E·XFL

Intel - EPF10K50VQC240-2N Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	360
Number of Logic Elements/Cells	2880
Total RAM Bits	20480
Number of I/O	189
Number of Gates	116000
Voltage - Supply	3V ~ 3.6V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	240-BFQFP
Supplier Device Package	240-PQFP (32x32)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epf10k50vqc240-2n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Logic functions are implemented by programming the EAB with a readonly pattern during configuration, creating a large LUT. With LUTs, combinatorial functions are implemented by looking up the results, rather than by computing them. This implementation of combinatorial functions can be faster than using algorithms implemented in general logic, a performance advantage that is further enhanced by the fast access times of EABs. The large capacity of EABs enables designers to implement complex functions in one logic level without the routing delays associated with linked LEs or field-programmable gate array (FPGA) RAM blocks. For example, a single EAB can implement a 4 × 4 multiplier with eight inputs and eight outputs. Parameterized functions such as LPM functions can automatically take advantage of the EAB.

The EAB provides advantages over FPGAs, which implement on-board RAM as arrays of small, distributed RAM blocks. These FPGA RAM blocks contain delays that are less predictable as the size of the RAM increases. In addition, FPGA RAM blocks are prone to routing problems because small blocks of RAM must be connected together to make larger blocks. In contrast, EABs can be used to implement large, dedicated blocks of RAM that eliminate these timing and routing concerns.

EABs can be used to implement synchronous RAM, which is easier to use than asynchronous RAM. A circuit using asynchronous RAM must generate the RAM write enable (WE) signal, while ensuring that its data and address signals meet setup and hold time specifications relative to the WE signal. In contrast, the EAB's synchronous RAM generates its own WE signal and is self-timed with respect to the global clock. A circuit using the EAB's self-timed RAM need only meet the setup and hold time specifications of the global clock.

When used as RAM, each EAB can be configured in any of the following sizes: 256×8 , 512×4 , $1,024 \times 2$, or $2,048 \times 1$. See Figure 2.

Altera Corporation

Larger blocks of RAM are created by combining multiple EABs. For example, two 256×8 RAM blocks can be combined to form a 256×16 RAM block; two 512×4 blocks of RAM can be combined to form a 512×8 RAM block. See Figure 3.

If necessary, all EABs in a device can be cascaded to form a single RAM block. EABs can be cascaded to form RAM blocks of up to 2,048 words without impacting timing. Altera's software automatically combines EABs to meet a designer's RAM specifications.

EABs provide flexible options for driving and controlling clock signals. Different clocks can be used for the EAB inputs and outputs. Registers can be independently inserted on the data input, EAB output, or the address and WE inputs. The global signals and the EAB local interconnect can drive the WE signal. The global signals, dedicated clock pins, and EAB local interconnect can drive the EAB clock signals. Because the LEs drive the EAB local interconnect, the LEs can control the WE signal or the EAB clock signals.

Each EAB is fed by a row interconnect and can drive out to row and column interconnects. Each EAB output can drive up to two row channels and up to two column channels; the unused row channel can be driven by other LEs. This feature increases the routing resources available for EAB outputs. See Figure 4.

Figure 9. FLEX 10K LE Operating Modes

Up/Down Counter Mode

Clearable Counter Mode

Note:

(1) Packed registers cannot be used with the cascade chain.

Altera Corporation

Figure 12 shows the interconnection of adjacent LABs and EABs with row, column, and local interconnects, as well as the associated cascade and carry chains. Each LAB is labeled according to its location: a letter represents the row and a number represents the column. For example, LAB B3 is in row B, column 3.

