E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	ARM7®
Core Size	16/32-Bit
Speed	60MHz
Connectivity	I ² C, Microwire, SPI, SSI, SSP, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	47
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/lpc2138fbd64-01-15

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- One (LPC2131/32) or two (LPC2134/36/38) 8-channel 10-bit ADCs provide a total of up to 16 analog inputs, with conversion times as low as 2.44 µs per channel.
- Single 10-bit DAC provides variable analog output (LPC2132/34/36/38).
- Two 32-bit timers/external event counters (with four capture and four compare channels each), PWM unit (six outputs) and watchdog.
- Low power Real-time clock with independent power and dedicated 32 kHz clock input.
- Multiple serial interfaces including two UARTs (16C550), two Fast I²C-bus (400 kbit/s), SPI and SSP with buffering and variable data length capabilities.
- Vectored interrupt controller with configurable priorities and vector addresses.
- Up to forty-seven 5 V tolerant general purpose I/O pins in tiny LQFP64 or HVQFN package.
- Up to nine edge or level sensitive external interrupt pins available.
- 60 MHz maximum CPU clock available from programmable on-chip PLL with settling time of 100 μs.
- On-chip integrated oscillator operates with external crystal in range of 1 MHz to 30 MHz and with external oscillator up to 50 MHz.
- Power saving modes include Idle and Power-down.
- Individual enable/disable of peripheral functions as well as peripheral clock scaling down for additional power optimization.
- Processor wake-up from Power-down mode via external interrupt or BOD.
- Single power supply chip with POR and BOD circuits:
 - CPU operating voltage range of 3.0 V to 3.6 V (3.3 V ± 10 %) with 5 V tolerant I/O pads.

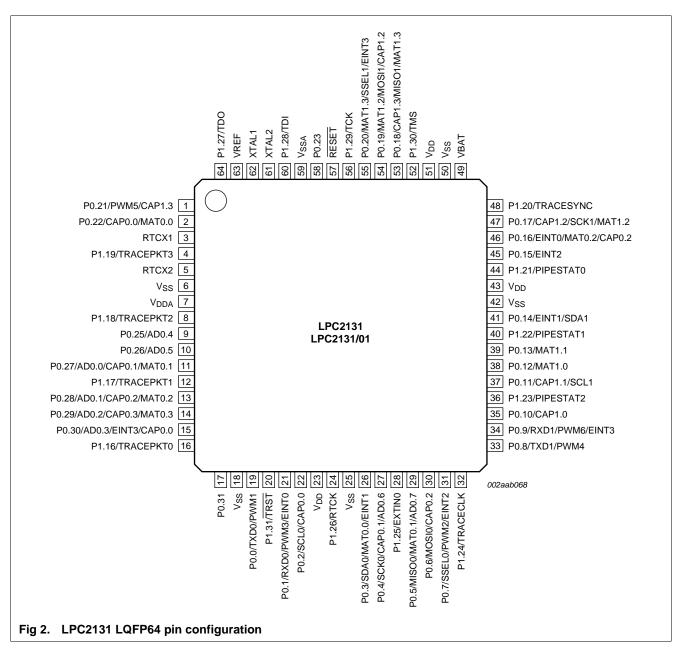
3. Ordering information

Table 1.Ordering information

Type number	Package					
	Name	Description	Version			
LPC2131FBD64/01	LQFP64	plastic low profile quad flat package; 64 leads; body $10 \times 10 \times 1.4$ mm	SOT314-2			
LPC2132FBD64/01	LQFP64	plastic low profile quad flat package; 64 leads; body $10 \times 10 \times 1.4$ mm	SOT314-2			
LPC2132FHN64/01	HVQFN64	plastic thermal enhanced very thin quad flat package; no leads; 64 terminals; body $9 \times 9 \times 0.85$ mm	SOT804-2			
LPC2134FBD64/01	LQFP64	plastic low profile quad flat package; 64 leads; body $10 \times 10 \times 1.4$ mm	SOT314-2			
LPC2136FBD64/01	LQFP64	plastic low profile quad flat package; 64 leads; body $10 \times 10 \times 1.4$ mm	SOT314-2			
LPC2138FBD64/01	LQFP64	plastic low profile quad flat package; 64 leads; body $10 \times 10 \times 1.4$ mm	SOT314-2			
LPC2138FHN64/01	HVQFN64	plastic thermal enhanced very thin quad flat package; no leads; 64 terminals; body $9 \times 9 \times 0.85$ mm	SOT804-2			

Single-chip 16/32-bit microcontrollers

3.1 Ordering options


Table 2. Ordering options

Type number	Flash memory	RAM	ADC	DAC	Enhanced UARTs, ADC, Fast I/Os, and BOD	Temperature range
LPC2131FBD64/01	32 kB	8 kB	1	-	yes	–40 °C to +85 °C
LPC2132FBD64/01	64 kB	16 kB	1	1	yes	–40 °C to +85 °C
LPC2132FHN64/01	64 kB	16 kB	1	1	yes	–40 °C to +85 °C
LPC2134FBD64/01	128 kB	16 kB	2	1	yes	–40 °C to +85 °C
LPC2136FBD64/01	256 kB	32 kB	2	1	yes	–40 °C to +85 °C
LPC2138FBD64/01	512 kB	32 kB	2	1	yes	–40 °C to +85 °C
LPC2138FHN64/01	512 kB	32 kB	2	1	yes	–40 °C to +85 °C

