E·XFL

Intel - EPF10K50VQC240-2 Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	360
Number of Logic Elements/Cells	2880
Total RAM Bits	20480
Number of I/O	189
Number of Gates	116000
Voltage - Supply	3V ~ 3.6V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	240-BFQFP
Supplier Device Package	240-PQFP (32x32)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epf10k50vqc240-2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FLEX 10K Embedded Programmable Logic Device Family Data Sheet

Device	84-Pin PLCC	100-Pin TQFP	144-Pin TQFP	208-Pin PQFP RQFP	240-Pin PQFP RQFP
EPF10K10	59		102	134	
EPF10K10A		66	102	134	
EPF10K20			102	147	189
EPF10K30				147	189
EPF10K30A			102	147	189
EPF10K40				147	189
EPF10K50					189
EPF10K50V					189
EPF10K70					189
EPF10K100					
EPF10K100A					189
EPF10K130V					
EPF10K250A					

Device	503-Pin	599-Pin	256-Pin	356-Pin	484-Pin	600-Pin	403-Pin
	PGA	PGA	FineLine BGA	BGA	FineLine BGA	BGA	PGA
EPF10K10							
EPF10K10A			150		150 (2)		
EPF10K20							
EPF10K30				246			
EPF10K30A			191	246	246		
EPF10K40							
EPF10K50				274			310
EPF10K50V				274			
EPF10K70	358						
EPF10K100	406						
EPF10K100A				274	369	406	
EPF10K130V		470				470	
EPF10K250A		470				470	

Г

Larger blocks of RAM are created by combining multiple EABs. For example, two 256×8 RAM blocks can be combined to form a 256×16 RAM block; two 512×4 blocks of RAM can be combined to form a 512×8 RAM block. See Figure 3.

If necessary, all EABs in a device can be cascaded to form a single RAM block. EABs can be cascaded to form RAM blocks of up to 2,048 words without impacting timing. Altera's software automatically combines EABs to meet a designer's RAM specifications.

EABs provide flexible options for driving and controlling clock signals. Different clocks can be used for the EAB inputs and outputs. Registers can be independently inserted on the data input, EAB output, or the address and WE inputs. The global signals and the EAB local interconnect can drive the WE signal. The global signals, dedicated clock pins, and EAB local interconnect can drive the EAB clock signals. Because the LEs drive the EAB local interconnect, the LEs can control the WE signal or the EAB clock signals.

Each EAB is fed by a row interconnect and can drive out to row and column interconnects. Each EAB output can drive up to two row channels and up to two column channels; the unused row channel can be driven by other LEs. This feature increases the routing resources available for EAB outputs. See Figure 4.

Figure 4. FLEX 10K Embedded Array Block

`EAB Local Interconnect (1)

Note:

 EPF10K10, EPF10K10A, EPF10K20, EPF10K30, EPF10K30A, EPF10K40, EPF10K50, and EPF10K50V devices have 22 EAB local interconnect channels; EPF10K70, EPF10K100, EPF10K100A, EPF10K130V, and EPF10K250A devices have 26. The programmable flipflop in the LE can be configured for D, T, JK, or SR operation. The clock, clear, and preset control signals on the flipflop can be driven by global signals, general-purpose I/O pins, or any internal logic. For combinatorial functions, the flipflop is bypassed and the output of the LUT drives the output of the LE.

The LE has two outputs that drive the interconnect; one drives the local interconnect and the other drives either the row or column FastTrack Interconnect. The two outputs can be controlled independently. For example, the LUT can drive one output while the register drives the other output. This feature, called register packing, can improve LE utilization because the register and the LUT can be used for unrelated functions.

The FLEX 10K architecture provides two types of dedicated high-speed data paths that connect adjacent LEs without using local interconnect paths: carry chains and cascade chains. The carry chain supports high-speed counters and adders; the cascade chain implements wide-input functions with minimum delay. Carry and cascade chains connect all LEs in an LAB and all LABs in the same row. Intensive use of carry and cascade chains can reduce routing flexibility. Therefore, the use of these chains should be limited to speed-critical portions of a design.

Carry Chain

The carry chain provides a very fast (as low as 0.2 ns) carry-forward function between LEs. The carry-in signal from a lower-order bit drives forward into the higher-order bit via the carry chain, and feeds into both the LUT and the next portion of the carry chain. This feature allows the FLEX 10K architecture to implement high-speed counters, adders, and comparators of arbitrary width efficiently. Carry chain logic can be created automatically by the Compiler during design processing, or manually by the designer during design entry. Parameterized functions such as LPM and DesignWare functions automatically take advantage of carry chains.

Carry chains longer than eight LEs are automatically implemented by linking LABs together. For enhanced fitting, a long carry chain skips alternate LABs in a row. A carry chain longer than one LAB skips either from even-numbered LAB to even-numbered LAB, or from oddnumbered LAB to odd-numbered LAB. For example, the last LE of the first LAB in a row carries to the first LE of the third LAB in the row. The carry chain does not cross the EAB at the middle of the row. For instance, in the EPF10K50 device, the carry chain stops at the eighteenth LAB and a new one begins at the nineteenth LAB.

Device	Channels per Row (<i>n</i>)	Row Channels per Pin (<i>m</i>		
EPF10K10	144	18		
EPF10K10A				
EPF10K20	144	18		
EPF10K30	216	27		
EPF10K30A				
EPF10K40	216	27		
EPF10K50	216	27		
EPF10K50V				
EPF10K70	312	39		
EPF10K100	312	39		
EPF10K100A				
EPF10K130V	312	39		
EPF10K250A	456	57		

Table 10 lists the FLEX 10K row-to-IOE interconnect resources.

Column-to-IOE Connections

When an IOE is used as an input, it can drive up to two separate column channels. When an IOE is used as an output, the signal is driven by a multiplexer that selects a signal from the column channels. Two IOEs connect to each side of the column channels. Each IOE can be driven by column channels via a multiplexer. The set of column channels that each IOE can access is different for each IOE. See Figure 15.

Figure 15. FLEX 10K Column-to-IOE Connections

The values for m and n are provided in Table 11.

Table 11 lists the FLEX 10K column-to-IOE interconnect resources.

Table 11. FLEX 10	Table 11. FLEX 10K Column-to-IOE Interconnect Resources					
Device	Channels per Column (<i>n</i>)	Column Channel per Pin (<i>m</i>)				
EPF10K10 EPF10K10A	24	16				
EPF10K20	24	16				
EPF10K30 EPF10K30A	24	16				
EPF10K40	24	16				
EPF10K50 EPF10K50V	24	16				
EPF10K70	24	16				
EPF10K100 EPF10K100A	24	16				
EPF10K130V	32	24				
EPF10K250A	40	32				

Slew-Rate Control

The output buffer in each IOE has an adjustable output slew rate that can be configured for low-noise or high-speed performance. A slower slew rate reduces system noise and adds a maximum delay of approximately 2.9 ns. The fast slew rate should be used for speed-critical outputs in systems that are adequately protected against noise. Designers can specify the slew rate on a pin-by-pin basis during design entry or assign a default slew rate to all pins on a device-wide basis. The slow slew rate setting affects only the falling edge of the output.

Open-Drain Output Option

FLEX 10K devices provide an optional open-drain (electrically equivalent to an open-collector) output for each I/O pin. This open-drain output enables the device to provide system-level control signals (e.g., interrupt and write enable signals) that can be asserted by any of several devices. It can also provide an additional wired-OR plane. Additionally, the Altera software can convert tri-state buffers with grounded data inputs to opendrain pins automatically.

Open-drain output pins on FLEX 10K devices (with a pull-up resistor to the 5.0-V supply) can drive 5.0-V CMOS input pins that require a V_{IH} of 3.5 V. When the open-drain pin is active, it will drive low. When the pin is inactive, the trace will be pulled up to 5.0 V by the resistor. The open-drain pin will only drive low or tri-state; it will never drive high. The rise time is dependent on the value of the pull-up resistor and load impedance. The I_{OL} current specification should be considered when selecting a pull-up resistor.

Output pins on 5.0-V FLEX 10K devices with $V_{CCIO} = 3.3$ V or 5.0 V (with a pull-up resistor to the 5.0-V supply) can also drive 5.0-V CMOS input pins. In this case, the pull-up transistor will turn off when the pin voltage exceeds 3.3 V. Therefore, the pin does not have to be open-drain.

MultiVolt I/O Interface

The FLEX 10K device architecture supports the MultiVolt I/O interface feature, which allows FLEX 10K devices to interface with systems of differing supply voltages. These devices have one set of V_{CC} pins for internal operation and input buffers (VCCINT) and another set for I/O output drivers (VCCIO).