Table 8. EPF1UK1U, EPF1UK2U, EPF1UK3U, EPF1UK4U & EPF1UK5U Peripheral Bus Sources						
Peripheral Control Signal	EPF10K10 EPF10K10A	EPF10K20	EPF10K30 EPF10K30A	EPF10K40	EPF10K50 EPF10K50V	
OE 0	Row A	Row A	Row A	Row A	Row A	
OE1	Row A	Row B	Row B	Row C	Row B	
OE 2	Row B	Row C	Row C	Row D	Row D	
OE3	Row B	Row D	Row D	Row E	Row F	
OE4	Row C	Row E	Row E	Row F	Row H	
OE5	Row C	Row F	Row F	Row G	Row J	
CLKENA0/CLK0/GLOBAL0	Row A	Row A	Row A	Row B	Row A	
CLKENA1/OE6/GLOBAL1	Row A	Row B	Row B	Row C	Row C	
CLKENA2/CLR0	Row B	Row C	Row C	Row D	Row E	
CLKENA3/OE7/GLOBAL2	Row B	Row D	Row D	Row E	Row G	
CLKENA4/CLR1	Row C	Row E	Row E	Row F	Row I	
CLKENA5/CLK1/GLOBAL3	Row C	Row F	Row F	Row H	Row J	

_

Table 9. EPF10K70, EPF10K100, EPF10K130V & EPF10K250A Peripheral Bus Sources

Peripheral Control Signal	EPF10K70	EPF10K100 EPF10K100A	EPF10K130V	EPF10K250A
OE 0	Row A	Row A	Row C	Row E
OE1	Row B	Row C	Row E	Row G
OE 2	Row D	Row E	Row G	Row I
OE 3	Row I	Row L	Row N	Row P
OE 4	Row G	Row I	Row K	Row M
OE 5	Row H	Row K	Row M	Row O
CLKENA0/CLK0/GLOBAL0	Row E	Row F	Row H	Row J
CLKENA1/OE6/GLOBAL1	Row C	Row D	Row F	Row H
CLKENA2/CLR0	Row B	Row B	Row D	Row F
CLKENA3/OE7/GLOBAL2	Row F	Row H	Row J	Row L
CLKENA4/CLR1	Row H	Row J	Row L	Row N
CLKENA5/CLK1/GLOBAL3	Row E	Row G	Row I	Row K

Τ

Signals on the peripheral control bus can also drive the four global signals, referred to as GLOBAL0 through GLOBAL3 in Tables 8 and 9. The internally generated signal can drive the global signal, providing the same low-skew, low-delay characteristics for an internally generated signal as for a signal driven by an input. This feature is ideal for internally generated clear or clock signals with high fan-out. When a global signal is driven by internal logic, the dedicated input pin that drives that global signal cannot be used. The dedicated input pin should be driven to a known logic state (such as ground) and not be allowed to float.

When the chip-wide output enable pin is held low, it will tri-state all pins on the device. This option can be set in the Global Project Device Options menu. Additionally, the registers in the IOE can be reset by holding the chip-wide reset pin low.

Row-to-IOE Connections

When an IOE is used as an input signal, it can drive two separate row channels. The signal is accessible by all LEs within that row. When an IOE is used as an output, the signal is driven by a multiplexer that selects a signal from the row channels. Up to eight IOEs connect to each side of each row channel. See Figure 14.

Figure 14. FLEX 10K Row-to-IOE Connections

The values for m and n are provided in Table 10.

Figure 18 shows the timing requirements for the JTAG signals.

Figure 18. JTAG Waveforms

Table 16 shows the timing parameters and values for FLEX 10K devices.

Table 16. JTAG Timing Parameters & Values				
Symbol	Parameter	Min	Max	Unit
t _{JCP}	TCK clock period	100		ns
t _{JCH}	TCK clock high time	50		ns
t _{JCL}	TCK clock low time	50		ns
t _{JPSU}	JTAG port setup time	20		ns
t _{JPH}	JTAG port hold time	45		ns
t _{JPCO}	JTAG port clock to output		25	ns
t _{JPZX}	JTAG port high impedance to valid output		25	ns
t _{JPXZ}	JTAG port valid output to high impedance		25	ns
t _{JSSU}	Capture register setup time	20		ns
t _{JSH}	Capture register hold time	45		ns
t _{JSCO}	Update register clock to output		35	ns
t _{JSZX}	Update register high-impedance to valid output		35	ns
t _{JSXZ}	Update register valid output to high impedance		35	ns

