Welcome to **E-XFL.COM** ## Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. #### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 468 | | Number of Logic Elements/Cells | 3744 | | Total RAM Bits | 18432 | | Number of I/O | 189 | | Number of Gates | 118000 | | Voltage - Supply | 4.75V ~ 5.25V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 70°C (TA) | | Package / Case | 240-BFQFP Exposed Pad | | Supplier Device Package | 240-RQFP (32x32) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/epf10k70rc240-4 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Larger blocks of RAM are created by combining multiple EABs. For example, two 256×8 RAM blocks can be combined to form a 256×16 RAM block; two 512×4 blocks of RAM can be combined to form a 512×8 RAM block. See Figure 3. Figure 3. Examples of Combining EABs If necessary, all EABs in a device can be cascaded to form a single RAM block. EABs can be cascaded to form RAM blocks of up to 2,048 words without impacting timing. Altera's software automatically combines EABs to meet a designer's RAM specifications. EABs provide flexible options for driving and controlling clock signals. Different clocks can be used for the EAB inputs and outputs. Registers can be independently inserted on the data input, EAB output, or the address and WE inputs. The global signals and the EAB local interconnect can drive the WE signal. The global signals, dedicated clock pins, and EAB local interconnect can drive the EAB clock signals. Because the LEs drive the EAB local interconnect, the LEs can control the WE signal or the EAB clock signals. Each EAB is fed by a row interconnect and can drive out to row and column interconnects. Each EAB output can drive up to two row channels and up to two column channels; the unused row channel can be driven by other LEs. This feature increases the routing resources available for EAB outputs. See Figure 4. Dedicated Inputs & Global Signals Chip-Wide Reset Row Interconnect 2, 4, 8, 16 Data Data Out 8, 4, 2, 1 2, 4, 8, 16 Address D 8, 9, 10, 11 RAM/ROM 256×8 512 × 4 $1,024 \times 2$ Column 2,048 × 1 Interconnect WE D Figure 4. FLEX 10K Embedded Array Block #### Note: EAB Local Interconnect (1) (1) EPF10K10, EPF10K10A, EPF10K20, EPF10K30, EPF10K30A, EPF10K40, EPF10K50, and EPF10K50V devices have 22 EAB local interconnect channels; EPF10K70, EPF10K100, EPF10K100A, EPF10K130V, and EPF10K250A devices have 26. Each LAB provides four control signals with programmable inversion that can be used in all eight LEs. Two of these signals can be used as clocks; the other two can be used for clear/preset control. The LAB clocks can be driven by the dedicated clock input pins, global signals, I/O signals, or internal signals via the LAB local interconnect. The LAB preset and clear control signals can be driven by the global signals, I/O signals, or internal signals via the LAB local interconnect. The global control signals are typically used for global clock, clear, or preset signals because they provide asynchronous control with very low skew across the device. If logic is required on a control signal, it can be generated in one or more LEs in any LAB and driven into the local interconnect of the target LAB. In addition, the global control signals can be generated from LE outputs. #### **Logic Element** The LE, the smallest unit of