Generic Testing

Each FLEX 10K device is functionally tested. Complete testing of each configurable SRAM bit and all logic functionality ensures 100% yield. AC test measurements for FLEX 10K devices are made under conditions equivalent to those shown in Figure 19. Multiple test patterns can be used to configure devices during all stages of the production flow.

Figure 19. FLEX 10K AC Test Conditions

Operating Conditions

Tables 17 through 21 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for 5.0-V FLEX 10K devices.

Table 1	Table 17. FLEX 10K 5.0-V Device Absolute Maximum Ratings Note (1)							
Symbol	Parameter	Conditions	Min	Max	Unit			
V _{CC}	Supply voltage	With respect to ground (2)	-2.0	7.0	V			
VI	DC input voltage		-2.0	7.0	V			
I _{OUT}	DC output current, per pin		-25	25	mA			
T _{STG}	Storage temperature	No bias	-65	150	°C			
Т _{АМВ}	Ambient temperature	Under bias	-65	135	°C			
ΤJ	Junction temperature	Ceramic packages, under bias		150	°C			
		PQFP, TQFP, RQFP, and BGA		135	°C			
		packages, under bias						

Table 1	Table 18. FLEX 10K 5.0-V Device Recommended Operating Conditions								
Symbol	Parameter	Conditions	Min	Max	Unit				
V _{CCINT}	Supply voltage for internal logic and input buffers	(3), (4)	4.75 (4.50)	5.25 (5.50)	V				
V _{CCIO}	Supply voltage for output buffers, 5.0-V operation	(3), (4)	4.75 (4.50)	5.25 (5.50)	V				
	Supply voltage for output buffers, 3.3-V operation	(3), (4)	3.00 (3.00)	3.60 (3.60)	V				
VI	Input voltage		-0.5	$V_{CCINT} + 0.5$	V				
Vo	Output voltage		0	V _{CCIO}	V				
Τ _Α	Ambient temperature	For commercial use	0	70	°C				
		For industrial use	-40	85	°C				
ТJ	Operating temperature	For commercial use	0	85	°C				
		For industrial use	-40	100	°C				
t _R	Input rise time			40	ns				
t _F	Input fall time			40	ns				

Figures 25 through 27 show the delays that correspond to various paths and functions within the LE, IOE, and EAB timing models.

Figure 30. EAB Synchronous Timing Waveforms

EAB Synchronous Write (EAB Output Registers Used)

Altera Corporation

Symbol	-3 Speed Grade		-4 Spee	d Grade	Unit
	Min	Max	Min	Max	
t _{IOD}		1.3		1.6	ns
t _{IOC}		0.5		0.7	ns
t _{IOCO}		0.2		0.2	ns
t _{IOCOMB}		0.0		0.0	ns
t _{IOSU}	2.8		3.2		ns
t _{IOH}	1.0		1.2		ns
t _{IOCLR}		1.0		1.2	ns
t _{OD1}		2.6		3.5	ns
t _{OD2}		4.9		6.4	ns
t _{OD3}		6.3		8.2	ns
t _{XZ}		4.5		5.4	ns
t _{ZX1}		4.5		5.4	ns
t _{ZX2}		6.8		8.3	ns
t _{ZX3}		8.2		10.1	ns
t _{INREG}		6.0		7.5	ns
t _{IOFD}		3.1		3.5	ns
t _{INCOMB}		3.1		3.5	ns

Tables 48 through 56 show EPF10K30, EPF10K40, and EPF10K50 device internal and external timing parameters.

Table 48. EPF10K30, EPF10K40 & EPF10K50 Device LE Timing Microparameters Note (1)							
Symbol	-3 Spee	d Grade	-4 Spee	Unit			
	Min	Мах	Min	Max			
t _{LUT}		1.3		1.8	ns		
t _{CLUT}		0.6		0.6	ns		
t _{RLUT}		1.5		2.0	ns		
t _{PACKED}		0.5		0.8	ns		
t _{EN}		0.9		1.5	ns		
t _{CICO}		0.2		0.4	ns		
t _{CGEN}		0.9		1.4	ns		
t _{CGENR}		0.9		1.4	ns		
t _{CASC}		1.0		1.2	ns		
t _C		1.3		1.6	ns		
t _{CO}		0.9		1.2	ns		
t _{COMB}		0.6		0.6	ns		
t _{SU}	1.4		1.4		ns		
t _H	0.9		1.3		ns		
t _{PRE}		0.9		1.2	ns		
t _{CLR}		0.9		1.2	ns		
t _{CH}	4.0		4.0		ns		
t _{CL}	4.0		4.0		ns		

Symbol	-3 Speed Grade		-4 Spee	ed Grade	Unit
	Min	Max	Min	Max	
t _{DIN2IOE}		6.9		8.7	ns
t _{DIN2LE}		3.6		4.8	ns
t _{DIN2DATA}		5.5		7.2	ns
t _{DCLK2IOE}		4.6		6.2	ns
t _{DCLK2LE}		3.6		4.8	ns
t _{SAMELAB}		0.3		0.3	ns
t _{SAMEROW}		3.3		3.7	ns
t _{SAMECOLUMN}		2.5		2.7	ns
t _{DIFFROW}		5.8		6.4	ns
t _{TWOROWS}		9.1		10.1	ns
t _{LEPERIPH}		6.2		7.1	ns
t _{LABCARRY}		0.4		0.6	ns
t _{LABCASC}		2.4		3.0	ns

Symbol	-3 Spee	ed Grade	-4 Spee	-4 Speed Grade		
	Min	Max	Min	Max		
t _{DIN2IOE}		7.6		9.4	ns	
t _{DIN2LE}		3.6		4.8	ns	
t _{DIN2DATA}		5.5		7.2	ns	
t _{DCLK2IOE}		4.6		6.2	ns	
t _{DCLK2LE}		3.6		4.8	ns	
t _{SAMELAB}		0.3		0.3	ns	
t _{SAMEROW}		3.3		3.7	ns	
t _{SAMECOLUMN}		3.1		3.2	ns	
t _{DIFFROW}		6.4		6.4	ns	
t _{TWOROWS}		9.7		10.6	ns	
t _{LEPERIPH}		6.4		7.1	ns	
t _{LABCARRY}		0.4		0.6	ns	
t _{LABCASC}		2.4		3.0	ns	

Altera Corporation

٦

Г

Symbol	-2 Speed Grade		-3 Speed Grade		-4 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{DIN2IOE}		6.6		7.3		8.8	ns
t _{DIN2LE}		4.2		4.8		6.0	ns
t _{DIN2DATA}		6.5		7.1		10.8	ns
t _{DCLK2IOE}		5.5		6.2		7.7	ns
t _{DCLK2LE}		4.2		4.8		6.0	ns
t _{SAMELAB}		0.4		0.4		0.5	ns
t _{SAMEROW}		4.8		4.9		5.5	ns
t _{SAMECOLUMN}		3.3		3.4		3.7	ns
t _{DIFFROW}		8.1		8.3		9.2	ns
t _{TWOROWS}		12.9		13.2		14.7	ns
t _{LEPERIPH}		5.5		5.7		6.5	ns
t _{LABCARRY}		0.8		0.9		1.1	ns
t _{LABCASC}		2.7		3.0		3.2	ns

Table 62. EPF10K70 Device External Timing Parameters Note (1)										
Symbol	-2 Spee	-2 Speed Grade		ed Grade	-4 Spee	Unit				
	Min	Max	Min	Max	Min	Max				
t _{DRR}		17.2		19.1		24.2	ns			
t _{INSU} (2), (3)	6.6		7.3		8.0		ns			
t _{INH} (3)	0.0		0.0		0.0		ns			
t _{оитсо} (3)	2.0	9.9	2.0	11.1	2.0	14.3	ns			

Table 63. EPF10K70 Device External Bidirectional Timing Parameters

Note (1)

Symbol	-2 Spee	-2 Speed Grade		ed Grade	-4 Spee	Unit	
	Min	Max	Min	Max	Min	Max	
t _{INSUBIDIR}	7.4		8.1		10.4		ns
t _{INHBIDIR}	0.0		0.0		0.0		ns
toutcobidir	2.0	9.9	2.0	11.1	2.0	14.3	ns
t _{XZBIDIR}		13.7		15.4		18.5	ns
t _{ZXBIDIR}		13.7		15.4		18.5	ns

Г

Table 73. EPH	Table 73. EPF10K50V Device EAB Internal Microparameters Note (1)											
Symbol	-1 Spee	ed Grade	-2 Spee	ed Grade	-3 Spee	ed Grade	-4 Spee	ed Grade	Unit			
	Min	Max	Min	Max	Min	Мах	Min	Мах				
t _{EABDATA1}		1.7		2.8		3.4		4.6	ns			
t _{EABDATA2}		4.9		3.9		4.8		5.9	ns			
t _{EABWE1}		0.0		2.5		3.0		3.7	ns			
t _{EABWE2}		4.0		4.1		5.0		6.2	ns			
t _{EABCLK}		0.4		0.8		1.0		1.2	ns			
t _{EABCO}		0.1		0.2		0.3		0.4	ns			
t _{EABBYPASS}		0.9		1.1		1.3		1.6	ns			
t _{EABSU}	0.8		1.5		1.8		2.2		ns			
t _{EABH}	0.8		1.6		2.0		2.5		ns			
t _{AA}		5.5		8.2		10.0		12.4	ns			
t _{WP}	6.0		4.9		6.0		7.4		ns			
t _{WDSU}	0.1		0.8		1.0		1.2		ns			
t _{WDH}	0.1		0.2		0.3		0.4		ns			
t _{WASU}	0.1		0.4		0.5		0.6		ns			
t _{WAH}	0.1		0.8		1.0		1.2		ns			
t _{WO}		2.8		4.3		5.3		6.5	ns			
t _{DD}		2.8		4.3		5.3		6.5	ns			
t _{EABOUT}		0.5		0.4		0.5		0.6	ns			
t _{EABCH}	2.0		4.0		4.0		4.0		ns			
t _{EABCL}	6.0		4.9		6.0		7.4		ns			

FLEX 10K Embedded Programmable Logic Device Family Data Sheet

Symbol	-2 Spee	ed Grade	-3 Spee	ed Grade	-4 Spee	d Grade	Unit
	Min	Мах	Min	Max	Min	Мах	
t _{EABDATA1}		1.9		2.4		2.4	ns
t _{EABDATA2}		3.7		4.7		4.7	ns
t _{EABWE1}		1.9		2.4		2.4	ns
t _{EABWE2}		3.7		4.7		4.7	ns
t _{EABCLK}		0.7		0.9		0.9	ns
t _{EABCO}		0.5		0.6		0.6	ns
t _{EABBYPASS}		0.6		0.8		0.8	ns
t _{EABSU}	1.4		1.8		1.8		ns
t _{EABH}	0.0		0.0		0.0		ns
t _{AA}		5.6		7.1		7.1	ns
t _{WP}	3.7		4.7		4.7		ns
t _{WDSU}	4.6		5.9		5.9		ns
t _{WDH}	0.0		0.0		0.0		ns
t _{WASU}	3.9		5.0		5.0		ns
t _{WAH}	0.0		0.0		0.0		ns
t _{WO}		5.6		7.1		7.1	ns
t _{DD}		5.6		7.1		7.1	ns
t _{EABOUT}		2.4		3.1		3.1	ns
t _{EABCH}	4.0		4.0		4.0		ns
t _{EABCL}	4.0		4.7		4.7		ns

Notes to tables:

- (1) All timing parameters are described in Tables 32 through 38 in this data sheet.
- (2) Using an LE to register the signal may provide a lower setup time.
- (3) This parameter is specified by characterization.

Tables 85 through 91 show EPF10K10A device internal and external timing parameters.

Symbol	-1 Spee	d Grade	-2 Spee	ed Grade	-3 Spee	d Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{LUT}		0.9		1.2		1.6	ns
t _{CLUT}		1.2		1.4		1.9	ns
t _{RLUT}		1.9		2.3		3.0	ns
t _{PACKED}		0.6		0.7		0.9	ns
t _{EN}		0.5		0.6		0.8	ns
t _{CICO}		02		0.3		0.4	ns
t _{CGEN}		0.7		0.9		1.1	ns
t _{CGENR}		0.7		0.9		1.1	ns
t _{CASC}		1.0		1.2		1.7	ns
t _C		1.2		1.4		1.9	ns
t _{CO}		0.5		0.6		0.8	ns
t _{COMB}		0.5		0.6		0.8	ns
t _{SU}	1.1		1.3		1.7		ns
t _H	0.6		0.7		0.9		ns
t _{PRE}		0.5		0.6		0.9	ns
t _{CLR}		0.5		0.6		0.9	ns
t _{CH}	3.0		3.5		4.0		ns
t _{CL}	3.0		3.5		4.0		ns

