _{ZXBIDIR}		8.0		9.8		11.8		14.3	ns

Symbol	-1 Spee	d Grade	-2 Spee	d Grade	-3 Spee	d Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{EABDATA1}		1.8		2.1		2.4	ns
t _{EABDATA2}		3.2		3.7		4.4	ns
t _{EABWE1}		0.8		0.9		1.1	ns
t _{EABWE2}		2.3		2.7		3.1	ns
t _{EABCLK}		0.8		0.9		1.1	ns
t _{EABCO}		1.0		1.1		1.4	ns
t _{EABBYPASS}		0.3		0.3		0.4	ns
t _{EABSU}	1.3		1.5		1.8		ns
t _{EABH}	0.4		0.5		0.5		ns
t_{AA}		4.1		4.8		5.6	ns
t_{WP}	3.2		3.7		4.4		ns
t _{WDSU}	2.4		2.8		3.3		ns
t_{WDH}	0.2		0.2		0.3		ns
t _{WASU}	0.2		0.2		0.3		ns
t _{WAH}	0.0		0.0		0.0		ns
t_{WO}		3.4		3.9		4.6	ns
t_{DD}		3.4		3.9		4.6	ns
t _{EABOUT}		0.3		0.3		0.4	ns
t _{EABCH}	2.5		3.5		4.0		ns
t _{EABCL}	3.2		3.7		4.4		ns

Symbol	-1 Speed Grade		-2 Spee	d Grade	-3 Spee	Unit	
	Min	Max	Min	Max	Min	Max	
t _{EABAA}		6.8		7.8		9.2	ns
t _{EABRCCOMB}	6.8		7.8		9.2		ns
t _{EABRCREG}	5.4		6.2		7.4		ns
t _{EABWP}	3.2		3.7		4.4		ns
t _{EABWCCOMB}	3.4		3.9		4.7		ns
t _{EABWCREG}	9.4		10.8		12.8		ns
t _{EABDD}		6.1		6.9		8.2	ns
t _{EABDATACO}		2.1		2.3		2.9	ns
t _{EABDATASU}	3.7		4.3		5.1		ns
t _{EABDATAH}	0.0		0.0		0.0		ns
t _{EABWESU}	2.8		3.3		3.8		ns
t _{EABWEH}	0.0		0.0		0.0		ns
t _{EABWDSU}	3.4		4.0		4.6		ns
t _{EABWDH}	0.0		0.0		0.0		ns
t _{EABWASU}	1.9		2.3		2.6		ns
t _{EABWAH}	0.0		0.0		0.0		ns
t _{EABWO}		5.1		5.7		6.9	ns

Symbol	-1 Spee	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		
	Min	Max	Min	Max	Min	Max		
t _{DIN2IOE}		4.8		5.4		6.0	ns	
t _{DIN2LE}		2.0		2.4		2.7	ns	
t _{DIN2DATA}		2.4		2.7		2.9	ns	
t _{DCLK2IOE}		2.6		3.0		3.5	ns	
t _{DCLK2LE}		2.0		2.4		2.7	ns	
t _{SAMELAB}		0.1		0.1		0.1	ns	
t _{SAMEROW}		1.5		1.7		1.9	ns	
t _{SAME} COLUMN		5.5		6.5		7.4	ns	
t _{DIFFROW}		7.0		8.2		9.3	ns	
t _{TWOROWS}		8.5		9.9		11.2	ns	
t _{LEPERIPH}		3.9		4.2		4.5	ns	
t _{LABCARRY}		0.2		0.2		0.3	ns	
t _{LABCASC}		0.4		0.5		0.6	ns	

Table 104. EPF10K100A Device External Timing Parameters Note (1)									
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit		
	Min	Max	Min	Max	Min	Max			
t _{DRR}		12.5		14.5		17.0	ns		
t _{INSU} (2), (3)	3.7		4.5		5.1		ns		
t _{INH} (3)	0.0		0.0		0.0		ns		
t _{outco} (3)	2.0	5.3	2.0	6.1	2.0	7.2	ns		