logic in the FLEX 10K architecture, has a compact size that provides efficient logic utilization. Each LE contains a four-input LUT, which is a function generator that can quickly compute any function of four variables. In addition, each LE contains a programmable flipflop with a synchronous enable, a carry chain, and a cascade chain. Each LE drives both the local and the FastTrack Interconnect. See Figure 6. Figure 6. FLEX 10K Logic Element #### Figure 9. FLEX 10K LE Operating Modes #### **Normal Mode** #### **Arithmetic Mode** #### **Up/Down Counter Mode** #### **Clearable Counter Mode** #### Note: (1) Packed registers cannot be used with the cascade chain. Figure 10. LE Clear & Preset Modes #### **Asynchronous Load with Clear** #### labctrl1 (Asynchronous Load) PRN data3 (Data) NOT CLRN labctrl2 (Clear) Chip-Wide Reset #### **Asynchronous Load without Clear or Preset** #### **Asynchronous Load with Preset** #### Asynchronous Clear The flipflop can be cleared by either LABCTRL1 or LABCTRL2. In this mode, the preset signal is tied to V_{CC} to deactivate it. Figure 11. LAB Connections to Row & Column Interconnect | Table 1 | 9. FLEX 10K 5.0-V Devi | ce DC Operating Conditions No | tes (5), (6) | | | | |------------------|--|--|-------------------------|-----|--------------------------|------| | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | | V _{IH} | High-level input voltage | | 2.0 | | V _{CCINT} + 0.5 | V | | V _{IL} | Low-level input voltage | | -0.5 | | 0.8 | V | | V _{OH} | 5.0-V high-level TTL output voltage | $I_{OH} = -4 \text{ mA DC}, V_{CCIO} = 4.75 \text{ V}$ (7) | 2.4 | | | V | | | 3.3-V high-level TTL output voltage | $I_{OH} = -4 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V}$ (7) | 2.4 | | | V | | | 3.3-V high-level CMOS output voltage | $I_{OH} = -0.1 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V}$ (7) | V _{CCIO} - 0.2 | | | V | | V _{OL} | 5.0-V low-level TTL output voltage | I_{OL} = 12 mA DC, V_{CCIO} = 4.75 V (8) | | | 0.45 | V | | | 3.3-V low-level TTL output voltage | I_{OL} = 12 mA DC, V_{CCIO} = 3.00 V (8) | | | 0.45 | V | | | 3.3-V low-level CMOS output voltage | $I_{OL} = 0.1 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V}$ (8) | | | 0.2 | V | | I _I | Input pin leakage current | V _I = V _{CC} or ground
(9) | -10 | | 10 | μΑ | | I _{OZ} | Tri-stated I/O pin leakage current | $V_O = V_{CC}$ or ground (9) | -40 | | 40 | μΑ | | I _{CC0} | V _{CC} supply current (standby) | V _I = ground, no load | | 0.5 | 10 | mA | | Table 2 | Table 20. 5.0-V Device Capacitance of EPF10K10, EPF10K20 & EPF10K30 DevicesNote (10) | | | | | | |--------------------|--------------------------------------------------------------------------------------|-------------------------------------|-----|-----|------|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | C _{IN} | Input capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 8 | pF | | | C _{INCLK} | Input capacitance on dedicated clock pin | V _{IN} = 0 V, f = 1.0 MHz | | 12 | pF | | | C _{OUT} | Output capacitance | V _{OUT} = 0 V, f = 1.0 MHz | | 8 | pF | | | Table 2 | Table 21. 