Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 360 | | Number of Logic Elements/Cells | 2880 | | Total RAM Bits | 20480 | | Number of I/O | 189 | | Number of Gates | 116000 | | Voltage - Supply | 3V ~ 3.6V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 70°C (TA) | | Package / Case | 240-BFQFP Exposed Pad | | Supplier Device Package | 240-RQFP (32x32) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/epf10k50vrc240-3 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong | Table 2. FLEX 10K Device I | Table 2. FLEX 10K Device Features | | | | | | | | | |-----------------------------------|-----------------------------------|-------------------------|------------|------------|--|--|--|--|--| | Feature | EPF10K70 | EPF10K100
EPF10K100A | EPF10K130V | EPF10K250A | | | | | | | Typical gates (logic and RAM) (1) | 70,000 | 100,000 | 130,000 | 250,000 | | | | | | | Maximum system gates | 118,000 | 158,000 | 211,000 | 310,000 | | | | | | | LEs | 3,744 | 4,992 | 6,656 | 12,160 | | | | | | | LABs | 468 | 624 | 832 | 1,520 | | | | | | | EABs | 9 | 12 | 16 | 20 | | | | | | | Total RAM bits | 18,432 | 24,576 | 32,768 | 40,960 | | | | | | | Maximum user I/O pins | 358 | 406 | 470 | 470 | | | | | | ### Note to tables: The embedded IEEE Std. 1149.1 JTAG circuitry adds up to 31,250 gates in addition to the listed typical or maximum system gates. ## ...and More Features - Devices are fabricated on advanced processes and operate with a 3.3-V or 5.0-V supply voltage (see Table 3 - In-circuit reconfigurability (ICR) via external configuration device, intelligent controller, or JTAG port - ClockLockTM and ClockBoostTM options for reduced clock delay/skew and clock multiplication - Built-in low-skew clock distribution trees - 100% functional testing of all devices; test vectors or scan chains are not required | Table 3. Supply Voltages for FLEX 10K & FLEX 10KA Devices | | | | | | |---|---------------|--|--|--|--| | 5.0-V Devices | 3.3-V Devices | | | | | | EPF10K10 | EPF10K10A | | | | | | EPF10K20 | EPF10K30A | | | | | | EPF10K30 | EPF10K50V | | | | | | EPF10K40 | EPF10K100A | | | | | | EPF10K50 | EPF10K130V | | | | | | EPF10K70 | EPF10K250A | | | | | | EPF10K100 | | | | | | #### Notes to tables: - (1) FLEX 10K and FLEX 10KA device package types include plastic J-lead chip carrier (PLCC), thin quad flat pack (TQFP), plastic quad flat pack (PQFP), power quad flat pack (RQFP), ball-grid array (BGA), pin-grid array (PGA), and FineLine BGA™ packages. - (2) This option is supported with a 256-pin FineLine BGA package. By using SameFrame pin migration, all FineLine BGA packages are pin compatible. For example, a board can be designed to support both 256-pin and 484-pin FineLine BGA packages. The Altera software automatically avoids conflicting pins when future migration is set. # General Description Altera's FLEX 10K devices are the industry's first embedded PLDs. Based on reconfigurable CMOS SRAM elements, the Flexible Logic Element MatriX (FLEX) architecture incorporates all features necessary to