Table 18. FLEX 10K 5.0-V Device Recommended Operating Conditions						
Symbol	Parameter	Conditions	Min	Max	Unit	
V _{CCINT}	Supply voltage for internal logic and input buffers	(3), (4)	4.75 (4.50)	5.25 (5.50)	V	
V _{CCIO}	Supply voltage for output buffers, 5.0-V operation	(3), (4)	4.75 (4.50)	5.25 (5.50)	V	
	Supply voltage for output buffers, 3.3-V operation	(3), (4)	3.00 (3.00)	3.60 (3.60)	V	
VI	Input voltage		-0.5	V _{CCINT} + 0.5	V	
Vo	Output voltage		0	V _{CCIO}	V	
Τ _Α	Ambient temperature	For commercial use	0	70	°C	
		For industrial use	-40	85	°C	
Τ _J	Operating temperature	For commercial use	0	85	°C	
		For industrial use	-40	100	°C	
t _R	Input rise time			40	ns	
t _F	Input fall time			40	ns	

Table 19. FLEX 10K 5.0-V Device DC Operating Conditions Notes (5), (6)							
Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
V _{IH}	High-level input voltage		2.0		V _{CCINT} + 0.5	V	
V _{IL}	Low-level input voltage		-0.5		0.8	V	
V _{OH}	5.0-V high-level TTL output voltage	$I_{OH} = -4 \text{ mA DC}, V_{CCIO} = 4.75 \text{ V}$ (7)	2.4			V	
	3.3-V high-level TTL output voltage	I _{OH} = -4 mA DC, V _{CCIO} = 3.00 V (7)	2.4			V	
	3.3-V high-level CMOS output voltage	$I_{OH} = -0.1 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V}$ (7)	V _{CCIO} – 0.2			V	
V _{OL}	5.0-V low-level TTL output voltage	I _{OL} = 12 mA DC, V _{CCIO} = 4.75 V (8)			0.45	V	
	3.3-V low-level TTL output voltage	I _{OL} = 12 mA DC, V _{CCIO} = 3.00 V (8)			0.45	V	
	3.3-V low-level CMOS output voltage	$I_{OL} = 0.1 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V}$ (8)			0.2	V	
I _I	Input pin leakage current	$V_1 = V_{CC}$ or ground (9)	-10		10	μA	
I _{OZ}	Tri-stated I/O pin leakage current	$V_{O} = V_{CC}$ or ground (9)	-40		40	μA	
I _{CC0}	V _{CC} supply current (standby)	V _I = ground, no load		0.5	10	mA	

Table 20. 5.0-V Device Capacitance of EPF10K10, EPF10K20 & EPF10K30 Devices) Devices	Note (10)	
Symbol	Parameter	Conditions	Min	Max	Unit

CIN	Input capacitance	V _{IN} = 0 V, f = 1.0 MHz	8	pF
C _{INCLK}	Input capacitance on dedicated clock pin	V _{IN} = 0 V, f = 1.0 MHz	12	pF
C _{OUT}	Output capacitance	V _{OUT} = 0 V, f = 1.0 MHz	8	pF

Table 21. 5.0-V Device Capacitance of EPF10K40, EPF10K50, EPF10K70 & EPF10K100 Devices Note (10)						
Symbol	Parameter	Conditions	Min	Max	Unit	
C _{IN}	Input capacitance	V _{IN} = 0 V, f = 1.0 MHz		10	pF	
CINCLK	Input capacitance on dedicated clock pin	V _{IN} = 0 V, f = 1.0 MHz		15	pF	
C _{OUT}	Output capacitance	V _{OUT} = 0 V, f = 1.0 MHz		10	pF	

Figure 21 shows the typical output drive characteristics of EPF10K50V and EPF10K130V devices.

Figure 21. Output Drive Characteristics of EPF10K50V & EPF10K130V Devices

Tables 26 through 31 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for 3.3-V FLEX 10K devices.

Table 26. FLEX 10KA 3.3-V Device Absolute Maximum Ratings Note (1)					
Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	Supply voltage	With respect to ground (2)	-0.5	4.6	V
VI	DC input voltage		-2.0	5.75	V
I _{OUT}	DC output current, per pin		-25	25	mA
T _{STG}	Storage temperature	No bias	-65	150	°C
T _{AMB}	Ambient temperature	Under bias	-65	135	°C
TJ	Junction temperature	Ceramic packages, under bias		150	°C
		PQFP, TQFP, RQFP, and BGA packages, under bias		135	°C

Figure 28. Synchronous Bidirectional Pin External Timing Model

Tables 32 through 36 describe the FLEX 10K device internal timing parameters. These internal timing parameters are expressed as worst-case values. Using hand calculations, these parameters can be used to estimate design performance. However, before committing designs to silicon, actual worst-case performance should be modeled using timing simulation and analysis. Tables 37 through 38 describe FLEX 10K external timing parameters.

Table 32. LE Timing Microparameters (Part 1 of 2) Note (1)			
Symbol	Parameter	Conditions	
t _{LUT}	LUT delay for data-in		
t _{CLUT}	LUT delay for carry-in		
t _{RLUT}	LUT delay for LE register feedback		
t _{PACKED}	Data-in to packed register delay		
t _{EN}	LE register enable delay		
t _{CICO}	Carry-in to carry-out delay		
t _{CGEN}	Data-in to carry-out delay		
t _{CGENR}	LE register feedback to carry-out delay		
tCASC	Cascade-in to cascade-out delay		
t _C	LE register control signal delay		
t _{CO}	LE register clock-to-output delay		
t _{COMB}	Combinatorial delay		

Table 35. EAB Timing Macroparameters Notes (1), (6)			
Symbol	Parameter	Conditions	
t _{EABAA}	EAB address access delay		
t _{EABRCCOMB}	EAB asynchronous read cycle time		
t _{EABRCREG}	EAB synchronous read cycle time		
t _{EABWP}	EAB write pulse width		
t _{EABWCCOMB}	EAB asynchronous write cycle time		
t _{EABWCREG}	EAB synchronous write cycle time		
t _{EABDD}	EAB data-in to data-out valid delay		
t _{EABDATACO}	EAB clock-to-output delay when using output registers		
t _{EABDATASU}	EAB data/address setup time before clock when using input register		
t _{EABDATAH}	EAB data/address hold time after clock when using input register		
t _{EABWESU}	EAB WE setup time before clock when using input register		
t _{EABWEH}	EAB WE hold time after clock when using input register		
t _{EABWDSU}	EAB data setup time before falling edge of write pulse when not using input registers		
t _{EABWDH}	EAB data hold time after falling edge of write pulse when not using input		
	registers		
t _{EABWASU}	EAB address setup time before rising edge of write pulse when not using		
	input registers		
t _{EABWAH}	EAB address hold time after falling edge of write pulse when not using input registers		
t _{EABWO}	EAB write enable to data output valid delay		

Table 41. EPF10K10 & EPF10K20 Device EAB Internal Microparameters Note (1)							
Symbol	-3 Spee	d Grade	-4 Spee	ed Grade	Unit		
	Min	Max	Min	Мах			
t _{EABDATA1}		1.5		1.9	ns		
t _{EABDATA2}		4.8		6.0	ns		
t _{EABWE1}		1.0		1.2	ns		
t _{EABWE2}		5.0		6.2	ns		
t _{EABCLK}		1.0		2.2	ns		
t _{EABCO}		0.5		0.6	ns		
t _{EABBYPASS}		1.5		1.9	ns		
t _{EABSU}	1.5		1.8		ns		
t _{EABH}	2.0		2.5		ns		
t _{AA}		8.7		10.7	ns		
t _{WP}	5.8		7.2		ns		
t _{WDSU}	1.6		2.0		ns		
t _{WDH}	0.3		0.4		ns		
t _{WASU}	0.5		0.6		ns		
t _{WAH}	1.0		1.2		ns		
t _{WO}		5.0		6.2	ns		
t _{DD}		5.0		6.2	ns		
t _{EABOUT}		0.5		0.6	ns		
t _{EABCH}	4.0		4.0		ns		
t _{EABCL}	5.8		7.2		ns		

Table 51. EPF10K30, EPF10K40 & EPF10K50 Device EAB Internal Timing Macroparameters						
Symbol	-3 Spe	ed Grade	-4 Spec	Unit		
	Min	Мах	Min	Max		
t _{EABAA}		13.7		17.0	ns	
t _{EABRCCOMB}	13.7		17.0		ns	
t _{EABRCREG}	9.7		11.9		ns	
t _{EABWP}	5.8		7.2		ns	
t _{EABWCCOMB}	7.3		9.0		ns	
t _{EABWCREG}	13.0		16.0		ns	
t _{EABDD}		10.0		12.5	ns	
t _{EABDATACO}		2.0		3.4	ns	
t _{EABDATASU}	5.3		5.6		ns	
t _{EABDATAH}	0.0		0.0		ns	
t _{EABWESU}	5.5		5.8		ns	
t _{EABWEH}	0.0		0.0		ns	
t _{EABWDSU}	5.5		5.8		ns	
t _{EABWDH}	0.0		0.0		ns	
t _{EABWASU}	2.1		2.7		ns	
t _{EABWAH}	0.0		0.0		ns	
t _{EABWO}		9.5		11.8	ns	

Tables 71 through 77 show EPF10K50V device internal and external timing parameters.

Table 71. EPF10K50V Device LE Timing Microparameters Note (1)									
Symbol	-1 Spee	ed Grade	-2 Spee	ed Grade	rade -3 Speed		-4 Spee	d Grade	Unit
	Min	Max	Min	Max	Min	Мах	Min	Max	
t _{LUT}		0.9		1.0		1.3		1.6	ns
t _{CLUT}		0.1		0.5		0.6		0.6	ns
t _{RLUT}		0.5		0.8		0.9		1.0	ns
t _{PACKED}		0.4		0.4		0.5		0.7	ns
t _{EN}		0.7		0.9		1.1		1.4	ns
t _{CICO}		0.2		0.2		0.2		0.3	ns
t _{CGEN}		0.8		0.7		0.8		1.2	ns
t _{CGENR}		0.4		0.3		0.3		0.4	ns
t _{CASC}		0.7		0.7		0.8		0.9	ns
t _C		0.3		1.0		1.3		1.5	ns
t _{CO}		0.5		0.7		0.9		1.0	ns
t _{COMB}		0.4		0.4		0.5		0.6	ns
t _{SU}	0.8		1.6		2.2		2.5		ns
t _H	0.5		0.8		1.0		1.4		ns
t _{PRE}		0.8		0.4		0.5		0.5	ns
t _{CLR}		0.8		0.4		0.5		0.5	ns
t _{CH}	2.0		4.0		4.0		4.0		ns
t _{CL}	2.0		4.0		4.0		4.0		ns

FLEX 10K Embedded Programmable Logic Device Family Data Sheet

Table 72. EPF10K50V Device IOE Timing Microparameters Note (1)									
Symbol	-1 Spee	1 Speed Grade		Speed Grade -3 Speed Grade -4 Spe		-4 Spee	-4 Speed Grade		
	Min	Max	Min	Max	Min	Мах	Min	Max	
t _{IOD}		1.2		1.6		1.9		2.1	ns
t _{IOC}		0.3		0.4		0.5		0.5	ns
t _{IOCO}		0.3		0.3		0.4		0.4	ns
t _{IOCOMB}		0.0		0.0		0.0		0.0	ns
t _{IOSU}	2.8		2.8		3.4		3.9		ns
t _{IOH}	0.7		0.8		1.0		1.4		ns
t _{IOCLR}		0.5		0.6		0.7		0.7	ns
t _{OD1}		2.8		3.2		3.9		4.7	ns
t _{OD2}		-		-		-		-	ns
t _{OD3}		6.5		6.9		7.6		8.4	ns
t _{XZ}		2.8		3.1		3.8		4.6	ns
t _{ZX1}		2.8		3.1		3.8		4.6	ns
t _{ZX2}		-		-		-		-	ns
t _{ZX3}		6.5		6.8		7.5		8.3	ns
t _{INREG}		5.0		5.7		7.0		9.0	ns
t _{IOFD}		1.5		1.9		2.3		2.7	ns
t _{INCOMB}		1.5		1.9		2.3		2.7	ns

Notes to tables:

- (1) All timing parameters are described in Tables 32 through 38 in this data sheet.
- (2) Using an LE to register the signal may provide a lower setup time.
- (3) This parameter is specified by characterization.

Tables 78 through 84 show EPF10K130V device internal and external timing parameters.