5.0-V Device Capacitance of EPF10K40, EPF10K50, EPF10K70 & EPF10K100 Devices Note (10) | | | | | | | |--------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------|-----|-----|------|--|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | | C _{IN} | Input capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 10 | pF | | | | C _{INCLK} | Input capacitance on dedicated clock pin | V _{IN} = 0 V, f = 1.0 MHz | | 15 | pF | | | | C _{OUT} | Output capacitance | V _{OUT} = 0 V, f = 1.0 MHz | | 10 | pF | | | | Symbol | Parameter | Conditions | Min | Typ | Max | Unit | |------------------|------------------------------------------|------------------------------------------------|-------------------------|-----|------|------| | V _{IH} | High-level input voltage | | 2.0 | | 5.75 | V | | V _{IL} | Low-level input voltage | | -0.5 | | 0.8 | V | | V _{OH} | 3.3-V high-level TTL output voltage | $I_{OH} = -8 \text{ mA DC } (8)$ | 2.4 | | | V | | | 3.3-V high-level CMOS output voltage | $I_{OH} = -0.1 \text{ mA DC } (8)$ | V _{CCIO} - 0.2 | | | V | | V _{OL} | 3.3-V low-level TTL output voltage | I _{OL} = 8 mA DC (9) | | | 0.45 | V | | | 3.3-V low-level CMOS output voltage | I _{OL} = 0.1 mA DC (9) | | | 0.2 | V | | I _I | Input pin leakage current | $V_1 = 5.3 \text{ V to } -0.3 \text{ V } (10)$ | -10 | | 10 | μА | | I _{OZ} | Tri-stated I/O pin leakage current | $V_O = 5.3 \text{ V to } -0.3 \text{ V } (10)$ | -10 | | 10 | μΑ | | I _{CC0} | V _{CC} supply current (standby) | V _I = ground, no load | | 0.3 | 10 | mA | | | | V_I = ground, no load (11) | | 10 | | mA | | Table 2 | Table 25. EPF10K50V & EPF10K130V Device Capacitance (12) | | | | | | |--------------------|----------------------------------------------------------|-------------------------------------|-----|-----|------|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | C _{IN} | Input capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 10 | pF | | | C _{INCLK} | Input capacitance on dedicated clock pin | V _{IN} = 0 V, f = 1.0 MHz | | 15 | pF | | | C _{OUT} | Output capacitance | V _{OUT} = 0 V, f = 1.0 MHz | | 10 | pF | | #### Notes to tables: - (1) See the Operating Requirements for Altera Devices Data Sheet. - (2) Minimum DC input voltage is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 5.75 V for input currents less than 100 mA and periods shorter than 20 ns. - (3) Numbers in parentheses are for industrial-temperature-range devices. - (4) Maximum V_{CC} rise time is 100 ms. V_{CC} must rise monotonically. - (5) EPF10K50V and EPF10K130V device inputs may be driven before V_{CCINT} and V_{CCIO} are powered. - (6) Typical values are for $T_A = 25^{\circ}$ C and $V_{CC} = 3.3$ V. - (7) These values are specified under the EPF10K50V and EPF10K130V device Recommended Operating Conditions in Table 23 on page 48. - (8) The I_{OH} parameter refers to high-level TTL or CMOS output current. - (9) The I_{OL} parameter refers to low-level TTL or CMOS output current. This parameter applies to open-drain pins as well as output pins. - (10) This value is specified for normal device operation. The value may vary during power-up. - (11) This parameter applies to -1 speed grade EPF10K50V devices, -2 speed grade EPF10K50V industrial temperature devices, and -2 speed grade EPF10K130V devices. - (12) Capacitance is sample-tested only. Figure 28. Synchronous Bidirectional Pin External Timing Model Tables 32 through 36 describe the FLEX 10K device internal timing parameters. These internal timing parameters are expressed as worst-case values. Using hand