implement common gate array megafunctions. With up to 250,000 gates, the FLEX 10K family provides the density, speed, and features to integrate entire systems, including multiple 32-bit buses, into a single device. FLEX 10K devices are reconfigurable, which allows 100% testing prior to shipment. As a result, the designer is not required to generate test vectors for fault coverage purposes. Additionally, the designer does not need to manage inventories of different ASIC designs; FLEX 10K devices can be configured on the board for the specific functionality required. Table 6 shows FLEX 10K performance for some common designs. All performance values were obtained with Synopsys DesignWare or LPM functions. No special design technique was required to implement the applications; the designer simply inferred or instantiated a function in a Verilog HDL, VHDL, Altera Hardware Description Language (AHDL), or schematic design file. | Application | Resources
Used | | Performance | | | | | |-----------------------------------|-------------------|------|-------------------|-------------------|-------------------|-------------------|-----| | | LEs | EABs | -1 Speed
Grade | -2 Speed
Grade | -3 Speed
Grade | -4 Speed
Grade | | | 16-bit loadable counter (1) | 16 | 0 | 204 | 166 | 125 | 95 | MHz | | 16-bit accumulator (1) | 16 | 0 | 204 | 166 | 125 | 95 | MHz | | 16-to-1 multiplexer (2) | 10 | 0 | 4.2 | 5.8 | 6.0 | 7.0 | ns | | 256 × 8 RAM read cycle speed (3) | 0 | 1 | 172 | 145 | 108 | 84 | MHz | | 256 × 8 RAM write cycle speed (3) | 0 | 1 | 106 | 89 | 68 | 63 | MHz | ### Notes: - (1) The speed grade of this application is limited because of clock high and low specifications. - (2) This application uses combinatorial inputs and outputs. - (3) This application uses registered inputs and outputs. Figure 11. LAB Connections to Row & Column Interconnect Signals on the peripheral control bus can also drive the four global signals, referred to as GLOBAL0 through GLOBAL3 in Tables 8 and 9. The internally generated signal can drive the global signal, providing the same low-skew, low-delay characteristics for an internally generated signal as for a signal driven by an input. This feature is ideal for internally generated clear or clock signals with high fan-out. When a global signal is driven by internal logic, the dedicated input pin that drives that global signal cannot be used. The dedicated input pin should be driven to a known logic state (such as ground) and not be allowed to float. When the chip-wide output enable pin is held low, it will tri-state all pins on the device. This option can be set in the Global Project Device Options menu. Additionally, the registers in the IOE can be reset by holding the chip-wide reset pin low. ### Row-to-IOE Connections When an IOE is used as an input signal, it can drive two separate row channels. The signal is accessible by all LEs within that row. When an IOE is used as an output, the signal is driven by a multiplexer that selects a signal from the row channels. Up to eight IOEs connect to each side of each row channel. See Figure 14. Figure 14. FLEX 10K Row-to-IOE Connections The values for m and n are provided in Table 10. # SameFrame Pin-Outs FLEX 10KE devices support the SameFrame pin-out feature for FineLine BGA packages. The SameFrame pin-out feature is the arrangement of balls on FineLine BGA packages such that the lower-ball-count packages form a subset of the higher-ball-count packages. SameFrame pin-outs provide the flexibility to migrate not only from device to device within the same package, but also from one package to another. A given printed circuit board (PCB) layout can support multiple device density/package combinations. For example, a single board layout can support a range of devices from an EPF10K10A device in a 256-pin FineLine BGA package to an EPF10K100A device in a 484-pin FineLine BGA package. The Altera software provides support to design PCBs with SameFrame pin-out devices. Devices can be defined for present and future use. The Altera software generates pin-outs describing how to lay out a board to take advantage of this migration (see Figure 16). Printed Circuit Board Designed for 484-PinFineLine BGA Package 256-Pin FineLine BGA 256-Pin FineLine BGA 256-Pin FineLine BGA 256-Pin FineLine BGA Figure 16. SameFrame Pin-Out Example (Reduced I/O Count or Logic Requirements) (Increased I/O Count or Logic Requirements) Table 12 describes the FLEX 10K device supply voltages and MultiVolt $\rm I/O$ support levels. | Devices | Supply Vo | oltage (V) | MultiVolt I/O Sup | MultiVolt I/O Support Levels (V) | | | |---------------|--------------------|-------------------|-------------------|----------------------------------|--|--| | | V _{CCINT} | V _{CCIO} | Input | Output | | | | FLEX 10K (1) | 5.0 | 5.0 | 3.3 or 5.0 | 5.0 | | | | | 5.0 | 3.3 | 3.3 or 5.0 | 3.3 or 5.0 | | | | EPF10K50V (1) | 3.3 | 3.3 | 3.3 or 5.0 | 3.3 or 5.0 | | | | EPF10K130V | 3.3 | 3.3 | 3.3 or 5.0 | 3.3 or 5.0 | | | | FLEX 10KA (1) | 3.3 | 3.3 | 2.5, 3.3, or 5.0 | 3.3 or 5.0 | | | | | 3.3 | 2.5 | 2.5, 3.3, or 5.0 | 2.5 | | | #### Note (1) 240-pin QFP packages do not support the MultiVolt I/O features, so they do not have separate V_{CCIO} pins. ### Power Sequencing & Hot-Socketing Because FLEX 10K devices can be used in a multi-voltage environment, they have been designed specifically to tolerate any possible power-up sequence. The $V_{\rm CCIO}$ and $V_{\rm CCINT}$ power supplies can be powered in any order. Signals can be driven into FLEX 10KA devices before and during power up without damaging the device. Additionally, FLEX 10KA devices do not drive out during power up. Once operating conditions are reached, FLEX 10KA devices operate as specified by the user. IEEE Std. 1149.1 (JTAG) Boundary-Scan Support All FLEX 10K devices provide JTAG BST circuitry that complies with the IEEE Std. 1149.1-1990 specification. All FLEX 10K devices can also be configured using the JTAG pins through the BitBlaster serial download cable, or ByteBlasterMV parallel port download cable, or via hardware that uses the JamTM programming and test language. JTAG BST can be performed before or after configuration, but not during configuration. FLEX 10K devices support the JTAG instructions shown in Table 13. Figure 21 shows the typical output drive characteristics of EPF10K50V and EPF10K130V devices. Typical I_O Output Current (mA) 40 V_{CC} = 3.3 V Room Temperature 1 2 V_O Output Voltage (V) Figure 21. Output Drive Characteristics of EPF10K50V & EPF10K130V Devices Tables 26 through 31 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for 3.3-V FLEX 10K devices. | Table 2 | Table 26. FLEX 10KA 3.3-V Device Absolute Maximum Ratings Note (1) | | | | | | | | | |------------------|----------------------------------------------------------------------------|------------------------------|------|------|------|--|--|--|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | | | | V _{CC} | Supply voltage | With respect to ground (2) | -0.5 | 4.6 | V | | | | | | V _I | DC input voltage | | -2.0 | 5.75 | V | | | | | | I _{OUT} | DC output current, per pin | | -25 | 25 | mA | | | | | | T _{STG} | Storage temperature | No bias | -65 | 150 | ° C | | | | | | T _{AMB} | Ambient temperature | Under bias | -65 | 135 | °C | | | | | | TJ | Junction temperature | Ceramic packages, under bias | | 150 | ° C | | | | | | | | PQFP, TQFP, RQFP, and BGA | | 135 | ° C | | | | | | | | packages, under bias | | | | | | | | Figures 25 through 27 show the delays that correspond to various paths and functions within the LE, IOE, and EAB timing models. Figure 25. FLEX 10K Device LE Timing Model Tables 39 through 47 show EPF10K10 and EPF10K20 device internal and external timing parameters. | Symbol | -3 Spee | d Grade | -4 Spee | d Grade | Unit | |---------------------|---------|---------|---------|---------|------| | | Min | Max | Min | Max | | | t_{LUT} | | 1.4 | | 1.7 | ns | | t _{CLUT} | | 0.6 | | 0.7 | ns | | t _{RLUT} | | 1.5 | | 1.9 | ns | | t _{PACKED} | | 0.6 | | 0.9 | ns | | t_{EN} | | 1.0 | | 1.2 | ns | | t _{CICO} | | 0.2 | | 0.3 | ns | | t _{CGEN} | | 0.9 | | 1.2 | ns | | t _{CGENR} | | 0.9 | | 1.2 | ns | | t _{CASC} | | 0.8 | | 0.9 | ns | | $t_{\mathbb{C}}$ | | 1.3 | | 1.5 | ns | | t_{CO} | | 0.9 | | 1.1 | ns | | t_{COMB} | | 0.5 | | 0.6 | ns | | t _{SU} | 1.3 | | 2.5 | | ns | | t_H | 1.4 | | 1.6 | | ns | | t _{PRE} | | 1.0 | | 1.2 | ns | | t _{CLR} | | 1.0 | | 1.2 | ns | | t _{CH} | 4.0 | | 4.0 | | ns | | t_{CL} | 4.0 | | 4.0 | | ns | | Symbol | -3 Spee | d Grade | -4 Spee | d Grade | Unit | |--------------------------|---------|---------|---------|---------|------| | | Min | Max | Min | Max | | | t _{DIN2IOE} | | 4.8 | | 6.2 | ns | | t _{DIN2LE} | | 2.6 | | 3.8 | ns | | t _{DIN2DATA} | | 4.3 | | 5.2 | ns | | t _{DCLK2IOE} | | 3.4 | | 4.0 | ns | | t _{DCLK2LE} | | 2.6 | | 3.8 | ns | | t _{SAMELAB} | | 0.6 | | 0.6 | ns | | t _{SAMEROW} | | 3.6 | | 3.8 | ns | | t _{SAME} COLUMN | | 0.9 | | 1.1 | ns | | t _{DIFFROW} | | 4.5 | | 4.9 | ns | | t _{TWOROWS} | | 8.1 | | 8.7 | ns | | t _{LEPERIPH} | | 3.3 | | 3.9 | ns | | t _{LABCARRY} | | 0.5 | | 0.8 | ns | | t _{LABCASC} | | 2.7 | | 3.0 | ns | | Symbol | -3 Spee | d Grade | -4 Spee | d Grade | Unit | |-------------------------|---------|---------|---------|---------|------| | | Min | Max | Min | Max | | | t _{DIN2IOE} | | 5.2 | | 6.6 | ns | | t _{DIN2LE} | | 2.6 | | 3.8 | ns | | t _{DIN2DATA} | | 4.3 | | 5.2 | ns | | t _{DCLK2IOE} | | 4.3 | | 4.0 | ns | | t _{DCLK2LE} | | 2.6 | | 3.8 | ns | | t _{SAMELAB} | | 0.6 | | 0.6 | ns | | t _{SAMEROW} | | 3.7 | | 3.9 | ns | | t _{SAMECOLUMN} | | 1.4 | | 1.6 | ns | | t _{DIFFROW} | | 5.1 | | 5.5 | ns | | t _{TWOROWS} | | 8.8 | | 9.4 | ns | | t _{LEPERIPH} | | 4.7 | | 5.6 | ns | | t _{LABCARRY} | | 0.5 | | 0.8 | ns | | t _{LABCASC} | | 2.7 | | 3.0 | ns | | Table 65. EPF10K100 Devic | Table 65. EPF10K100 Device IOE Timing Microparameters Note (1) | | | | | | | | |--------------------------------------------------------------|------------------------------------------------------------------------|-----------|----------------|-----|----------------|------|------|--| | Symbol | -3DX Sp | eed Grade | -3 Speed Grade | | -4 Speed Grade | | Unit | | | | Min | Max | Min | Max | Min | Max | | | | t_{IOD} | | 0.0 | | 0.0 | | 0.0 | ns | | | t _{IOC} | | 0.5 | | 0.5 | | 0.7 | ns | | | t _{IOCO} | | 0.4 | | 0.4 | | 0.9 | ns | | | t _{IOCOMB} | | 0.0 | | 0.0 | | 0.0 | ns | | | t _{IOSU} | 5.5 | | 5.5 | | 6.7 | | ns | | | t _{IOH} | 0.5 | | 0.5 | | 0.7 | | ns | | | t _{IOCLR} | | 0.7 | | 0.7 | | 1.6 | ns | | | t _{OD1} | | 4.0 | | 4.0 | | 5.0 | ns | | | t _{OD2} | | 6.3 | | 6.3 | | 7.3 | ns | | | t_{OD3} | | 7.7 | | 7.7 | | 8.7 | ns | | | t_{XZ} | | 6.2 | | 6.2 | | 6.8 | ns | | | t _{ZX1} | | 6.2 | | 6.2 | | 6.8 | ns | | | t_{ZX2} | | 8.5 | | 8.5 | | 9.1 | ns | | | t_{ZX3} | | 9.9 | | 9.9 | | 10.5 | ns | | | t _{INREG} without ClockLock or ClockBoost circuitry | | 9.0 | | 9.0 | | 10.5 | ns | | | t _{INREG} with ClockLock or ClockBoost circuitry | | 3.0 | | - | | - | ns | | | t _{IOFD} | | 8.1 | | 8.1 | | 10.3 | ns | | | t _{INCOMB} | | 8.1 | | 8.1 | | 10.3 | ns | | | Symbol | -3DX Spe | -3DX Speed Grade | | -3 Speed Grade | | d Grade | Unit | | |-------------------------|----------|------------------|------|----------------|------|---------|------|--| | | Min | Max | Min | Max | Min | Max | | | | t _{EABAA} | | 13.7 | | 13.7 | | 17.0 | ns | | | t _{EABRCCOMB} | 13.7 | | 13.7 | | 17.0 | | ns | | | t _{EABRCREG} | 9.7 | | 9.7 | | 11.9 | | ns | | | t _{EABWP} | 5.8 | | 5.8 | | 7.2 | | ns | | | t _{EABWCCOMB} | 7.3 | | 7.3 | | 9.0 | | ns | | | t _{EABWCREG} | 13.0 | | 13.0 | | 16.0 | | ns | | | t _{EABDD} | | 10.0 | | 10.0 | | 12.5 | ns | | | t _{EABDATA} CO | | 2.0 | | 2.0 | | 3.4 | ns | | | t _{EABDATASU} | 5.3 | | 5.3 | | 5.6 | | ns | | | t _{EABDATAH} | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{EABWESU} | 5.5 | | 5.5 | | 5.8 | | ns | | | t _{EABWEH} | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{EABWDSU} | 5.5 | | 5.5 | | 5.8 | | ns | | | t _{EABWDH} | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{EABWASU} | 2.1 | | 2.1 | | 2.7 | | ns | | | t _{EABWAH} | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{EABWO} | | 9.5 | | 9.5 | | 11.8 | ns | | | Symbol | -2 Spee | -2 Speed Grade | | -3 Speed Grade | | -4 Speed Grade | | |---------------------|---------|----------------|-----|----------------|-----|----------------|----| | | Min | Max | Min | Max | Min | Max | | | t_{IOD} | | 1.3 | | 1.6 | | 2.0 | ns | | t _{IOC} | | 0.4 | | 0.5 | | 0.7 | ns | | t _{IOCO} | | 0.3 | | 0.4 | | 0.5 | ns | | t _{IOCOMB} | | 0.0 | | 0.0 | | 0.0 | ns | | t _{IOSU} | 2.6 | | 3.3 | | 3.8 | | ns | | t_{IOH} | 0.0 | | 0.0 | | 0.0 | | ns | | t _{IOCLR} | | 1.7 | | 2.2 | | 2.7 | ns | | t _{OD1} | | 3.5 | | 4.4 | | 5.0 | ns | | t _{OD2} | | _ | | _ | | - | ns | | t _{OD3} | | 8.2 | | 8.1 | | 9.7 | ns | | t_{XZ} | | 4.9 | | 6.3 | | 7.4 | ns | | t_{ZX1} | | 4.9 | | 6.3 | | 7.4 | ns | | t _{ZX2} | | - | | _ | | - | ns | | t _{ZX3} | | 9.6 | | 10.0 | | 12.1 | ns | | t _{INREG} | | 7.9 | | 10.0 | | 12.6 | ns | | t _{IOFD} | | 6.2 | | 7.9 | | 9.9 | ns | | t_{INCOMB} | | 6.2 | | 7.9 | | 9.9 | ns | | Symbol | -2 Spee | -2 Speed Grade | | ed Grade | -4 Speed Grade | | Unit | |--------------------------|---------|----------------|-----|----------|----------------|------|------| | | Min | Max | Min | Max | Min | Max | Ì | | t _{DIN2IOE} | | 8.0 | | 9.0 | | 9.5 | ns | | t _{DIN2LE} | | 2.4 | | 3.0 | | 3.1 | ns | | t _{DIN2DATA} | | 5.0 | | 6.3 | | 7.4 | ns | | t _{DCLK2IOE} | | 3.6 | | 4.6 | | 5.1 | ns | | t _{DCLK2LE} | | 2.4 | | 3.0 | | 3.1 | ns | | t _{SAMELAB} | | 0.4 | | 0.6 | | 0.8 | ns | | t _{SAMEROW} | | 4.5 | | 5.3 | | 6.5 | ns | | t _{SAME} COLUMN | | 9.0 | | 9.5 | | 9.7 | ns | | t _{DIFFROW} | | 13.5 | | 14.8 | | 16.2 | ns | | t _{TWOROWS} | | 18.0 | | 20.1 | | 22.7 | ns | | t _{LEPERIPH} | | 8.1 | | 8.6 | | 9.5 | ns | | t _{LABCARRY} | | 0.6 | | 0.8 | | 1.0 | ns | | t _{LABCASC} | | 0.8 | | 1.0 | | 1.2 | ns | | Table 83. EPF10K130 | Table 83. EPF10K130V Device External Timing Parameters Note (1) | | | | | | | | |----------------------------|-------------------------------------------------------------------|----------|---------|---------|---------|------|----|--| | Symbol | -2 Spec | ed Grade | -3 Spee | d Grade | -4 Spee | Unit | | | | | Min | Max | Min | Max | Min | Max | | | | t _{DRR} | | 15.0 | | 19.1 | | 24.2 | ns | | | t _{INSU} (2), (3) | 6.9 | | 8.6 | | 11.0 | | ns | | | t _{INH} (3) | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{оитсо} (3) | 2.0 | 7.8 | 2.0 | 9.9 | 2.0 | 11.3 | ns | | | Table 84. EPF10K13 | Table 84. EPF10K130V Device External Bidirectional Timing Parameters Note (1) | | | | | | | | | |-------------------------|---------------------------------------------------------------------------------------|----------|---------|----------|---------|------|----|--|--| | Symbol | -2 Spec | ed Grade | -3 Spec | ed Grade | -4 Spee | Unit | | | | | | Min | Max | Min | Max | Min | Max | | | | | t _{INSUBIDIR} | 6.7 | | 8.5 | | 10.8 | | ns | | | | t _{INHBIDIR} | 0.0 | | 0.0 | | 0.0 | | ns | | | | t _{OUTCOBIDIR} | 2.0 | 6.9 | 2.0 | 8.8 | 2.0 | 10.2 | ns | | | | t _{XZBIDIR} | | 12.9 | | 16.4 | | 19.3 | ns | | | | t _{ZXBIDIR} | | 12.9 | | 16.4 | | 19.3 | ns | | | | Symbol | -1 Speed Grade | | -2 Snee | d Grade | -3 Spee | Unit | | |------------------------|----------------|-----|---------|---------|---------|------|-------| | , | Min | Max | Min | Max | Min | Max | · · · | | t _{EABAA} | | 8.1 | | 9.8 | | 13.1 | ns | | t _{EABRCCOMB} | 8.1 | | 9.8 | | 13.1 | | ns | | t _{EABRCREG} | 5.8 | | 6.9 | | 9.3 | | ns | | t _{EABWP} | 2.0 | | 2.4 | | 3.2 | | ns | | t _{EABWCCOMB} | 3.5 | | 4.2 | | 5.6 | | ns | | t _{EABWCREG} | 9.4 | | 11.2 | | 14.8 | | ns | | t _{EABDD} | | 6.9 | | 8.3 | | 11.0 | ns | | t _{EABDATACO} | | 1.3 | | 1.5 | | 2.0 | ns | | t _{EABDATASU} | 2.4 | | 3.0 | | 3.9 | | ns | | t _{EABDATAH} | 0.0 | | 0.0 | | 0.0 | | ns | | t _{EABWESU} | 4.1 | | 4.9 | | 6.5 | | ns | | t _{EABWEH} | 0.0 | | 0.0 | | 0.0 | | ns | | t _{EABWDSU} | 1.4 | | 1.6 | | 2.2 | | ns | | t _{EABWDH} | 0.0 | | 0.0 | _ | 0.0 | | ns | | t _{EABWASU} | 2.5 | | 3.0 | _ | 4.1 | | ns | | t _{EABWAH} | 0.0 | | 0.0 | | 0.0 | | ns | | t _{EABWO} | | 6.2 | | 7.5 | | 9.9 | ns | | Symbol | -1 Speed Grade | | -2 Spee | d Grade | -3 Spee | Unit | | |------------------------|----------------|-----|---------|---------|---------|------|----| | | Min | Max | Min | Max | Min | Max | | | t _{EABAA} | | 9.7 | | 11.6 | | 16.2 | ns | | t _{EABRCCOMB} | 9.7 | | 11.6 | | 16.2 | | ns | | t _{EABRCREG} | 5.9 | | 7.1 | | 9.7 | | ns | | t _{EABWP} | 3.8 | | 4.5 | | 5.9 | | ns | | t _{EABWCCOMB} | 4.0 | | 4.7 | | 6.3 | | ns | | t _{EABWCREG} | 9.8 | | 11.6 | | 16.6 | | ns | | t _{EABDD} | | 9.2 | | 11.0 | | 16.1 | ns | | ^t EABDATACO | | 1.7 | | 2.1 | | 3.4 | ns | | t _{EABDATASU} | 2.3 | | 2.7 | | 3.5 | | ns | | t _{EABDATAH} | 0.0 | | 0.0 | | 0.0 | | ns | | t _{EABWESU} | 3.3 | | 3.9 | | 4.9 | | ns | | t _{EABWEH} | 0.0 | | 0.0 | | 0.0 | | ns | | t _{EABWDSU} | 3.2 | | 3.8 | | 5.0 | | ns | | t _{EABWDH} | 0.0 | | 0.0 | | 0.0 | | ns | | t _{EABWASU} | 3.7 | | 4.4 | | 5.1 | | ns | | t _{EABWAH} | 0.0 | | 0.0 | | 0.0 | | ns | | t _{EABWO} | | 6.1 | | 7.3 | | 11.3 | ns | | Symbol | -1 Spee | -1 Speed Grade | | d Grade | -3 Spee | Unit | | |---------------------|---------|----------------|---------------------------------------|---------|---------|------|----| | | Min | Max | Min | Max | Min | Max | | | t_{IOD} | | 2.5 | | 2.9 | | 3.4 | ns | | t_{IOC} | | 0.3 | | 0.3 | | 0.4 | ns | | t_{IOCO} | | 0.2 | | 0.2 | | 0.3 | ns | | t_{IOCOMB} | | 0.5 | | 0.6 | | 0.7 | ns | | t_{IOSU} | 1.3 | | 1.7 | | 1.8 | | ns | | t_{IOH} | 0.2 | | 0.2 | | 0.3 | | ns | | t_{IOCLR} | | 1.0 | | 1.2 | | 1.4 | ns | | t_{OD1} | | 2.2 | | 2.6 | | 3.0 | ns | | t_{OD2} | | 4.5 | | 5.3 | | 6.1 | ns | | t _{OD3} | | 6.8 | | 7.9 | | 9.3 | ns | | t_{XZ} | | 2.7 | | 3.1 | | 3.7 | ns | | t _{ZX1} | | 2.7 | | 3.1 | | 3.7 | ns | | t_{ZX2} | | 5.0 | | 5.8 | | 6.8 | ns | | t_{ZX3} | | 7.3 | | 8.4 | | 10.0 | ns | | t _{INREG} | | 5.3 | | 6.1 | | 7.2 | ns | | t _{IOFD} | | 4.7 | | 5.5 | | 6.4 | ns | | t _{INCOMB} | | 4.7 | · · · · · · · · · · · · · · · · · · · | 5.5 | | 6.4 | ns | | Symbol | -1 Speed Grade | | -2 Spee | d Grade | -3 Spee | Unit | | |------------------------|----------------|-----|---------|---------|---------|------|----| | | Min | Max | Min | Max | Min | Max | | | t _{EABAA} | | 6.1 | | 6.8 | | 8.2 | ns | | t _{EABRCCOMB} | 6.1 | | 6.8 | | 8.2 | | ns | | t _{EABRCREG} | 4.6 | | 5.1 | | 6.1 | | ns | | t _{EABWP} | 5.6 | | 6.4 | | 7.5 | | ns | | t _{EABWCCOMB} | 5.8 | | 6.6 | | 7.9 | | ns | | t _{EABWCREG} | 15.8 | | 17.8 | | 21.0 | | ns | | t _{EABDD} | | 5.7 | | 6.4 | | 7.8 | ns | | t _{EABDATACO} | | 0.7 | | 0.8 | | 1.0 | ns | | t _{EABDATASU} | 4.5 | | 5.1 | | 5.9 | | ns | | t _{EABDATAH} | 0.0 | | 0.0 | | 0.0 | | ns | | t _{EABWESU} | 8.2 | | 9.3 | | 10.9 | | ns | | t _{EABWEH} | 0.0 | | 0.0 | | 0.0 | | ns | | t _{EABWDSU} | 1.7 | | 1.8 | | 2.1 | | ns | | t _{EABWDH} | 0.0 | | 0.0 | | 0.0 | | ns | | t _{EABWASU} | 0.9 | | 0.9 | | 1.0 | | ns | | t _{EABWAH} | 0.0 | | 0.0 | | 0.0 | | ns | | t _{EABWO} | | 5.3 | | 6.0 | | 7.4 | ns | Multiple FLEX 10K devices can be configured in any of the five configuration schemes by connecting the configuration enable (nCE) and configuration enable output (nCEO) pins on each device. | Table 116. Data Sources for Configuration | | | | | | |-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|--|--|--| | Configuration Scheme | Data Source | | | | | | Configuration device | EPC1, EPC2, EPC16, or EPC1441 configuration device | | | | | | Passive serial (PS) | BitBlaster, MasterBlaster, or ByteBlasterMV download cable, or serial data source | | | | | | Passive parallel asynchronous (PPA) | Parallel data source | | | | | | Passive parallel synchronous (PPS) | Parallel data source | | | | | | JTAG | BitBlaster, MasterBlaster, or ByteBlasterMV download cable, or microprocessor with Jam STAPL file or Jam Byte-Code file | | | | | # Device Pin-Outs See the Altera web site (http://www.altera.com) or the Altera Digital Library for pin-out information. # Revision History The information contained in the *FLEX 10K Embedded Programmable Logic Device Family Data Sheet* version 4.2 supersedes information published in previous versions. ## **Version 4.2 Changes** The following change was made to version 4.2 of the *FLEX 10K Embedded Programmable Logic Device Family Data Sheet*: updated Figure 13. ## **Version 4.1 Changes** The following changes were made to version 4.1 of the FLEX 10K Embedded Programmable Logic Device Family Data Sheet. - Updated General Description section - Updated I/O Element section - Updated SameFrame Pin-Outs section - Updated Figure 16 - Updated Tables 13 and 116 - Added Note 9 to Table 19 - Added Note 10 to Table 24 - Added Note 10 to Table 28 101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com Applications Hotline: (800) 800-EPLD Customer Marketing: (408) 544-7104 Literature Services: lit_req@altera.com Copyright © 2003 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. I.S. EN ISO 9001