Table 78. EPF10K130V Device LE Timing Microparameters Note (1)								
Symbol	-2 Spee	-2 Speed Grade		ed Grade	-4 Spe	Unit		
	Min	Max	Min	Max	Min	Max	-	
t _{LUT}		1.3		1.8		2.3	ns	
t _{CLUT}		0.5		0.7		0.9	ns	
t _{RLUT}		1.2		1.7		2.2	ns	
t _{PACKED}		0.5		0.6		0.7	ns	
t _{EN}		0.6		0.8		1.0	ns	
t _{CICO}		0.2		0.3		0.4	ns	
t _{CGEN}		0.3		0.4		0.5	ns	
t _{CGENR}		0.7		1.0		1.3	ns	
t _{CASC}		0.9		1.2		1.5	ns	
t _C		1.9		2.4		3.0	ns	
t _{CO}		0.6		0.9		1.1	ns	
t _{COMB}		0.5		0.7		0.9	ns	
t _{SU}	0.2		0.2		0.3		ns	
t _H	0.0		0.0		0.0		ns	
t _{PRE}		2.4		3.1		3.9	ns	
t _{CLR}		2.4		3.1		3.9	ns	
t _{CH}	4.0		4.0		4.0		ns	
t _{CL}	4.0		4.0		4.0		ns	

FLEX 10K Embedded Programmable Logic Device Family Data Sheet

Table 80. EPF10K130V Device EAB Internal Microparameters Note (1)									
Symbol	-2 Spee	-2 Speed Grade		ed Grade	-4 Speed Grade		Unit		
	Min	Мах	Min	Max	Min	Max			
t _{EABDATA1}		1.9		2.4		2.4	ns		
t _{EABDATA2}		3.7		4.7		4.7	ns		
t _{EABWE1}		1.9		2.4		2.4	ns		
t _{EABWE2}		3.7		4.7		4.7	ns		
t _{EABCLK}		0.7		0.9		0.9	ns		
t _{EABCO}		0.5		0.6		0.6	ns		
t _{EABBYPASS}		0.6		0.8		0.8	ns		
t _{EABSU}	1.4		1.8		1.8		ns		
t _{EABH}	0.0		0.0		0.0		ns		
t _{AA}		5.6		7.1		7.1	ns		
t _{WP}	3.7		4.7		4.7		ns		
t _{WDSU}	4.6		5.9		5.9		ns		
t _{WDH}	0.0		0.0		0.0		ns		
t _{WASU}	3.9		5.0		5.0		ns		
t _{WAH}	0.0		0.0		0.0		ns		
t _{WO}		5.6		7.1		7.1	ns		
t _{DD}		5.6		7.1		7.1	ns		
t _{EABOUT}		2.4		3.1		3.1	ns		
t _{EABCH}	4.0		4.0		4.0		ns		
t _{EABCL}	4.0		4.7		4.7		ns		

Symbol	-1 Spee	-1 Speed Grade		d Grade	-3 Spee	d Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{EABDATA1}		3.3		3.9		5.2	ns
t _{EABDATA2}		1.0		1.3		1.7	ns
t _{EABWE1}		2.6		3.1		4.1	ns
t _{EABWE2}		2.7		3.2		4.3	ns
t _{EABCLK}		0.0		0.0		0.0	ns
t _{EABCO}		1.2		1.4		1.8	ns
t _{EABBYPASS}		0.1		0.2		0.2	ns
t _{EABSU}	1.4		1.7		2.2		ns
t _{EABH}	0.1		0.1		0.1		ns
t _{AA}		4.5		5.4		7.3	ns
t _{WP}	2.0		2.4		3.2		ns
t _{WDSU}	0.7		0.8		1.1		ns
t _{WDH}	0.5		0.6		0.7		ns
t _{WASU}	0.6		0.7		0.9		ns
t _{WAH}	0.9		1.1		1.5		ns
t _{WO}		3.3		3.9		5.2	ns
t _{DD}		3.3		3.9		5.2	ns
t _{EABOUT}		0.1		0.1		0.2	ns
t _{EABCH}	3.0		3.5		4.0		ns
t _{EABCL}	3.03		3.5		4.0		ns