calculations, these parameters can be used to estimate design performance. However, before committing designs to silicon, actual worst-case performance should be modeled using timing simulation and analysis. Tables 37 through 38 describe FLEX 10K external timing parameters. | Symbol | Parameter | Conditions | |---------------------|-----------------------------------------|------------| | t_{LUT} | LUT delay for data-in | | | t _{CLUT} | LUT delay for carry-in | | | t _{RLUT} | LUT delay for LE register feedback | | | t _{PACKED} | Data-in to packed register delay | | | t _{EN} | LE register enable delay | | | t _{CICO} | Carry-in to carry-out delay | | | t _{CGEN} | Data-in to carry-out delay | | | t _{CGENR} | LE register feedback to carry-out delay | | | t _{CASC} | Cascade-in to cascade-out delay | | | $t_{\rm C}$ | LE register control signal delay | | | $t_{\rm CO}$ | LE register clock-to-output delay | | | t _{COMB} | Combinatorial delay | | | Symbol | Parameter | Conditions | |------------------------|----------------------------------------------------------------------------------------|------------| | t _{EABAA} | EAB address access delay | | | t _{EABRCCOMB} | EAB asynchronous read cycle time | | | t _{EABRCREG} | EAB synchronous read cycle time | | | t _{EABWP} | EAB write pulse width | | | t _{EABWCCOMB} | EAB asynchronous write cycle time | | | t _{EABWCREG} | EAB synchronous write cycle time | | | t _{EABDD} | EAB data-in to data-out valid delay | | | t _{EABDATACO} | EAB clock-to-output delay when using output registers | | | t _{EABDATASU} | EAB data/address setup time before clock when using input register | | | t _{EABDATAH} | EAB data/address hold time after clock when using input register | | | t _{EABWESU} | EAB WE setup time before clock when using input register | | | t _{EABWEH} | EAB WE hold time after clock when using input register | | | t _{EABWDSU} | EAB data setup time before falling edge of write pulse when not using input registers | | | t _{EABWDH} | EAB data hold time after falling edge of write pulse when not using input | | | | registers | | | t _{EABWASU} | EAB address setup time before rising edge of write pulse when not using | | | | input registers | | | ^t EABWAH | EAB address hold time after falling edge of write pulse when not using input registers | | | t _{EABWO} | EAB write enable to data output valid delay | | | Symbol | Parameter | Conditions | | | |--------------------------|----------------------------------------------------------------------------------------------------------------------|------------|--|--| | t _{DIN2IOE} | Delay from dedicated input pin to IOE control input | (7) | | | | t _{DCLK2LE} | Delay from dedicated clock pin to LE or EAB clock | (7) | | | | t _{DIN2DATA} | Delay from dedicated input or clock to LE or EAB data | (7) | | | | t _{DCLK2IOE} | Delay from dedicated clock pin to IOE clock | (7) | | | | t _{DIN2LE} | Delay from dedicated input pin to LE or EAB control input | (7) | | | | t _{SAMELAB} | Routing delay for an LE driving another LE in the same LAB | | | | | t _{SAMEROW} | Routing delay for a row IOE, LE, or EAB driving a row IOE, LE, or EAB in the same row | | | | | t _{SAME} COLUMN | Routing delay for an LE driving an IOE in the same column | (7) | | | | t _{DIFFROW} | Routing delay for a column IOE, LE, or EAB driving an LE or EAB in a different row | (7) | | | | t _{TWOROWS} | Routing delay for a row IOE or EAB driving an LE or EAB in a different row | (7) | | | | t _{LEPERIPH} | Routing delay for an LE driving a control signal of an IOE via the peripheral control bus | (7) | | | | t _{LABCARRY} | Routing delay for the carry-out signal of an LE driving the carry-in signal of a different LE in a different LAB | | | | | t _{LABCASC} | Routing delay for the cascade-out signal of an LE driving the cascade-in signal of a different LE in a different LAB | | | | | Table 37. Ex | | | |--------------------|------------------------------------------------------------------------------------------------|------------| | Symbol | Parameter | Conditions | | t _{DRR} | Register-to-register delay via four LEs, three row interconnects, and four local interconnects | (9) | | t _{INSU} | Setup time with global clock at IOE register | | | t _{INH} | Hold time with global clock at IOE register | | | t _{OUTCO} | Clock-to-output delay with global clock at IOE register | | | Table 38. External Bidirectional Timing Parameters Note (10) | | | | | | |----------------------------------------------------------------|--------------------------------------------------------------------------------|-----------|--|--|--| | Symbol | Parameter | Condition | | | | | t _{INSUBIDIR} | Setup time for bidirectional pins with global clock at adjacent LE register | | | | | | t _{INHBIDIR} | Hold time for bidirectional pins with global clock at adjacent LE register | | | | | | t _{OUTCOBIDIR} | Clock-to-output delay for bidirectional pins with global clock at IOE register | | | | | | t _{XZBIDIR} | Synchronous IOE output buffer disable delay | | | | | | t _{ZXBIDIR} | Synchronous IOE output buffer enable delay, slow slew rate = off | | | | | | Symbol | -2 Spee | d Grade | -3 Spec | ed Grade | -4 Spe | ed Grade | Unit | |------------------------|---------|---------|---------|----------|--------|----------|------| | | Min | Max | Min | Max | Min | Max | | | t _{EABDATA1} | | 1.3 | | 1.5 | | 1.9 | ns | | t _{EABDATA2} | | 4.3 | | 4.8 | | 6.0 | ns | | t _{EABWE1} | | 0.9 | | 1.0 | | 1.2 | ns | | t _{EABWE2} | | 4.5 | | 5.0 | | 6.2 | ns | | t _{EABCLK} | | 0.9 | | 1.0 | | 2.2 | ns | | t _{EABCO} | | 0.4 | | 0.5 | | 0.6 | ns | | t _{EABBYPASS} | | 1.3 | | 1.5 | | 1.9 | ns | | t _{EABSU} | 1.3 | | 1.5 | | 1.8 | | ns | | t _{EABH} | 1.8 | | 2.0 | | 2.5 | | ns | | t_{AA} | | 7.8 | | 8.7 | | 10.7 | ns | | t_{WP} | 5.2 | | 5.8 | | 7.2 | | ns | | t _{WDSU} | 1.4 | | 1.6 | | 2.0 | | ns | | t _{WDH} | 0.3 | | 0.3 | | 0.4 | | ns | | t _{WASU} | 0.4 | | 0.5 | | 0.6 | | ns | | t _{WAH} | 0.9 | | 1.0 | | 1.2 | | ns | | t_{WO} | | 4.5 | | 5.0 | | 6.2 | ns | | t_{DD} | | 4.5 | | 5.0 | | 6.2 | ns | | t _{EABOUT} | | 0.4 | | 0.5 | | 0.6 | ns | | t _{EABCH} | 4.0 | | 4.0 | | 4.0 | | ns | | t _{EABCL} | 5.2 | | 5.8 | | 7.2 | | ns | | Table 72. EPI | Table 72. EPF10K50V Device IOE Timing Microparameters Note (1) | | | | | | | | | |---------------------|------------------------------------------------------------------------|-----|---------|----------------|-----|----------------|-----|----------------|----| | Symbol | -1 Speed Grade | | -2 Spee | -2 Speed Grade | | -3 Speed Grade | | -4 Speed Grade | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t_{IOD} | | 1.2 | | 1.6 | | 1.9 | | 2.1 | ns | | t_{IOC} | | 0.3 | | 0.4 | | 0.5 | | 0.5 | ns | | t _{IOCO} | | 0.3 | | 0.3 | | 0.4 | | 0.4 | ns | | t _{IOCOMB} | | 0.0 | | 0.0 | | 0.0 | | 0.0 | ns | | t_{IOSU} | 2.8 | | 2.8 | | 3.4 | | 3.9 | | ns | | t _{IOH} | 0.7 | | 0.8 | | 1.0 | | 1.4 | | ns | | t _{IOCLR} | | 0.5 | | 0.6 | | 0.7 | | 0.7 | ns | | t _{OD1} | | 2.8 | | 3.2 | | 3.9 | | 4.7 | ns | | t _{OD2} | | _ | | _ | | _ | | _ | ns | | t _{OD3} | | 6.5 | | 6.9 | | 7.6 | | 8.4 | ns | | t_{XZ} | | 2.8 | | 3.1 | | 3.8 | | 4.6 | ns | | t_{ZX1} | | 2.8 | | 3.1 | | 3.8 | | 4.6 | ns | | t_{ZX2} | | _ | | _ | | _ | | _ | ns | | t_{ZX3} | | 6.5 | | 6.8 | | 7.5 | | 8.3 | ns | | t _{INREG} | | 5.0 | | 5.7 | | 7.0 | | 9.0 | ns | | t _{IOFD} | | 1.5 | | 1.9 | | 2.3 | | 2.7 | ns | | t _{INCOMB} | | 1.5 | | 1.9 | | 2.3 | | 2.7 | ns | | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | -4 Speed Grade | | Unit | |--------------------------|----------------|-----|----------------|-----|----------------|-----|----------------|------|------| | •, | Min | Max | Min | Max | Min | Max | Min | Max | | | t _{DIN2IOE} | | 4.7 | | 6.0 | | 7.1 | | 8.2 | ns | | t _{DIN2LE} | | 2.5 | | 2.6 | | 3.1 | | 3.9 | ns | | t _{DIN2DATA} | | 4.4 | | 5.9 | | 6.8 | | 7.7 | ns | | t _{DCLK2IOE} | | 2.5 | | 3.9 | | 4.7 | | 5.5 | ns | | t _{DCLK2LE} | | 2.5 | | 2.6 | | 3.1 | | 3.9 | ns | | t _{SAMELAB} | | 0.2 | | 0.2 | | 0.3 | | 0.3 | ns | | t _{SAMEROW} | | 2.8 | | 3.0 | | 3.2 | | 3.4 | ns | | t _{SAME} COLUMN | | 3.0 | | 3.2 | | 3.4 | | 3.6 | ns | | t _{DIFFROW} | | 5.8 | | 6.2 | | 6.6 | | 7.0 | ns | | t _{TWOROWS} | | 8.6 | | 9.2 | | 9.8 | | 10.4 | ns | | t _{LEPERIPH} | | 4.5 | | 5.5 | | 6.1 | | 7.0 | ns | | t _{LABCARRY} | | 0.3 | | 0.4 | | 0.5 | | 0.7 | ns | | t _{LABCASC} | | 0.0 | | 1.3 | | 1.6 | | 2.0 | ns | | Table 76. EPF | Table 76. EPF10K50V Device External Timing Parameters Note (1) | | | | | | | | | |----------------------------|------------------------------------------------------------------|------|----------------|------|----------------|------|----------------|------|------| | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | -4 Speed Grade | | Unit | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t _{DRR} | | 11.2 | | 14.0 | | 17.2 | | 21.1 | ns | | t _{INSU} (2), (3) | 5.5 | | 4.2 | | 5.2 | | 6.9 | | ns | | t _{INH} (3) | 0.0 | | 0.0 | | 0.0 | | 0.0 | | ns | | t _{оитсо} (3) | 2.0 | 5.9 | 2.0 | 7.8 | 2.0 | 9.5 | 2.0 | 11.1 | ns | | Table 77. EPF10K50V Device External Bidirectional Timing Parameters Note (1) | | | | | | | | | | |--------------------------------------------------------------------------------------|----------------|-----|---------|----------------|-----|----------------|-----|----------------|----| | Symbol | -1 Speed Grade | | -2 Spee | -2 Speed Grade | | -3 Speed Grade | | -4 Speed Grade | | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t _{INSUBIDIR} | 2.0 | | 2.8 | | 3.5 | | 4.1 | | ns | | t _{INHBIDIR} | 0.0 | | 0.0 | | 0.0 | | 0.0 | | ns | | t _{OUTCOBIDIR} | 2.0 | 5.9 | 2.0 | 7.8 | 2.0 | 9.5 | 2.0 | 11.1 | ns | | t _{XZBIDIR} | | 8.0 | | 9.8 | | 11.8 | | 14.3 | ns | | t _{ZXBIDIR} | | 8.0 | | 9.8 | | 11.8 | | 14.3 | ns | | Symbol | -2 Spee | d Grade | -3 Spec | ed Grade | -4 Spec | Unit | | |---------------------|---------|---------|---------|----------|---------|------|----| | | Min | Max | Min | Max | Min | Max | | | t_{IOD} | | 1.3 | | 1.6 | | 2.0 | ns | | t _{IOC} | | 0.4 | | 0.5 | | 0.7 | ns | | t _{IOCO} | | 0.3 | | 0.4 | | 0.5 | ns | | t _{IOCOMB} | | 0.0 | | 0.0 | | 0.0 | ns | | t _{IOSU} | 2.6 | | 3.3 | | 3.8 | | ns | | t_{IOH} | 0.0 | | 0.0 | | 0.0 | | ns | | t _{IOCLR} | | 1.7 | | 2.2 | | 2.7 | ns | | t _{OD1} | | 3.5 | | 4.4 | | 5.0 | ns | | t _{OD2} | | _ | | _ | | - | ns | | t _{OD3} | | 8.2 | | 8.1 | | 9.7 | ns | | t_{XZ} | | 4.9 | | 6.3 | | 7.4 | ns | | t_{ZX1} | | 4.9 | | 6.3 | | 7.4 | ns | | t _{ZX2} | | - | | _ | | - | ns | | t _{ZX3} | | 9.6 | | 10.0 | | 12.1 | ns | | t _{INREG} | | 7.9 | | 10.0 | | 12.6 | ns | | t _{IOFD} | | 6.2 | | 7.9 | | 9.9 | ns | | t_{INCOMB} | | 6.2 | | 7.9 | | 9.9 | ns | | Symbol | -1 Spee | d Grade | -2 Spee | d Grade | -3 Spee | Unit | | |------------------------|---------|---------|---------|---------|---------|------|----| | | Min | Max | Min | Max | Min | Max | | | t _{EABAA} | | 6.1 | | 6.8 | | 8.2 | ns | | t _{EABRCCOMB} | 6.1 | | 6.8 | | 8.2 | | ns | | t _{EABRCREG} | 4.6 | | 5.1 | | 6.1 | | ns | | t _{EABWP} | 5.6 | | 6.4 | | 7.5 | | ns | | t _{EABWCCOMB} | 5.8 | | 6.6 | | 7.9 | | ns | | t _{EABWCREG} | 15.8 | | 17.8 | | 21.0 | | ns | | t _{EABDD} | | 5.7 | | 6.4 | | 7.8 | ns | | t _{EABDATACO} | | 0.7 | | 0.8 | | 1.0 | ns | | t _{EABDATASU} | 4.5 | | 5.1 | | 5.9 | | ns | | t _{EABDATAH} | 0.0 | | 0.0 | | 0.0 | | ns | | t _{EABWESU} | 8.2 | | 9.3 | | 10.9 | | ns | | t _{EABWEH} | 0.0 | | 0.0 | | 0.0 | | ns | | t _{EABWDSU} | 1.7 | | 1.8 | | 2.1 | | ns | | t _{EABWDH} | 0.0 | | 0.0 | | 0.0 | | ns | | t _{EABWASU} | 0.9 | | 0.9 | | 1.0 | | ns | | t _{EABWAH} | 0.0 | | 0.0 | | 0.0 | | ns | | t _{EABWO} | | 5.3 | | 6.0 | | 7.4 | ns | | Table 1 | Table 113. ClockLock & ClockBoost Parameters (Part 2 of 2) | | | | | | | | | |-----------------------|--------------------------------------------------------------------------------------------------------------|-----|-----|------|------|--|--|--|--| | Symbol | Parameter | Min | Тур | Max | Unit | | | | | | f _{CLKDEV1} | Input deviation from user specification in MAX+PLUS II (ClockBoost clock multiplication factor equals 1) (1) | | | ±1 | MHz | | | | | | f _{CLKDEV2} | Input deviation from user specification in MAX+PLUS II (ClockBoost clock multiplication factor equals 2) (1) | | | ±0.5 | MHz | | | | | | t _{INCLKSTB} | Input clock stability (measured between adjacent clocks) | | | 100 | ps | | | | | | t _{LOCK} | Time required for ClockLock or ClockBoost to acquire lock (2) | | | 10 | μs | | | | | | t _{JITTER} | Jitter on ClockLock or ClockBoost-generated clock (3) | | | 1 | ns | | | | | | $t_{OUTDUTY}$ | Duty cycle for ClockLock or ClockBoost-generated clock | 40 | 50 | 60 | % | | | | | #### Notes: - (1) To implement the ClockLock and ClockBoost circuitry with the MAX+PLUS II software, designers must specify the input frequency. The MAX+PLUS II software tunes the PLL in the ClockLock and ClockBoost circuitry to this frequency. The f_{CLKDEV} parameter specifies how much the incoming clock can differ from the specified frequency during device operation. Simulation does not reflect this parameter. - (2) During device configuration, the ClockLock and ClockBoost circuitry is configured before the rest of the device. If the incoming clock is supplied during configuration, the ClockLock and ClockBoost circuitry locks during configuration, because the t_{LOCK} value is less than the time required for configuration. - (3) The t_{IITTER} specification is measured under long-term observation. # Power Consumption The supply power (P) for FLEX 10K devices can be calculated with the following equation: $$P = P_{INT} + P_{IO} = (I_{CCSTANDBY} + I_{CCACTIVE}) \times V_{CC} + P_{IO}$$ Typical $I_{CCSTANDBY}$ values are shown as I_{CC0} in the FLEX 10K device DC operating conditions tables on pages 46, 49, and 52 of this data sheet. The $I_{CCACTIVE}$ value depends on the switching frequency and the application logic. This value is calculated based on the amount of current that each LE typically consumes. The P_{IO} value, which depends on the device output load characteristics and switching frequency, can be calculated using the guidelines given in *Application Note 74 (Evaluating Power for Altera Devices)*. Compared to the rest of the device, the embedded array consumes a negligible amount of power. Therefore, the embedded array can be ignored when calculating supply current. The I_{CCACTIVE} value is calculated with the following equation: $$I_{CCACTIVE} = K \times \mathbf{f_{MAX}} \times N \times \mathbf{tog_{LC}} \times \frac{\mu A}{MHz \times LE}$$ The parameters in this equation are shown below: Figure 32. I_{CCACTIVE} vs. Operating Frequency (Part 2 of 3) Multiple FLEX 10K devices can be configured in any of the five configuration schemes by connecting the configuration enable (nCE) and configuration enable output (nCEO) pins on each device. | Table 116. Data Sources for Configuration | | | | | | |-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|--|--|--| | Configuration Scheme | Data Source | | | | | | Configuration device | EPC1, EPC2, EPC16, or EPC1441 configuration device | | | | | | Passive serial (PS) | BitBlaster, MasterBlaster, or ByteBlasterMV download cable, or serial data source | | | | | | Passive parallel asynchronous (PPA) | Parallel data source | | | | | | Passive parallel synchronous (PPS) | Parallel data source | | | | | | JTAG | BitBlaster, MasterBlaster, or ByteBlasterMV download cable, or microprocessor with Jam STAPL file or Jam Byte-Code file | | | | | ## Device Pin-Outs See the Altera web site (http://www.altera.com) or the Altera Digital Library for pin-out information. ## Revision History The information contained in the *FLEX 10K Embedded Programmable Logic Device Family Data Sheet* version 4.2 supersedes information published in previous versions. #### **Version 4.2 Changes** The following change was made to version 4.2 of the *FLEX 10K Embedded Programmable Logic Device Family Data Sheet*: updated Figure 13. ### **Version 4.1 Changes** The following changes were made to version 4.1 of the FLEX 10K Embedded Programmable Logic Device Family Data Sheet. - Updated General Description section - Updated I/O Element section - Updated SameFrame Pin-Outs section - Updated Figure 16 - Updated Tables 13 and 116 - Added Note 9 to Table 19 - Added Note 10 to Table 24 - Added Note 10 to Table 28 101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com Applications Hotline: (800) 800-EPLD Customer Marketing: (408) 544-7104 Literature Services: lit_req@altera.com Copyright © 2003 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. I.S. EN ISO 9001