Single-chip 16/32-bit microcontrollers

5. Pinning information

5.1 Pinning

5.2 Pin description

	Pin descrip				
Symbol	Pin	Туре	Description		
P0.0 to P0.31		I/O	Port 0: Port 0 is a 32-bit I/O port with individual direction controls for each bit. Total of 31 pins of the Port 0 can be used as a general purpose bidirectional digital I/Os while P0.31 is output only pin. The operation of port 0 pins depends upon the pin function selected via the pin connect block.		
			Pin P0.24 is not available.		
P0.0/TXD0	/ 19 <u>[1]</u>	0	TXD0 — Transmitter output for UART0.		
PWM1		0	PWM1 — Pulse Width Modulator output 1.		
P0.1/RXD0		I	RXD0 — Receiver input for UART0.		
PWM3/EIN	110	0	PWM3 — Pulse Width Modulator output 3.		
		I	EINT0 — External interrupt 0 input.		
P0.2/SCL0	/ 22[3]	I/O	SCL0 — I^2C0 clock input/output. Open drain output (for I^2C -bus compliance).		
CAP0.0		I	CAP0.0 — Capture input for Timer 0, channel 0.		
P0.3/SDA0		I/O	SDA0 — I^2C0 data input/output. Open drain output (for I^2C -bus compliance).		
MAT0.0/EI	NI1	0	MAT0.0 — Match output for Timer 0, channel 0.		
		I	EINT1 — External interrupt 1 input.		
P0.4/SCK0		I/O	SCK0 — Serial clock for SPI0. SPI clock output from master or input to slave.		
CAP0.1/AD	00.6	Ι	CAP0.1 — Capture input for Timer 0, channel 1.		
		Ι	AD0.6 — ADC 0, input 6. This analog input is always connected to its pin.		
P0.5/MISO0/ 2 MAT0.1/AD0.7		I/O	MISO0 — Master In Slave V_{DD} = 3.6 V for SPI0. Data input to SPI master or data output from SPI slave.		
		0	MAT0.1 — Match output for Timer 0, channel 1.		
		Ι	AD0.7 — ADC 0, input 7. This analog input is always connected to its pin.		
P0.6/MOSI CAP0.2/AD	0.6/MOSI0/ 30 ^[4] AP0.2/AD1.0			I/O	MOSI0 — Master Out Slave In for SPI0. Data output from SPI master or data input to SPI slave.
			CAP0.2 — Capture input for Timer 0, channel 2.		
			AD1.0 — ADC 1, input 0. This analog input is always connected to its pin. Available in LPC2134/36/38 only.		
P0.7/SSEL		I	SSEL0 — Slave Select for SPI0. Selects the SPI interface as a slave.		
PWM2/EIN	IT2	0	PWM2 — Pulse Width Modulator output 2.		
		I	EINT2 — External interrupt 2 input.		
P0.8/TXD1		0	TXD1 — Transmitter output for UART1.		
PWM4/AD1	1.1	0	PWM4 — Pulse Width Modulator output 4.		
		Ι	AD1.1 — ADC 1, input 1. This analog input is always connected to its pin. Available in LPC2134/36/38 only.		
P0.9/RXD1		I	RXD1 — Receiver input for UART1.		
PWM6/EIN	IT3	0	PWM6 — Pulse Width Modulator output 6.		
		I	EINT3 — External interrupt 3 input.		
P0.10/RTS		0	RTS1 — Request to Send output for UART1. Available in LPC2134/36/38.		
CAP1.0/AD	01.2	I	CAP1.0 — Capture input for Timer 1, channel 0.		
		Ι	AD1.2 — ADC 1, input 2. This analog input is always connected to its pin. Available in LPC2134/36/38 only.		

Single-chip 16/32-bit microcontrollers

	lescriptio		
Symbol	Pin	Туре	Description
P0.23	58[1]	I/O	General purpose digital input/output pin.
P0.25/AD0.4/ AOUT	9 <u>[5]</u>	 	AD0.4 — ADC 0, input 4. This analog input is always connected to its pin.
	[4]	0	AOUT — DAC output. Not available in LPC2131.
P0.26/AD0.5	10[4]	1	AD0.5 — ADC 0, input 5. This analog input is always connected to its pin.
P0.27/AD0.0/ CAP0.1/MAT0.1	11 <u>^[4]</u>	I	AD0.0 — ADC 0, input 0. This analog input is always connected to its pin.
CAPU. I/MATU. I			CAP0.1 — Capture input for Timer 0, channel 1.
		0	MAT0.1 — Match output for Timer 0, channel 1.
P0.28/AD0.1/	13 <u>^[4]</u>	1	AD0.1 — ADC 0, input 1. This analog input is always connected to its pin.
CAP0.2/MAT0.2		1	CAP0.2 — Capture input for Timer 0, channel 2.
		0	MAT0.2 — Match output for Timer 0, channel 2.
P0.29/AD0.2/	14 <u>^[4]</u>	I	AD0.2 — ADC 0, input 2. This analog input is always connected to its pin.
CAP0.3/MAT0.3		I	CAP0.3 — Capture input for Timer 0, channel 3.
		0	MAT0.3 — Match output for Timer 0, channel 3.
P0.30/AD0.3/	15 <u>^[4]</u>	I	AD0.3 — ADC 0, input 3. This analog input is always connected to its pin.
EINT3/CAP0.0		I	EINT3 — External interrupt 3 input.
		I	CAP0.0 — Capture input for Timer 0, channel 0.
P0.31	17 <u>^[6]</u>	0	General purpose digital output only pin.
			Important: This pin MUST NOT be externally pulled LOW when RESET pin is LOW or the JTAG port will be disabled.
P1.0 to P1.31		I/O	Port 1: Port 1 is a 32-bit bidirectional I/O port with individual direction controls for each bit. The operation of port 1 pins depends upon the pin function selected via the pin connect block. Pins 0 through 15 of port 1 are not available.
P1.16/ TRACEPKT0	16 <u>^[6]</u>	0	TRACEPKT0 — Trace Packet, bit 0. Standard I/O port with internal pull-up.
P1.17/ TRACEPKT1	12 <u>^[6]</u>	0	TRACEPKT1 — Trace Packet, bit 1. Standard I/O port with internal pull-up.
P1.18/ TRACEPKT2	8 <u>[6]</u>	0	TRACEPKT2 — Trace Packet, bit 2. Standard I/O port with internal pull-up.
P1.19/ TRACEPKT3	4 <u>[6]</u>	0	TRACEPKT3 — Trace Packet, bit 3. Standard I/O port with internal pull-up.
P1.20/ TRACESYNC	48 <u>[6]</u>	0	TRACESYNC — Trace Synchronization. Standard I/O port with internal pull-up. LOW on TRACESYNC while RESET is LOW enables pins P1.25:16 to operate as Trace port after reset.
P1.21/ PIPESTAT0	44 <u>[6]</u>	0	PIPESTAT0 — Pipeline Status, bit 0. Standard I/O port with internal pull-up.
P1.22/ PIPESTAT1	40 <u>[6]</u>	0	PIPESTAT1 — Pipeline Status, bit 1. Standard I/O port with internal pull-up.
P1.23/ PIPESTAT2	36 <u>[6]</u>	0	PIPESTAT2 — Pipeline Status, bit 2. Standard I/O port with internal pull-up.
P1.24/ TRACECLK	32 <u>[6]</u>	0	TRACECLK — Trace Clock. Standard I/O port with internal pull-up.
P1.25/EXTIN0	28 <u>[6]</u>	I	EXTIN0 — External Trigger Input. Standard I/O with internal pull-up.

Single-chip 16/32-bit microcontrollers

6.7.2 Fast I/O features available in LPC213x/01 only

- Fast I/O registers are located on the ARM local bus for the fastest possible I/O timing.
- All GPIO registers are byte addressable.
- Entire port value can be written in one instruction.
- Mask registers allow single instruction to set or clear any number of bits in one port.

6.8 10-bit ADC

The LPC2131/32 contain one and the LPC2134/36/38 contain two ADCs. These converters are single 10-bit successive approximation ADCs with eight multiplexed channels.

6.8.1 Features

- Measurement range of 0 V to 3.3 V.
- Each converter capable of performing more than 400000 10-bit samples per second.
- Burst conversion mode for single or multiple inputs.
- Optional conversion on transition on input pin or Timer Match signal.
- Global Start command for both converters (LPC2134/36/38 only).

6.8.2 ADC features available in LPC213x/01 only

- Every analog input has a dedicated result register to reduce interrupt overhead.
- Every analog input can generate an interrupt once the conversion is completed.

6.9 10-bit DAC

This peripheral is available in the LPC2132/34/36/38 only. The DAC enables the LPC2132/34/36/38 to generate variable analog output.

6.9.1 Features

- 10-bit digital to analog converter.
- Buffered output.
- Power-down mode available.
- Selectable speed versus power.

6.10 UARTs

The LPC2131/32/34/36/38 each contain two UARTs. In addition to standard transmit and receive data lines, the LPC2134/36/38 UART1 also provides a full modem control handshake interface.

6.10.1 Features

- 16 B Receive and Transmit FIFOs.
- Register locations conform to 16C550 industry standard.
- Receiver FIFO trigger points at 1 B, 4 B, 8 B, and 14 B

6.12.1 Features

- Compliant with Serial Peripheral Interface (SPI) specification.
- Synchronous, Serial, Full Duplex, Communication.
- Combined SPI master and slave.
- Maximum data bit rate of one eighth of the input clock rate.

6.13 SSP serial I/O controller

The LPC2131/32/34/36/38 each contain one Serial Synchronous Port controller (SSP). The SSP controller is capable of operation on a SPI, 4-wire SSI, or Microwire bus. It can interact with multiple masters and slaves on the bus. However, only a single master and a single slave can communicate on the bus during a given data transfer. The SSP supports full duplex transfers, with frames of 4 bits to 16 bits of data flowing from the master to the slave and from the slave to the master. Often only one of these data flows carries meaningful data.

6.13.1 Features

- Compatible with Motorola SPI, 4-wire TI SSI and National Semiconductor Microwire buses.
- Synchronous Serial Communication.
- Master or slave operation.
- 8-frame FIFOs for both transmit and receive.
- Four bits to 16 bits per frame.

6.14 General purpose timers/external event counters

The Timer/Counter is designed to count cycles of the peripheral clock (PCLK) or an externally supplied clock, and optionally generate interrupts or perform other actions at specified timer values, based on four match registers. It also includes four capture inputs to trap the timer value when an input signal transitions, optionally generating an interrupt. Multiple pins can be selected to perform a single capture or match function, providing an application with 'or' and 'and', as well as 'broadcast' functions among them.

At any given time only one of peripheral's capture inputs can be selected as an external event signal source, i.e., timer's clock. The rate of external events that can be successfully counted is limited to PCLK/2. In this configuration, unused capture lines can be selected as regular timer capture inputs.

6.14.1 Features

- A 32-bit Timer/Counter with a programmable 32-bit Prescaler.
- External Event Counter or timer operation.
- Four 32-bit capture channels per timer/counter that can take a snapshot of the timer value when an input signal transitions. A capture event may also optionally generate an interrupt.
- Four 32-bit match registers that allow:
 - Continuous operation with optional interrupt generation on match.

Single-chip 16/32-bit microcontrollers

- Stop timer on match with optional interrupt generation.
- Reset timer on match with optional interrupt generation.
- Four external outputs per timer/counter corresponding to match registers, with the following capabilities:
 - Set LOW on match.
 - Set HIGH on match.
 - Toggle on match.
 - Do nothing on match.

6.15 Watchdog timer

The purpose of the watchdog is to reset the microcontroller within a reasonable amount of time if it enters an erroneous state. When enabled, the watchdog will generate a system reset if the user program fails to 'feed' (or reload) the watchdog within a predetermined amount of time.

6.15.1 Features

- Internally resets chip if not periodically reloaded.
- Debug mode.
- Enabled by software but requires a hardware reset or a watchdog reset/interrupt to be disabled.
- Incorrect/Incomplete feed sequence causes reset/interrupt if enabled.
- Flag to indicate watchdog reset.
- Programmable 32-bit timer with internal pre-scaler.
- Selectable time period from (T_{cy(PCLK)} × 256 × 4) to (T_{cy(PCLK)} × 2³² × 4) in multiples of T_{cy(PCLK)} × 4.

6.16 Real-time clock

The Real-Time Clock (RTC) is designed to provide a set of counters to measure time when normal or idle operating mode is selected. The RTC has been designed to use little power, making it suitable for battery powered systems where the CPU is not running continuously (Idle mode).

6.16.1 Features

- Measures the passage of time to maintain a calendar and clock.
- Ultra-low power design to support battery powered systems.
- Provides Seconds, Minutes, Hours, Day of Month, Month, Year, Day of Week, and Day of Year.
- Can use either the RTC dedicated 32 kHz oscillator input or clock derived from the external crystal/oscillator input at XTAL1. Programmable Reference Clock Divider allows fine adjustment of the RTC.
- Dedicated power supply pin can be connected to a battery or the main 3.3 V.

- Match register updates are synchronized with pulse outputs to prevent generation of erroneous pulses. Software must 'release' new match values before they can become effective.
- May be used as a standard timer if the PWM mode is not enabled.
- A 32-bit Timer/Counter with a programmable 32-bit Prescaler.

6.18 System control

6.18.1 Crystal oscillator

On-chip integrated oscillator operates with external crystal in range of 1 MHz to 30 MHz and with external oscillator up to 50 MHz. The oscillator output frequency is called f_{osc} and the ARM processor clock frequency is referred to as CCLK for purposes of rate equations, etc. f_{osc} and CCLK are the same value unless the PLL is running and connected. Refer to Section 6.18.2 "PLL" for additional information.

6.18.2 PLL

The PLL accepts an input clock frequency in the range of 10 MHz to 25 MHz. The input frequency is multiplied up into the range of 10 MHz to 60 MHz with a Current Controlled Oscillator (CCO). The multiplier can be an integer value from 1 to 32 (in practice, the multiplier value cannot be higher than 6 on this family of microcontrollers due to the upper frequency limit of the CPU). The CCO operates in the range of 156 MHz to 320 MHz, so there is an additional divider in the loop to keep the CCO within its frequency range while the PLL is providing the desired output frequency. The output divider may be set to divide by 2, 4, 8, or 16 to produce the output clock. Since the minimum output divider value is 2, it is insured that the PLL output has a 50 % duty cycle. The PLL is turned off and bypassed following a chip reset and may be enabled by software. The program must configure and activate the PLL, wait for the PLL to Lock, then connect to the PLL as a clock source. The PLL settling time is 100 μ s.

6.18.3 Reset and wake-up timer

Reset has two sources on the LPC2131/32/34/36/38: the RESET pin and watchdog reset. The RESET pin is a Schmitt trigger input pin with an additional glitch filter. Assertion of chip reset by any source starts the wake-up timer (see wake-up timer description below), causing the internal chip reset to remain asserted until the external reset is de-asserted, the oscillator is running, a fixed number of clocks have passed, and the on-chip flash controller has completed its initialization.

When the internal reset is removed, the processor begins executing at address 0, which is the reset vector. At that point, all of the processor and peripheral registers have been initialized to predetermined values.

The wake-up timer ensures that the oscillator and other analog functions required for chip operation are fully functional before the processor is allowed to execute instructions. This is important at power on, all types of reset, and whenever any of the aforementioned functions are turned off for any reason. Since the oscillator and other functions are turned off during Power-down mode, any wake-up of the processor from Power-down mode makes use of the wake-up timer.

6.18.8 Power Control

The LPC2131/32/34/36/38 support two reduced power modes: Idle mode and Power-down mode.

In Idle mode, execution of instructions is suspended until either a reset or interrupt occurs. Peripheral functions continue operation during Idle mode and may generate interrupts to cause the processor to resume execution. Idle mode eliminates power used by the processor itself, memory systems and related controllers, and internal buses.

In Power-down mode, the oscillator is shut down and the chip receives no internal clocks. The processor state and registers, peripheral registers, and internal SRAM values are preserved throughout Power-down mode and the logic levels of chip output pins remain static. The Power-down mode can be terminated and normal operation resumed by either a reset or certain specific interrupts that are able to function without clocks. Since all dynamic operation of the chip is suspended, Power-down mode reduces chip power consumption to nearly zero.

Selecting an external 32 kHz clock instead of the PCLK as a clock-source for the on-chip RTC will enable the microcontroller to have the RTC active during Power-down mode. Power-down current is increased with RTC active. However, it is significantly lower than in Idle mode.

A Power Control for Peripherals feature allows individual peripherals to be turned off if they are not needed in the application, resulting in additional power savings.

6.18.9 APB bus

The APB divider determines the relationship between the processor clock (CCLK) and the clock used by peripheral devices (PCLK). The APB divider serves two purposes. The first is to provide peripherals with the desired PCLK via APB bus so that they can operate at the speed chosen for the ARM processor. In order to achieve this, the APB bus may be slowed down to $\frac{1}{2}$ to $\frac{1}{4}$ of the processor clock rate. Because the APB bus must work properly at power-up (and its timing cannot be altered if it does not work since the APB divider control registers reside on the APB bus), the default condition at reset is for the APB bus to run at $\frac{1}{4}$ of the processor clock rate. The second purpose of the APB divider is to allow power savings when an application does not require any peripherals to run at the full processor rate. Because the APB divider is connected to the PLL output, the PLL remains active (if it was running) during Idle mode.

6.19 Emulation and debugging

The LPC2131/32/34/36/38 support emulation and debugging via a JTAG serial port. A trace port allows tracing program execution. Debugging and trace functions are multiplexed only with GPIOs on Port 1. This means that all communication, timer and interface peripherals residing on Port 0 are available during the development and debugging phase as they are when the application is run in the embedded system itself.

6.19.1 EmbeddedICE

Standard ARM EmbeddedICE logic provides on-chip debug support. The debugging of the target system requires a host computer running the debugger software and an EmbeddedICE protocol convertor. EmbeddedICE protocol convertor converts the Remote Debug Protocol commands to the JTAG data needed to access the ARM core.

Single-chip 16/32-bit microcontrollers

The ARM core has a Debug Communication Channel function built-in. The debug communication channel allows a program running on the target to communicate with the host debugger or another separate host without stopping the program flow or even entering the debug state. The debug communication channel is accessed as a co-processor 14 by the program running on the ARM7TDMI-S core. The debug communication channel allows the JTAG port to be used for sending and receiving data without affecting the normal program flow. The debug communication channel data and control registers are mapped in to addresses in the EmbeddedICE logic.

6.19.2 Embedded trace

Since the LPC2131/32/34/36/38 have significant amounts of on-chip memory, it is not possible to determine how the processor core is operating simply by observing the external pins. The Embedded Trace Macrocell provides real-time trace capability for deeply embedded processor cores. It outputs information about processor execution to the trace port.

The ETM is connected directly to the ARM core and not to the main AMBA system bus. It compresses the trace information and exports it through a narrow trace port. An external trace port analyzer must capture the trace information under software debugger control. Instruction trace (or PC trace) shows the flow of execution of the processor and provides a list of all the instructions that were executed. Instruction trace is significantly compressed by only broadcasting branch addresses as well as a set of status signals that indicate the pipeline status on a cycle by cycle basis. Trace information generation can be controlled by selecting the trigger resource. Trigger resources include address comparators, counters and sequencers. Since trace information is compressed the software debugger requires a static image of the code being executed. Self-modifying code can not be traced because of this restriction.

6.19.3 RealMonitor

RealMonitor is a configurable software module, developed by ARM Inc., which enables real time debug. It is a lightweight debug monitor that runs in the background while users debug their foreground application. It communicates with the host using the DCC, which is present in the EmbeddedICE logic. The LPC2131/32/34/36/38 contain a specific configuration of RealMonitor software programmed into the on-chip flash memory.

Single-chip 16/32-bit microcontrollers

Parameter	Conditions		Min	Typ <u>[1]</u>	Max	Uni
Power-down mode battery supply current	RTC clock = 32 kHz (from RTCXn pins); T _{amb} = 25 °C					
	V_{DD} = 3.0 V; $V_{i(VBAT)}$ = 2.5 V	[11]	-	14	-	μA
	V_{DD} = 3.0 V; $V_{i(VBAT)}$ = 3.0 V		-	16	-	μΑ
	V_{DD} = 3.3 V; $V_{i(VBAT)}$ = 3.3 V		-	18	-	μA
	$V_{DD} = 3.6 \text{ V}; V_{i(VBAT)} = 3.6 \text{ V}$		-	20	-	μA
active mode battery supply current	CCLK = 60 MHz; PCLK = 15 MHz; PCLK enabled to RTCK; RTC clock = 32 kHz (from RTCXn pins); $T_{amb} = 25 \degree C$	[11]				
	$V_{DD} = 3.0 \text{ V}; V_{i(VBAT)} = 3.0 \text{ V}$		-	78	-	μΑ
	$V_{DD} = 3.3 \text{ V}; V_{i(VBAT)} = 3.3 \text{ V}$		-	80	-	μA
	$V_{DD} = 3.6 \text{ V}; V_{i(VBAT)} = 3.6 \text{ V}$		-	82	-	μA
optimized active mode battery supply current	PCLK disabled to RTCK in the PCONP register; RTC clock = 32 kHz (from RTCXn pins); $T_{amb} = 25 \text{ °C}; V_{i(VBAT)} = 3.3 \text{ V}$	[11][12]				
	CCLK = 6 MHz		-	21	-	μA
	CCLK = 25 MHz		-	23	-	μA
	CCLK = 50 MHz		-	27	-	μA
	CCLK = 60 MHz		-	30	-	μA
ins						
HIGH-level input voltage			$0.7V_{DD}$	-	-	V
LOW-level input voltage			-	-	$0.3V_{DD}$	V
hysteresis voltage			-	$0.05V_{DD}$	-	V
LOW-level output voltage	I _{OLS} = 3 mA	[7]	-	-	0.4	V
input leakage current	$V_{I} = V_{DD}$			2	4	μA
	V _I = 5 V	[13]	-	10	22	μA
-						
input voltage on pin XTAL1			-0.5	1.8	1.95	V
output voltage on pin XTAL2			-0.5	1.8	1.95	V
input voltage on pin RTCX1			-0.5	1.8	1.95	V
output voltage on pin			-0.5	1.8	1.95	V
	Power-down mode battery supply current active mode battery supply current supply current optimized active mode battery supply current battery supply current ins HIGH-level input voltage battery supply current input voltage on pin XTAL2 input voltage on pin XTAL2 input voltage on pin XTAL2	Power-down mode battery supply currentRTC clock = 32 kHz (from RTCXn pins); $T_{amb} = 25 °C$ $V_{DD} = 3.0 V; V_{i(VBAT)} = 3.0 V$ $V_{DD} = 3.0 V; V_{i(VBAT)} = 3.0 V$ $V_{DD} = 3.6 V; V_{i(VBAT)} = 3.6 V$ active mode battery supply currentCCLK = 60 MHz; PCLK = 15 MHz; PCLK enabled to RTCK; RTC clock = 32 kHz (from RTCXn pins); $T_{amb} = 25 °C$ $V_{DD} = 3.0 V; V_{i(VBAT)} = 3.0 V$ active mode battery supply currentCLK = 60 MHz; PCLK = 15 MHz; PCLK enabled to RTCK; RTC clock = 32 kHz (from RTCXn pins); $T_{amb} = 25 °C$ $V_{DD} = 3.0 V; V_{i(VBAT)} = 3.0 V$ optimized active mode battery supply currentPCLK disabled to RTCK in the PCONP register; RTC clock = 32 kHz (from RTCXn pins); $T_{amb} = 25 °C; V_{i(VBAT)} = 3.3 V$ $CCLK = 60 MHz$ optimized active mode battery supply currentPCLK disabled to RTCK in the PCONP register; RTC clock = 32 kHz (from RTCXn pins); $T_{amb} = 25 °C; V_{i(VBAT)} = 3.3 V$ $CCLK = 60 MHz$ Ingut voltage on pin XTAL1IoLS = 3 mAinput voltage on pin XTAL2V1 = V_{DD} $V_1 = 5 V$ input voltage on pin XTAL2Input voltage on pin RTCX1	Power-down mode battery supply currentRTC clock = 32 kHz (from RTCXn pins); $T_{amb} = 25 \ ^{\circ}C$ $V_{DD} = 3.0 V; V_{i(VBAT)} = 2.5 V$ [11] $V_{DD} = 3.0 V; V_{i(VBAT)} = 3.0 V$ $V_{DD} = 3.0 V; V_{i(VBAT)} = 3.0 V$ $V_{DD} = 3.6 V; V_{i(VBAT)} = 3.3 V$ $V_{DD} = 3.6 V; V_{i(VBAT)} = 3.6 V$ active mode battery supply currentCCLK = 60 MHz; PCLK enabled to RTCK; RTC clock = 32 kHz (from RTCXn pins); $T_{amb} = 25 \ ^{\circ}C$ [11] PCLK enabled to RTCK; RTC clock = 32 kHz (from RTCXn pins); $T_{amb} = 25 \ ^{\circ}C$ vDD = 3.0 V; V_{i(VBAT)} = 3.0 V $V_{DD} = 3.0 V; V_{i(VBAT)} = 3.0 V$ optimized active mode battery supply currentPCLK disabled to RTCK in the PCONP register; RTC clock = 32 kHz (from RTCXn pins); $T_{amb} = 25 \ ^{\circ}C; V_{i(VBAT)} = 3.3 V$ optimized active mode battery supply currentPCLK disabled to RTCK in the PCONP register; RTC clock = 32 kHz (from RTCXn pins); $T_{amb} = 25 \ ^{\circ}C; V_{i(VBAT)} = 3.3 V$ optimized active mode battery supply currentCCLK = 60 MHzEddef to RTCK in pins); $T_{amb} = 25 \ ^{\circ}C; V_{i(VBAT)} = 3.3 V$ CCLK = 60 MHzCCLK = 60 MHzCCLK = 50 MHzCCLK = 60 MHzCCLK = 60 MHzIInput voltageV_1 = V_{DD}Input voltageV_1 = V_{DD}Input voltage currentV_1 = V_{DD}V_1 = V_{DD}II31V_1 = 5 VII31input voltage on pin XTAL2V_1 = V_Dinput voltage on pin XTAL2II31input voltage on pin RTCX1II31	Power-down mode battery supply currentRTC clock = 32 kHz (from RTCXn pins); $T_{amb} = 25 ° C$ $V_{DD} = 3.0 V; V_{(VBAT)} = 2.5 V$ [11] $V_{DD} = 3.0 V; V_{(VBAT)} = 3.0 V$ - $V_{DD} = 3.0 V; V_{(VBAT)} = 3.0 V$ - $V_{DD} = 3.6 V; V_{(VBAT)} = 3.6 V$ -active mode battery supply currentCCLK = 60 MHz; PCLK = 15 MHz; PCLK enabled to RTCK; RTC clock = 32 kHz (from RTCXn pins); $T_{amb} = 25 ° C$ $V_{DD} = 3.0 V; V_{(VBAT)} = 3.0 V$ -optimized active mode battery supply currentPCLK disabel to RTCK; RTC clock = 32 kHz (from RTCXn pins); $T_{amb} = 25 ° C$ $V_{DD} = 3.0 V; V_{(VBAT)} = 3.0 V$ -optimized active mode battery supply currentPCLK disabel to RTCK in the PCONP register; RTC clock = 32 kHz (from RTCXn pins); $T_{amb} = 25 ° C$; $V_{(VBAT)} = 3.0 V$ -optimized active mode battery supply currentPCLK disabel to RTCK in the PCCNP register; RTC clock = 32 kHz (from RTCXn pins); $T_{amb} = 25 ° C$; $V_{(VBAT)} = 3.0 V$ -OULK disabel to RTCK in the PCCNP register; RTC clock = 32 kHz (from RTCXn pins); $T_{amb} = 25 ° C$; $V_{(VBAT)} = 3.0 V$ -OULK disabel to RTCK in the PCCNP register; RTC clock = 32 kHz (from RTCXn pins); $T_{amb} = 25 ° C$; $V_{(VBAT)} = 3.0 V$ -IDUE HIGH-level input voltageIDUE HUGHIDUE HUGHIDUE HUGHIDUE HUGHIDUE HUGHIDUE HUGHIDUE HUGHIDUE HUGH <t< td=""><td>Power-down mode battery supply current RTC clock = 32 kHz (from RTCXn pins); Tamb = 25 °C 111 14 Vop = 3.0 V; V(VBAT) = 2.5 V [11] 14 Vop = 3.0 V; V(VBAT) = 3.0 V - 16 Vop = 3.0 V; V(VBAT) = 3.0 V - 18 Vop = 3.0 V; V(VBAT) = 3.0 V - 20 active mode battery supply current CCLK = 60 MHz; PCLK = 15 MHz; PCLK = 15 MHz; PCLK = 15 MHz; PCLK = 15 MHz; PCLK = 72 °C 111 Yop = 3.0 V; V(VBAT) = 3.0 V - 78 VDD = 3.0 V; V(VBAT) = 3.0 V - 78 VDD = 3.0 V; V(VBAT) = 3.0 V - 80 VDD = 3.0 V; V(VBAT) = 3.0 V - 82 optimized active mode battery supply current PCCK disabled to RTCK in the PCCK alsabled to RTCK in the CCLK = 60 MHz - 82 optimized active mode battery supply current PCCK disabled to RTCK in the CCLK = 60 MHz - 21 CCLK = 60 MHz - 21 - 21 CCLK = 60 MHz - 21 - 21 CCLK = 60 MHz - 21 - - 10 LOW-level inpu</td><td>Power-down mode battery supply current RTC clock = 32 kHz (from RTCXn pins); $T_{amb} = 25 ° C$ 11 14 - VDD = 3.0 V; V_(VBAT) = 2.5 V 111 - 16 - VDD = 3.0 V; V_(VBAT) = 3.0 V - 16 - VDD = 3.0 V; V_(VBAT) = 3.0 V - 18 - VDD = 3.0 V; V_(VBAT) = 3.0 V - 20 - active mode battery supply current CCLK = 60 MHz; 111 - - CK = 15 MH2; PCLK enabled to RTCK; RTC clock = 32 kHz (from RTCXn pins); T_{amb} = 25 °C - 78 - VDD = 3.0 V; V_(VBAT) = 3.0 V - 78 - - VDD = 3.0 V; V_(VBAT) = 3.0 V - 78 - - VDD = 3.0 V; V_(VBAT) = 3.0 V - 78 - - VDD = 3.0 V; V_(VBAT) = 3.0 V - 78 - - VDD = 3.6 V; V_(VBAT) = 3.0 V - 80 - - - Optimized active mode battery supply current PCLK disabled to RTCK in the PCCN register; T_{amb} = 25 °C; V₁(VBAT) = 3.3 V - 21 -</td></t<>	Power-down mode battery supply current RTC clock = 32 kHz (from RTCXn pins); Tamb = 25 °C 111 14 Vop = 3.0 V; V(VBAT) = 2.5 V [11] 14 Vop = 3.0 V; V(VBAT) = 3.0 V - 16 Vop = 3.0 V; V(VBAT) = 3.0 V - 18 Vop = 3.0 V; V(VBAT) = 3.0 V - 20 active mode battery supply current CCLK = 60 MHz; PCLK = 15 MHz; PCLK = 15 MHz; PCLK = 15 MHz; PCLK = 15 MHz; PCLK = 72 °C 111 Yop = 3.0 V; V(VBAT) = 3.0 V - 78 VDD = 3.0 V; V(VBAT) = 3.0 V - 78 VDD = 3.0 V; V(VBAT) = 3.0 V - 80 VDD = 3.0 V; V(VBAT) = 3.0 V - 82 optimized active mode battery supply current PCCK disabled to RTCK in the PCCK alsabled to RTCK in the CCLK = 60 MHz - 82 optimized active mode battery supply current PCCK disabled to RTCK in the CCLK = 60 MHz - 21 CCLK = 60 MHz - 21 - 21 CCLK = 60 MHz - 21 - 21 CCLK = 60 MHz - 21 - - 10 LOW-level inpu	Power-down mode battery supply current RTC clock = 32 kHz (from RTCXn pins); $T_{amb} = 25 ° C$ 11 14 - VDD = 3.0 V; V _(VBAT) = 2.5 V 111 - 16 - VDD = 3.0 V; V _(VBAT) = 3.0 V - 16 - VDD = 3.0 V; V _(VBAT) = 3.0 V - 18 - VDD = 3.0 V; V _(VBAT) = 3.0 V - 20 - active mode battery supply current CCLK = 60 MHz; 111 - - CK = 15 MH2; PCLK enabled to RTCK; RTC clock = 32 kHz (from RTCXn pins); T _{amb} = 25 °C - 78 - VDD = 3.0 V; V _(VBAT) = 3.0 V - 78 - - VDD = 3.0 V; V _(VBAT) = 3.0 V - 78 - - VDD = 3.0 V; V _(VBAT) = 3.0 V - 78 - - VDD = 3.0 V; V _(VBAT) = 3.0 V - 78 - - VDD = 3.6 V; V _(VBAT) = 3.0 V - 80 - - - Optimized active mode battery supply current PCLK disabled to RTCK in the PCCN register; T _{amb} = 25 °C; V ₁ (VBAT) = 3.3 V - 21 -