 Table 86. EPF10K10A Device IOE Timing Microparameters
 Note (1) (Part 1 of 2)

Symbol	-1 Speed Grade		-2 Spee	d Grade	-3 Spee	d Grade	Unit				
	Min	Max	Min	Max	Min	Max					
		1.3		1.5		2.0	ns				
t _{IOC}		0.2		0.3		0.3	ns				
t _{IOCO}		0.2		0.3		0.4	ns				
t _{IOCOMB}		0.6		0.7		0.9	ns				
t _{IOSU}	0.8		1.0		1.3		ns				

Symbol	-1 Spee	d Grade	-2 Spee	d Grade	-3 Spee	d Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{EABDATA1}		3.3		3.9		5.2	ns
t _{EABDATA2}		1.0		1.3		1.7	ns
t _{EABWE1}		2.6		3.1		4.1	ns
t _{EABWE2}		2.7		3.2		4.3	ns
t _{EABCLK}		0.0		0.0		0.0	ns
t _{EABCO}		1.2		1.4		1.8	ns
t _{EABBYPASS}		0.1		0.2		0.2	ns
t _{EABSU}	1.4		1.7		2.2		ns
t _{EABH}	0.1		0.1		0.1		ns
t _{AA}		4.5		5.4		7.3	ns
t _{WP}	2.0		2.4		3.2		ns
t _{WDSU}	0.7		0.8		1.1		ns
t _{WDH}	0.5		0.6		0.7		ns
t _{WASU}	0.6		0.7		0.9		ns
t _{WAH}	0.9		1.1		1.5		ns
t _{WO}		3.3		3.9		5.2	ns
t _{DD}		3.3		3.9		5.2	ns
t EABOUT		0.1		0.1		0.2	ns
t _{EABCH}	3.0		3.5		4.0		ns
t _{EABCL}	3.03		3.5		4.0		ns

FLEX 10K Embedded Programmable Logic Device Family Data Sheet

Symbol	-1 Speed Grade		-2 Spee	d Grade	-3 Spee	Unit	
	Min	Max	Min	Max	Min	Max	
t _{DIN2IOE}		3.9		4.4		5.1	ns
t _{DIN2LE}		1.2		1.5		1.9	ns
t _{DIN2DATA}		3.2		3.6		4.5	ns
t _{DCLK2IOE}		3.0		3.5		4.6	ns
t _{DCLK2LE}		1.2		1.5		1.9	ns
t _{SAMELAB}		0.1		0.1		0.2	ns
t _{SAMEROW}		2.3		2.4		2.7	ns
t _{SAME} COLUMN		1.3		1.4		1.9	ns
t _{DIFFROW}		3.6		3.8		4.6	ns
t _{TWOROWS}		5.9		6.2		7.3	ns
t _{LEPERIPH}		3.5		3.8		4.1	ns
t _{LABCARRY}		0.3		0.4		0.5	ns
t _{LABCASC}		0.9		1.1		1.4	ns

Table 97. EPF10K30A External Reference Timing Parameters	Note (1)
--	----------

Symbol	-1 Spee	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		
	Min	Max	Min	Max	Min	Max		
t _{DRR}		11.0		13.0		17.0	ns	
t _{INSU} (2), (3)	2.5		3.1		3.9		ns	
t _{INH} (3)	0.0		0.0		0.0		ns	
^t оитсо ⁽³⁾	2.0	5.4	2.0	6.2	2.0	8.3	ns	

 Table 98. EPF10K30A Device External Bidirectional Timing Parameters
 Note

Note (1)

Symbol	-1 Spee	-1 Speed Grade		ed Grade	-3 Spee	Unit	
	Min	Мах	Min	Max	Min	Max	
t _{INSUBIDIR}	4.2		4.9		6.8		ns
t _{INHBIDIR}	0.0		0.0		0.0		ns
toutcobidir	2.0	5.4	2.0	6.2	2.0	8.3	ns
t _{XZBIDIR}		6.2		7.5		9.8	ns
t _{ZXBIDIR}		6.2		7.5		9.8	ns