Table 105. EPF10K100A Device External Bidirectional Timing Parameters Note (1)									
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit		
	Min	Max	Min	Max	Min	Max			
t _{INSUBIDIR}	4.9		5.8		6.8		ns		
t _{INHBIDIR}	0.0		0.0		0.0		ns		
toutcobidir	2.0	5.3	2.0	6.1	2.0	7.2	ns		
t _{XZBIDIR}		7.4		8.6		10.1	ns		
t _{ZXBIDIR}		7.4		8.6		10.1	ns		

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit	
	Min	Max	Min	Max	Min	Max		
t _{EABAA}		6.1		6.8		8.2	ns	
t _{EABRCCOMB}	6.1		6.8		8.2		ns	
t _{EABRCREG}	4.6		5.1		6.1		ns	
t _{EABWP}	5.6		6.4		7.5		ns	
t _{EABWCCOMB}	5.8		6.6		7.9		ns	
t _{EABWCREG}	15.8		17.8		21.0		ns	
t _{EABDD}		5.7		6.4		7.8	ns	
t _{EABDATACO}		0.7		0.8		1.0	ns	
t _{EABDATASU}	4.5		5.1		5.9		ns	
t _{EABDATAH}	0.0		0.0		0.0		ns	
t _{EABWESU}	8.2		9.3		10.9		ns	
t _{EABWEH}	0.0		0.0		0.0		ns	
t _{EABWDSU}	1.7		1.8		2.1		ns	
t _{EABWDH}	0.0		0.0		0.0		ns	
t _{EABWASU}	0.9		0.9		1.0		ns	
t _{EABWAH}	0.0		0.0		0.0		ns	
t _{EABWO}		5.3		6.0		7.4	ns	

Table 113. ClockLock & ClockBoost Parameters (Part 2 of 2)								
Symbol	Parameter	Min	Тур	Max	Unit			
f _{CLKDEV1}	Input deviation from user specification in MAX+PLUS II (ClockBoost clock multiplication factor equals 1) (1)			±1	MHz			
f _{CLKDEV2}	Input deviation from user specification in MAX+PLUS II (ClockBoost clock multiplication factor equals 2) (1)			±0.5	MHz			
t _{INCLKSTB}	Input clock stability (measured between adjacent clocks)			100	ps			
t _{LOCK}	Time required for ClockLock or ClockBoost to acquire lock (2)			10	μs			
t _{JITTER}	Jitter on ClockLock or ClockBoost-generated clock (3)			1	ns			
$t_{OUTDUTY}$	Duty cycle for ClockLock or ClockBoost-generated clock	40	50	60	%			

Notes:

- (1) To implement the ClockLock and ClockBoost circuitry with the MAX+PLUS II software, designers must specify the input frequency. The MAX+PLUS II software tunes the PLL in the ClockLock and ClockBoost circuitry to this frequency. The f_{CLKDEV} parameter specifies how much the incoming clock can differ from the specified frequency during device operation. Simulation does not reflect this parameter.
- (2) During device configuration, the ClockLock and ClockBoost circuitry is configured before the rest of the device. If the incoming clock is supplied during configuration, the ClockLock and ClockBoost circuitry locks during configuration, because the t_{LOCK} value is less than the time required for configuration.
- (3) The t_{IITTER} specification is measured under long-term observation.

Power Consumption

The supply power (P) for FLEX 10K devices can be calculated with the following equation:

$$P = P_{INT} + P_{IO} = (I_{CCSTANDBY} + I_{CCACTIVE}) \times V_{CC} + P_{IO}$$

Typical $I_{CCSTANDBY}$ values are shown as I_{CC0} in the FLEX 10K device DC operating conditions tables on pages 46, 49, and 52 of this data sheet. The $I_{CCACTIVE}$ value depends on the switching frequency and the application logic. This value is calculated based on the amount of current that each LE typically consumes. The P_{IO} value, which depends on the device output load characteristics and switching frequency, can be calculated using the guidelines given in *Application Note 74 (Evaluating Power for Altera Devices)*.

Compared to the rest of the device, the embedded array consumes a negligible amount of power. Therefore, the embedded array can be ignored when calculating supply current.

The I_{CCACTIVE} value is calculated with the following equation:

$$I_{CCACTIVE} = K \times \mathbf{f_{MAX}} \times N \times \mathbf{tog_{LC}} \times \frac{\mu A}{MHz \times LE}$$

The parameters in this equation are shown below: