Welcome to **E-XFL.COM** ## Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. #### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--------------------------------------------------------------| | Product Status | Obsolete | | Number of LABs/CLBs | 468 | | Number of Logic Elements/Cells | 3744 | | Total RAM Bits | 18432 | | Number of I/O | 189 | | Number of Gates | 118000 | | Voltage - Supply | 4.75V ~ 5.25V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 70°C (TA) | | Package / Case | 240-BFQFP Exposed Pad | | Supplier Device Package | 240-RQFP (32x32) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/epf10k70rc240-3gz | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong #### Notes to tables: - (1) FLEX 10K and FLEX 10KA device package types include plastic J-lead chip carrier (PLCC), thin quad flat pack (TQFP), plastic quad flat pack (PQFP), power quad flat pack (RQFP), ball-grid array (BGA), pin-grid array (PGA), and FineLine BGA™ packages. - (2) This option is supported with a 256-pin FineLine BGA package. By using SameFrame pin migration, all FineLine BGA packages are pin compatible. For example, a board can be designed to support both 256-pin and 484-pin FineLine BGA packages. The Altera software automatically avoids conflicting pins when future migration is set. # General Description Altera's FLEX 10K devices are the industry's first embedded PLDs. Based on reconfigurable CMOS SRAM elements, the Flexible Logic Element MatriX (FLEX) architecture incorporates all features necessary to implement common gate array megafunctions. With up to 250,000 gates, the FLEX 10K family provides the density, speed, and features to integrate entire systems, including multiple 32-bit buses, into a single device. FLEX 10K devices are reconfigurable, which allows 100% testing prior to shipment. As a result, the designer is not required to generate test vectors for fault coverage purposes. Additionally, the designer does not need to manage inventories of different ASIC designs; FLEX 10K devices can be configured on the board for the specific functionality required. Table 6 shows FLEX 10K performance for some common designs. All performance values were obtained with Synopsys DesignWare or LPM functions. No special design technique was required to implement the applications; the designer simply inferred or instantiated a function in a Verilog HDL, VHDL, Altera Hardware Description Language (AHDL), or schematic design file. | Application | | urces<br>sed | | Perfor | mance | | Units | |-----------------------------------|-----|--------------|-------------------|-------------------|-------------------|-------------------|-------| | | LEs | EABs | -1 Speed<br>Grade | -2 Speed<br>Grade | -3 Speed<br>Grade | -4 Speed<br>Grade | | | 16-bit loadable counter (1) | 16 | 0 | 204 | 166 | 125 | 95 | MHz | | 16-bit accumulator (1) | 16 | 0 | 204 | 166 | 125 | 95 | MHz | | 16-to-1 multiplexer (2) | 10 | 0 | 4.2 | 5.8 | 6.0 | 7.0 | ns | | 256 × 8 RAM read cycle speed (3) | 0 | 1 | 172 | 145 | 108 | 84 | MHz | | 256 × 8 RAM write cycle speed (3) | 0 | 1 | 106 | 89 | 68 | 63 | MHz | #### Notes: - (1) The speed grade of this application is limited because of clock high and low specifications. - (2) This application uses combinatorial inputs and outputs. - (3) This application uses registered inputs and outputs. #### LE Operating Modes The FLEX 10K LE can operate in the following four modes: - Normal mode - Arithmetic mode - Up/down counter mode - Clearable counter mode Each of these modes uses LE resources differently. In each mode, seven available inputs to the LE—the four data inputs from the LAB local interconnect, the feedback from the programmable register, and the carry-in and cascade-in from the previous LE—are directed to different destinations to implement the desired logic function. Three inputs to the LE provide clock, clear, and preset control for the register. The Altera software, in conjunction with parameterized functions such as LPM and DesignWare functions, automatically chooses the appropriate mode for common functions such as counters, adders, and multipliers. If required, the designer can also create special-purpose functions which use a specific LE operating mode for optimal performance. The architecture provides a synchronous clock enable to the register in all four modes. The Altera software can set DATA1 to enable the register synchronously, providing easy implementation of fully synchronous designs. Figure 9 shows the LE operating modes. #### Normal Mode The normal mode is suitable for general logic applications and wide decoding functions that can take advantage of a cascade chain. In normal mode, four data inputs from the LAB local interconnect and the carry-in are inputs to a four-input LUT. The Compiler automatically selects the carry-in or the DATA3 signal as one of the inputs to the LUT. The LUT output can be combined with the cascade-in signal to form a cascade chain through the cascade-out signal. Either the register or the LUT can be used to drive both the local interconnect and the FastTrack Interconnect at the same time. The LUT and the register in the LE can be used independently; this feature is known as register packing. To support register packing, the LE has two outputs; one drives the local interconnect and the other drives the FastTrack Interconnect. The DATA4 signal can drive the register directly, allowing the LUT to compute a function that is independent of the registered signal; a three-input function can be computed in the LUT, and a fourth independent signal can be registered. Alternatively, a four-input function can be generated, and one of the inputs to this function can be used to drive the register. The register in a packed LE can still use the clock enable, clear, and preset signals in the LE. In a packed LE, the register can drive the FastTrack Interconnect while the LUT drives the local interconnect, or vice versa. #### Arithmetic Mode The arithmetic mode offers 2 three-input LUTs that are ideal for implementing adders, accumulators, and comparators. One LUT computes a three-input function, and the other generates a carry output. As shown in Figure 9 on page 19, the first LUT uses the carry-in signal and two data inputs from the LAB local interconnect to generate a combinatorial or registered output. For example, in an adder, this output is the sum of three signals: a, b, and carry-in. The second LUT uses the same three signals to generate a carry-out signal, thereby creating a carry chain. The arithmetic mode also supports simultaneous use of the cascade chain. During compilation, the Compiler automatically selects the best control signal implementation. Because the clear and preset functions are active-low, the Compiler automatically assigns a logic high to an unused clear or preset. The clear and preset logic is implemented in one of the following six modes chosen during design entry: - Asynchronous clear - Asynchronous preset - Asynchronous clear and preset - Asynchronous load with clear - Asynchronous load with preset - Asynchronous load without clear or preset In addition to the six clear and preset modes, FLEX 10K devices provide a chip-wide reset pin that can reset all registers in the device. Use of this feature is set during design entry. In any of the clear and preset modes, the chip-wide reset overrides all other signals. Registers with asynchronous presets may be preset when the chip-wide reset is asserted. Inversion can be used to implement the asynchronous preset. Figure 10 shows examples of how to enter a section of a design for the desired functionality. #### Slew-Rate Control The output buffer in each IOE has an adjustable output slew rate that can be configured for low-noise or high-speed performance. A slower slew rate reduces system noise and adds a maximum delay of approximately 2.9 ns. The fast slew rate should be used for speed-critical outputs in systems that are adequately protected against noise. Designers can specify the slew rate on a pin-by-pin basis during design entry or assign a default slew rate to all pins on a device-wide basis. The slow slew rate setting affects only the falling edge of the output. #### **Open-Drain Output Option** FLEX 10K devices provide an optional open-drain (electrically equivalent to an open-collector) output for each I/O pin. This open-drain output enables the device to provide system-level control signals (e.g., interrupt and write enable signals) that can be asserted by any of several devices. It can also provide an additional wired-OR plane. Additionally, the Altera software can convert tri-state buffers with grounded data inputs to open-drain pins automatically. Open-drain output pins on FLEX 10K devices (with a pull-up resistor to the 5.0-V supply) can drive 5.0-V CMOS input pins that require a $V_{\rm IH}$ of 3.5 V. When the open-drain pin is active, it will drive low. When the pin is inactive, the trace will be pulled up to 5.0 V by the resistor. The open-drain pin will only drive low or tri-state; it will never drive high. The rise time is dependent on the value of the pull-up resistor and load impedance. The $I_{\rm OL}$ current specification should be considered when selecting a pull-up resistor. Output pins on 5.0-V FLEX 10K devices with $V_{CCIO} = 3.3 \text{ V}$ or 5.0 V (with a pull-up resistor to the 5.0-V supply) can also drive 5.0-V CMOS input pins. In this case, the pull-up transistor will turn off when the pin voltage exceeds 3.3 V. Therefore, the pin does not have to be open-drain. #### MultiVolt I/O Interface The FLEX 10K device architecture supports the MultiVolt I/O interface feature, which allows FLEX 10K devices to interface with systems of differing supply voltages. These devices have one set of $V_{CC}$ pins for internal operation and input buffers (VCCINT) and another set for I/O output drivers (VCCIO). Table 12 describes the FLEX 10K device supply voltages and MultiVolt $\rm I/O$ support levels. | Devices | Supply Vo | oltage (V) | MultiVolt I/O Sup | port Levels (V) | |---------------|--------------------|-------------------|-------------------|-----------------| | | V <sub>CCINT</sub> | V <sub>CCIO</sub> | Input | Output | | FLEX 10K (1) | 5.0 | 5.0 | 3.3 or 5.0 | 5.0 | | | 5.0 | 3.3 | 3.3 or 5.0 | 3.3 or 5.0 | | EPF10K50V (1) | 3.3 | 3.3 | 3.3 or 5.0 | 3.3 or 5.0 | | EPF10K130V | 3.3 | 3.3 | 3.3 or 5.0 | 3.3 or 5.0 | | FLEX 10KA (1) | 3.3 | 3.3 | 2.5, 3.3, or 5.0 | 3.3 or 5.0 | | | 3.3 | 2.5 | 2.5, 3.3, or 5.0 | 2.5 | #### Note (1) 240-pin QFP packages do not support the MultiVolt I/O features, so they do not have separate V<sub>CCIO</sub> pins. #### Power Sequencing & Hot-Socketing Because FLEX 10K devices can be used in a multi-voltage environment, they have been designed specifically to tolerate any possible power-up sequence. The $V_{\rm CCIO}$ and $V_{\rm CCINT}$ power supplies can be powered in any order. Signals can be driven into FLEX 10KA devices before and during power up without damaging the device. Additionally, FLEX 10KA devices do not drive out during power up. Once operating conditions are reached, FLEX 10KA devices operate as specified by the user. IEEE Std. 1149.1 (JTAG) Boundary-Scan Support All FLEX 10K devices provide JTAG BST circuitry that complies with the IEEE Std. 1149.1-1990 specification. All FLEX 10K devices can also be configured using the JTAG pins through the BitBlaster serial download cable, or ByteBlasterMV parallel port download cable, or via hardware that uses the Jam<sup>TM</sup> programming and test language. JTAG BST can be performed before or after configuration, but not during configuration. FLEX 10K devices support the JTAG instructions shown in Table 13. | Table 1 | 8. FLEX 10K 5.0-V Device Reco | mmended Operating Conditions | | | | |--------------------|-----------------------------------------------------|------------------------------|-------------|--------------------------|------| | Symbol | Parameter | Conditions | Min | Max | Unit | | V <sub>CCINT</sub> | Supply voltage for internal logic and input buffers | (3), (4) | 4.75 (4.50) | 5.25 (5.50) | V | | V <sub>CCIO</sub> | Supply voltage for output buffers, 5.0-V operation | (3), (4) | 4.75 (4.50) | 5.25 (5.50) | V | | | Supply voltage for output buffers, 3.3-V operation | (3), (4) | 3.00 (3.00) | 3.60 (3.60) | V | | VI | Input voltage | | -0.5 | V <sub>CCINT</sub> + 0.5 | V | | Vo | Output voltage | | 0 | V <sub>CCIO</sub> | V | | T <sub>A</sub> | Ambient temperature | For commercial use | 0 | 70 | °C | | | | For industrial use | -40 | 85 | °C | | T <sub>J</sub> | Operating temperature | For commercial use | 0 | 85 | °C | | | | For industrial use | -40 | 100 | °C | | t <sub>R</sub> | Input rise time | | | 40 | ns | | t <sub>F</sub> | Input fall time | | | 40 | ns | | Symbol | Parameter | Conditions | |------------------------|----------------------------------------------------------------------------------------|------------| | t <sub>EABAA</sub> | EAB address access delay | | | t <sub>EABRCCOMB</sub> | EAB asynchronous read cycle time | | | t <sub>EABRCREG</sub> | EAB synchronous read cycle time | | | t <sub>EABWP</sub> | EAB write pulse width | | | t <sub>EABWCCOMB</sub> | EAB asynchronous write cycle time | | | t <sub>EABWCREG</sub> | EAB synchronous write cycle time | | | t <sub>EABDD</sub> | EAB data-in to data-out valid delay | | | t <sub>EABDATACO</sub> | EAB clock-to-output delay when using output registers | | | t <sub>EABDATASU</sub> | EAB data/address setup time before clock when using input register | | | t <sub>EABDATAH</sub> | EAB data/address hold time after clock when using input register | | | t <sub>EABWESU</sub> | EAB WE setup time before clock when using input register | | | t <sub>EABWEH</sub> | EAB WE hold time after clock when using input register | | | t <sub>EABWDSU</sub> | EAB data setup time before falling edge of write pulse when not using input registers | | | t <sub>EABWDH</sub> | EAB data hold time after falling edge of write pulse when not using input | | | | registers | | | t <sub>EABWASU</sub> | EAB address setup time before rising edge of write pulse when not using | | | | input registers | | | <sup>t</sup> EABWAH | EAB address hold time after falling edge of write pulse when not using input registers | | | t <sub>EABWO</sub> | EAB write enable to data output valid delay | | #### Notes to tables: - Microparameters are timing delays contributed by individual architectural elements. These parameters cannot be measured explicitly. - (2) Operating conditions: $V_{CCIO} = 5.0 \text{ V} \pm 5\%$ for commercial use in FLEX 10K devices. $V_{CCIO}$ = 5.0 V ± 10% for industrial use in FLEX 10K devices. $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial or industrial use in FLEX 10KA devices. - (3) Operating conditions: $V_{CCIO} = 3.3 \text{ V} \pm 10\%$ for commercial or industrial use in FLEX 10K devices. - $V_{CCIO}$ = 2.5 V ± 0.2 V for commercial or industrial use in FLEX 10KA devices. - (4) Operating conditions: $V_{CCIO} = 2.5 \text{ V}$ , 3.3 V, or 5.0 V. - (5) Because the RAM in the EAB is self-timed, this parameter can be ignored when the WE signal is registered. - (6) EAB macroparameters are internal parameters that can simplify predicting the behavior of an EAB at its boundary; these parameters are calculated by summing selected microparameters. - (7) These parameters are worst-case values for typical applications. Post-compilation timing simulation and timing analysis are required to determine actual worst-case performance. - (8) External reference timing parameters are factory-tested, worst-case values specified by Altera. A representative subset of signal paths is tested to approximate typical device applications. - (9) Contact Altera Applications for test circuit specifications and test conditions. - (10) These timing parameters are sample-tested only. Figures 29 and 30 show the asynchronous and synchronous timing waveforms, respectively, for the EAB macroparameters in Table 34. Figure 29. EAB Asynchronous Timing Waveforms #### **EAB Asynchronous Read** #### **EAB Asynchronous Write** Tables 39 through 47 show EPF10K10 and EPF10K20 device internal and external timing parameters. | Symbol | -3 Spee | d Grade | -4 Spee | d Grade | Unit | |---------------------|---------|---------|---------|---------|------| | | Min | Max | Min | Max | | | $t_{LUT}$ | | 1.4 | | 1.7 | ns | | t <sub>CLUT</sub> | | 0.6 | | 0.7 | ns | | t <sub>RLUT</sub> | | 1.5 | | 1.9 | ns | | t <sub>PACKED</sub> | | 0.6 | | 0.9 | ns | | $t_{EN}$ | | 1.0 | | 1.2 | ns | | t <sub>CICO</sub> | | 0.2 | | 0.3 | ns | | t <sub>CGEN</sub> | | 0.9 | | 1.2 | ns | | t <sub>CGENR</sub> | | 0.9 | | 1.2 | ns | | t <sub>CASC</sub> | | 0.8 | | 0.9 | ns | | $t_{\mathbb{C}}$ | | 1.3 | | 1.5 | ns | | $t_{CO}$ | | 0.9 | | 1.1 | ns | | $t_{\text{COMB}}$ | | 0.5 | | 0.6 | ns | | t <sub>SU</sub> | 1.3 | | 2.5 | | ns | | $t_H$ | 1.4 | | 1.6 | | ns | | t <sub>PRE</sub> | | 1.0 | | 1.2 | ns | | t <sub>CLR</sub> | | 1.0 | | 1.2 | ns | | t <sub>CH</sub> | 4.0 | | 4.0 | | ns | | $t_{CL}$ | 4.0 | | 4.0 | | ns | | Symbol | -3 Spee | d Grade | -4 Spee | d Grade | Unit | |------------------------|---------|---------|---------|---------|------| | | Min | Max | Min | Max | | | t <sub>EABDATA1</sub> | | 1.5 | | 1.9 | ns | | t <sub>EABDATA2</sub> | | 4.8 | | 6.0 | ns | | t <sub>EABWE1</sub> | | 1.0 | | 1.2 | ns | | t <sub>EABWE2</sub> | | 5.0 | | 6.2 | ns | | t <sub>EABCLK</sub> | | 1.0 | | 2.2 | ns | | t <sub>EABCO</sub> | | 0.5 | | 0.6 | ns | | t <sub>EABBYPASS</sub> | | 1.5 | | 1.9 | ns | | t <sub>EABSU</sub> | 1.5 | | 1.8 | | ns | | t <sub>EABH</sub> | 2.0 | | 2.5 | | ns | | $t_{AA}$ | | 8.7 | | 10.7 | ns | | $t_{WP}$ | 5.8 | | 7.2 | | ns | | t <sub>WDSU</sub> | 1.6 | | 2.0 | | ns | | t <sub>WDH</sub> | 0.3 | | 0.4 | | ns | | t <sub>WASU</sub> | 0.5 | | 0.6 | | ns | | t <sub>WAH</sub> | 1.0 | | 1.2 | | ns | | $t_{WO}$ | | 5.0 | | 6.2 | ns | | t <sub>DD</sub> | | 5.0 | | 6.2 | ns | | t <sub>EABOUT</sub> | | 0.5 | | 0.6 | ns | | t <sub>EABCH</sub> | 4.0 | | 4.0 | | ns | | t <sub>EABCL</sub> | 5.8 | | 7.2 | | ns | #### Notes to tables: - (1) All timing parameters are described in Tables 32 through 38 in this data sheet. - (2) Using an LE to register the signal may provide a lower setup time. - (3) This parameter is specified by characterization. Tables 57 through 63 show EPF10K70 device internal and external timing parameters. | Symbol | -2 Spee | d Grade | -3 Spee | d Grade | -4 Spee | Unit | | |---------------------|---------|---------|---------|---------|---------|------|----| | | Min | Max | Min | Max | Min | Max | | | $t_{LUT}$ | | 1.3 | | 1.5 | | 2.0 | ns | | t <sub>CLUT</sub> | | 0.4 | | 0.4 | | 0.5 | ns | | t <sub>RLUT</sub> | | 1.5 | | 1.6 | | 2.0 | ns | | t <sub>PACKED</sub> | | 0.8 | | 0.9 | | 1.3 | ns | | t <sub>EN</sub> | | 0.8 | | 0.9 | | 1.2 | ns | | t <sub>CICO</sub> | | 0.2 | | 0.2 | | 0.3 | ns | | t <sub>CGEN</sub> | | 1.0 | | 1.1 | | 1.4 | ns | | t <sub>CGENR</sub> | | 1.1 | | 1.2 | | 1.5 | ns | | t <sub>CASC</sub> | | 1.0 | | 1.1 | | 1.3 | ns | | $t_{\mathbb{C}}$ | | 0.7 | | 0.8 | | 1.0 | ns | | $t_{CO}$ | | 0.9 | | 1.0 | | 1.4 | ns | | t <sub>COMB</sub> | | 0.4 | | 0.5 | | 0.7 | ns | | t <sub>SU</sub> | 1.9 | | 2.1 | | 2.6 | | ns | | t <sub>H</sub> | 2.1 | | 2.3 | | 3.1 | | ns | | t <sub>PRE</sub> | | 0.9 | | 1.0 | | 1.4 | ns | | t <sub>CLR</sub> | | 0.9 | | 1.0 | | 1.4 | ns | | t <sub>CH</sub> | 4.0 | | 4.0 | | 4.0 | | ns | | $t_{CL}$ | 4.0 | | 4.0 | | 4.0 | | ns | | Table 58. EPF10K70 De | evice IOE Timing | g Microparan | neters / | Vote (1) | | | | |-----------------------|------------------|--------------|----------|----------|---------|------|----| | Symbol | -2 Spee | d Grade | -3 Spee | ed Grade | -4 Spec | Unit | | | | Min | Max | Min | Max | Min | Max | | | $t_{IOD}$ | | 0.0 | | 0.0 | | 0.0 | ns | | t <sub>IOC</sub> | | 0.4 | | 0.5 | | 0.7 | ns | | t <sub>IOCO</sub> | | 0.4 | | 0.4 | | 0.9 | ns | | t <sub>IOCOMB</sub> | | 0.0 | | 0.0 | | 0.0 | ns | | t <sub>IOSU</sub> | 4.5 | | 5.0 | | 6.2 | | ns | | $t_{IOH}$ | 0.4 | | 0.5 | | 0.7 | | ns | | t <sub>IOCLR</sub> | | 0.6 | | 0.7 | | 1.6 | ns | | t <sub>OD1</sub> | | 3.6 | | 4.0 | | 5.0 | ns | | $t_{OD2}$ | | 5.6 | | 6.3 | | 7.3 | ns | | $t_{\text{OD3}}$ | | 6.9 | | 7.7 | | 8.7 | ns | | t <sub>XZ</sub> | | 5.5 | | 6.2 | | 6.8 | ns | | t <sub>ZX1</sub> | | 5.5 | | 6.2 | | 6.8 | ns | | $t_{ZX2}$ | | 7.5 | | 8.5 | | 9.1 | ns | | $t_{ZX3}$ | | 8.8 | | 9.9 | | 10.5 | ns | | t <sub>INREG</sub> | | 8.0 | | 9.0 | | 10.2 | ns | | t <sub>IOFD</sub> | | 7.2 | | 8.1 | | 10.3 | ns | | t <sub>INCOMB</sub> | | 7.2 | | 8.1 | | 10.3 | ns | | Symbol | -2 Speed | l Grade | -3 Spee | d Grade | -4 Spec | Unit | | |------------------------|----------|---------|---------|---------|---------|------|----| | | Min | Max | Min | Max | Min | Max | | | t <sub>EABAA</sub> | | 12.1 | | 13.7 | | 17.0 | ns | | t <sub>EABRCCOMB</sub> | 12.1 | | 13.7 | | 17.0 | | ns | | t <sub>EABRCREG</sub> | 8.6 | | 9.7 | | 11.9 | | ns | | t <sub>EABWP</sub> | 5.2 | | 5.8 | | 7.2 | | ns | | t <sub>EABWCCOMB</sub> | 6.5 | | 7.3 | | 9.0 | | ns | | t <sub>EABWCREG</sub> | 11.6 | | 13.0 | | 16.0 | | ns | | t <sub>EABDD</sub> | | 8.8 | | 10.0 | | 12.5 | ns | | t <sub>EABDATACO</sub> | | 1.7 | | 2.0 | | 3.4 | ns | | t <sub>EABDATASU</sub> | 4.7 | | 5.3 | | 5.6 | | ns | | t <sub>EABDATAH</sub> | 0.0 | | 0.0 | | 0.0 | | ns | | t <sub>EABWESU</sub> | 4.9 | | 5.5 | | 5.8 | | ns | | t <sub>EABWEH</sub> | 0.0 | | 0.0 | | 0.0 | | ns | | t <sub>EABWDSU</sub> | 1.8 | | 2.1 | | 2.7 | | ns | | t <sub>EABWDH</sub> | 0.0 | | 0.0 | | 0.0 | | ns | | t <sub>EABWASU</sub> | 4.1 | | 4.7 | | 5.8 | | ns | | t <sub>EABWAH</sub> | 0.0 | | 0.0 | | 0.0 | | ns | | t <sub>EABWO</sub> | | 8.4 | | 9.5 | | 11.8 | ns | | Table 66. EPF10K100 | Device EAB Int | ternal Microp | parameters | Note (1) | | | | | |------------------------|----------------|---------------|------------|----------|---------|---------|------|--| | Symbol | -3DX Spe | ed Grade | -3 Spee | d Grade | -4 Spee | d Grade | Unit | | | | Min | Max | Min | Max | Min | Max | | | | t <sub>EABDATA1</sub> | | 1.5 | | 1.5 | | 1.9 | ns | | | t <sub>EABDATA2</sub> | | 4.8 | | 4.8 | | 6.0 | ns | | | t <sub>EABWE1</sub> | | 1.0 | | 1.0 | | 1.2 | ns | | | t <sub>EABWE2</sub> | | 5.0 | | 5.0 | | 6.2 | ns | | | t <sub>EABCLK</sub> | | 1.0 | | 1.0 | | 2.2 | ns | | | t <sub>EABCO</sub> | | 0.5 | | 0.5 | | 0.6 | ns | | | t <sub>EABBYPASS</sub> | | 1.5 | | 1.5 | | 1.9 | ns | | | t <sub>EABSU</sub> | 1.5 | | 1.5 | | 1.8 | | ns | | | t <sub>EABH</sub> | 2.0 | | 2.0 | | 2.5 | | ns | | | $t_{AA}$ | | 8.7 | | 8.7 | | 10.7 | ns | | | $t_{WP}$ | 5.8 | | 5.8 | | 7.2 | | ns | | | t <sub>WDSU</sub> | 1.6 | | 1.6 | | 2.0 | | ns | | | t <sub>WDH</sub> | 0.3 | | 0.3 | | 0.4 | | ns | | | t <sub>WASU</sub> | 0.5 | | 0.5 | | 0.6 | | ns | | | t <sub>WAH</sub> | 1.0 | | 1.0 | | 1.2 | | ns | | | $t_{WO}$ | | 5.0 | | 5.0 | | 6.2 | ns | | | $t_{DD}$ | | 5.0 | | 5.0 | | 6.2 | ns | | | t <sub>EABOUT</sub> | | 0.5 | | 0.5 | | 0.6 | ns | | | t <sub>EABCH</sub> | 4.0 | | 4.0 | | 4.0 | | ns | | | t <sub>EABCL</sub> | 5.8 | | 5.8 | | 7.2 | | ns | | | Symbol | -1 Speed Grade | | -2 Spee | -2 Speed Grade | | -3 Speed Grade | | -4 Speed Grade | | |--------------------------|----------------|-----|---------|----------------|-----|----------------|-----|----------------|----| | •, | Min | Max | Min | Max | Min | Max | Min | Max | - | | t <sub>DIN2IOE</sub> | | 4.7 | | 6.0 | | 7.1 | | 8.2 | ns | | t <sub>DIN2LE</sub> | | 2.5 | | 2.6 | | 3.1 | | 3.9 | ns | | t <sub>DIN2DATA</sub> | | 4.4 | | 5.9 | | 6.8 | | 7.7 | ns | | t <sub>DCLK2IOE</sub> | | 2.5 | | 3.9 | | 4.7 | | 5.5 | ns | | t <sub>DCLK2LE</sub> | | 2.5 | | 2.6 | | 3.1 | | 3.9 | ns | | t <sub>SAMELAB</sub> | | 0.2 | | 0.2 | | 0.3 | | 0.3 | ns | | t <sub>SAMEROW</sub> | | 2.8 | | 3.0 | | 3.2 | | 3.4 | ns | | t <sub>SAME</sub> COLUMN | | 3.0 | | 3.2 | | 3.4 | | 3.6 | ns | | t <sub>DIFFROW</sub> | | 5.8 | | 6.2 | | 6.6 | | 7.0 | ns | | t <sub>TWOROWS</sub> | | 8.6 | | 9.2 | | 9.8 | | 10.4 | ns | | t <sub>LEPERIPH</sub> | | 4.5 | | 5.5 | | 6.1 | | 7.0 | ns | | t <sub>LABCARRY</sub> | | 0.3 | | 0.4 | | 0.5 | | 0.7 | ns | | t <sub>LABCASC</sub> | | 0.0 | | 1.3 | | 1.6 | | 2.0 | ns | | Table 76. EPF10K50V Device External Timing Parameters Note (1) | | | | | | | | | | | |----------------------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|------|----|--| | Symbol | -1 Spee | d Grade | -2 Spee | d Grade | -3 Spee | d Grade | -4 Spee | Unit | | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | | t <sub>DRR</sub> | | 11.2 | | 14.0 | | 17.2 | | 21.1 | ns | | | t <sub>INSU</sub> (2), (3) | 5.5 | | 4.2 | | 5.2 | | 6.9 | | ns | | | t <sub>INH</sub> (3) | 0.0 | | 0.0 | | 0.0 | | 0.0 | | ns | | | t <sub>оитсо</sub> (3) | 2.0 | 5.9 | 2.0 | 7.8 | 2.0 | 9.5 | 2.0 | 11.1 | ns | | | Table 77. EPF10K50V Device External Bidirectional Timing Parameters Note (1) | | | | | | | | | | | |------------------------------------------------------------------------------------|----------------|-----|---------|--------------------------|-----|---------|----------------|------|------|--| | Symbol | -1 Speed Grade | | -2 Spee | eed Grade -3 Speed Grade | | d Grade | -4 Speed Grade | | Unit | | | | Min | Max | Min | Max | Min | Max | Min | Max | ] | | | t <sub>INSUBIDIR</sub> | 2.0 | | 2.8 | | 3.5 | | 4.1 | | ns | | | t <sub>INHBIDIR</sub> | 0.0 | | 0.0 | | 0.0 | | 0.0 | | ns | | | t <sub>OUTCOBIDIR</sub> | 2.0 | 5.9 | 2.0 | 7.8 | 2.0 | 9.5 | 2.0 | 11.1 | ns | | | t <sub>XZBIDIR</sub> | | 8.0 | | 9.8 | | 11.8 | | 14.3 | ns | | | t <sub>ZXBIDIR</sub> | | 8.0 | | 9.8 | | 11.8 | | 14.3 | ns | | | Symbol | -1 Speed Grade | | -2 Spee | d Grade | -3 Spee | Unit | | |--------------------------|----------------|-----|---------|---------|---------|------|----| | | Min | Max | Min | Max | Min | Max | | | t <sub>DIN2IOE</sub> | | 3.9 | | 4.4 | | 5.1 | ns | | t <sub>DIN2LE</sub> | | 1.2 | | 1.5 | | 1.9 | ns | | t <sub>DIN2DATA</sub> | | 3.2 | | 3.6 | | 4.5 | ns | | t <sub>DCLK2IOE</sub> | | 3.0 | | 3.5 | | 4.6 | ns | | t <sub>DCLK2LE</sub> | | 1.2 | | 1.5 | | 1.9 | ns | | t <sub>SAMELAB</sub> | | 0.1 | | 0.1 | | 0.2 | ns | | t <sub>SAMEROW</sub> | | 2.3 | | 2.4 | | 2.7 | ns | | t <sub>SAME</sub> COLUMN | | 1.3 | | 1.4 | | 1.9 | ns | | t <sub>DIFFROW</sub> | | 3.6 | | 3.8 | | 4.6 | ns | | t <sub>TWOROWS</sub> | | 5.9 | | 6.2 | | 7.3 | ns | | t <sub>LEPERIPH</sub> | | 3.5 | | 3.8 | | 4.1 | ns | | t <sub>LABCARRY</sub> | | 0.3 | | 0.4 | | 0.5 | ns | | t <sub>LABCASC</sub> | | 0.9 | | 1.1 | | 1.4 | ns | | Table 97. EPF10K30A External Reference Timing Parameters Note (1) | | | | | | | | | | | |-------------------------------------------------------------------|---------|----------|---------|----------|---------|------|----|--|--|--| | Symbol | -1 Spec | ed Grade | -2 Spec | ed Grade | -3 Spee | Unit | | | | | | | Min | Max | Min | Max | Min | Max | | | | | | t <sub>DRR</sub> | | 11.0 | | 13.0 | | 17.0 | ns | | | | | t <sub>INSU</sub> (2), (3) | 2.5 | | 3.1 | | 3.9 | | ns | | | | | t <sub>INH</sub> (3) | 0.0 | | 0.0 | | 0.0 | | ns | | | | | t <sub>outco</sub> (3) | 2.0 | 5.4 | 2.0 | 6.2 | 2.0 | 8.3 | ns | | | | | Table 98. EPF10K30A Device External Bidirectional Timing Parameters Note (1) | | | | | | | | | | | |------------------------------------------------------------------------------------|---------|----------|---------|----------|---------|------|----|--|--|--| | Symbol | -1 Spec | ed Grade | -2 Spec | ed Grade | -3 Spee | Unit | | | | | | | Min | Max | Min | Max | Min | Max | | | | | | t <sub>INSUBIDIR</sub> | 4.2 | | 4.9 | | 6.8 | | ns | | | | | t <sub>INHBIDIR</sub> | 0.0 | | 0.0 | | 0.0 | | ns | | | | | t <sub>OUTCOBIDIR</sub> | 2.0 | 5.4 | 2.0 | 6.2 | 2.0 | 8.3 | ns | | | | | t <sub>XZBIDIR</sub> | | 6.2 | | 7.5 | | 9.8 | ns | | | | | t <sub>ZXBIDIR</sub> | | 6.2 | | 7.5 | | 9.8 | ns | | | | | Symbol | -1 Spee | d Grade | -2 Spee | d Grade | -3 Spee | Unit | | |------------------------|---------|---------|---------|---------|---------|------|----| | | Min | Max | Min | Max | Min | Max | | | t <sub>EABAA</sub> | | 6.8 | | 7.8 | | 9.2 | ns | | t <sub>EABRCCOMB</sub> | 6.8 | | 7.8 | | 9.2 | | ns | | t <sub>EABRCREG</sub> | 5.4 | | 6.2 | | 7.4 | | ns | | t <sub>EABWP</sub> | 3.2 | | 3.7 | | 4.4 | | ns | | t <sub>EABWCCOMB</sub> | 3.4 | | 3.9 | | 4.7 | | ns | | t <sub>EABWCREG</sub> | 9.4 | | 10.8 | | 12.8 | | ns | | t <sub>EABDD</sub> | | 6.1 | | 6.9 | | 8.2 | ns | | t <sub>EABDATACO</sub> | | 2.1 | | 2.3 | | 2.9 | ns | | t <sub>EABDATASU</sub> | 3.7 | | 4.3 | | 5.1 | | ns | | t <sub>EABDATAH</sub> | 0.0 | | 0.0 | | 0.0 | | ns | | t <sub>EABWESU</sub> | 2.8 | | 3.3 | | 3.8 | | ns | | t <sub>EABWEH</sub> | 0.0 | | 0.0 | | 0.0 | | ns | | t <sub>EABWDSU</sub> | 3.4 | | 4.0 | | 4.6 | | ns | | t <sub>EABWDH</sub> | 0.0 | | 0.0 | | 0.0 | | ns | | t <sub>EABWASU</sub> | 1.9 | | 2.3 | | 2.6 | | ns | | t <sub>EABWAH</sub> | 0.0 | | 0.0 | | 0.0 | | ns | | t <sub>EABWO</sub> | | 5.1 | | 5.7 | | 6.9 | ns | #### Notes to tables: - (1) All timing parameters are described in Tables 32 through 37 in this data sheet. - (2) Using an LE to register the signal may provide a lower setup time. - (3) This parameter is specified by characterization. ### ClockLock & ClockBoost Timing Parameters For the ClockLock and ClockBoost circuitry to function properly, the incoming clock must meet certain requirements. If these specifications are not met, the circuitry may not lock onto the incoming clock, which generates an erroneous clock within the device. The clock generated by the ClockLock and ClockBoost circuitry must also meet certain specifications. If the incoming clock meets these requirements during configuration, the ClockLock and ClockBoost circuitry will lock onto the clock during configuration. The circuit will be ready for use immediately after configuration. Figure 31 illustrates the incoming and generated clock specifications. #### Figure 31. Specifications for the Incoming & Generated Clocks The $t_l$ parameter refers to the nominal input clock period; the $t_0$ parameter refers to the nominal output clock period. Table 113 summarizes the ClockLock and ClockBoost parameters. | Table 1 | Table 113. ClockLock & ClockBoost Parameters (Part 1 of 2) | | | | | | | | | | | |---------------------|-------------------------------------------------------------------------|------|-----|------|------|--|--|--|--|--|--| | Symbol | Parameter | Min | Тур | Max | Unit | | | | | | | | $t_R$ | Input rise time | | | 2 | ns | | | | | | | | t <sub>F</sub> | Input fall time | | | 2 | ns | | | | | | | | t <sub>INDUTY</sub> | Input duty cycle | 45 | | 55 | % | | | | | | | | f <sub>CLK1</sub> | Input clock frequency (ClockBoost clock multiplication factor equals 1) | 30 | | 80 | MHz | | | | | | | | t <sub>CLK1</sub> | Input clock period (ClockBoost clock multiplication factor equals 1) | 12.5 | | 33.3 | ns | | | | | | | | f <sub>CLK2</sub> | Input clock frequency (ClockBoost clock multiplication factor equals 2) | 16 | | 50 | MHz | | | | | | | | t <sub>CLK2</sub> | Input clock period (ClockBoost clock multiplication factor equals 2) | 20 | | 62.5 | ns | | | | | | | Figure 32. I<sub>CCACTIVE</sub> vs. Operating Frequency (Part 1 of 3)