Table 6. Static characteristics ... continued

 $T_{amb} = -40 \ ^{\circ}C \text{ to } +85 \ ^{\circ}C \text{ for commercial applications, unless otherwise specified.}$

[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages.

[2] The RTC typically fails when $V_{i(VBAT)}\,drops$ below 1.6 V.

[3] Including voltage on outputs in 3-state mode.

NXP Semiconductors

LPC2131/32/34/36/38

Single-chip 16/32-bit microcontrollers

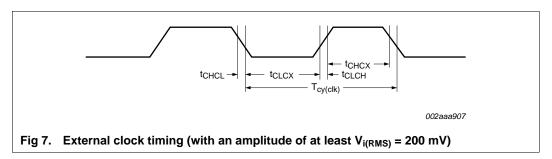
- [4] V_{DD} supply voltages must be present.
- [5] 3-state outputs go into 3-state mode when V_{DD} is grounded.
- [6] Please also see the errata note mentioned in the errata sheet.
- [7] Accounts for 100 mV voltage drop in all supply lines.
- [8] Only allowed for a short time period.
- [9] Minimum condition for $V_1 = 4.5$ V, maximum condition for $V_1 = 5.5$ V.
- [10] Applies to P1.16 to P1.25.
- [11] On pin VBAT.
- [12] Optimized for low battery consumption.
- [13] To V_{SS}.

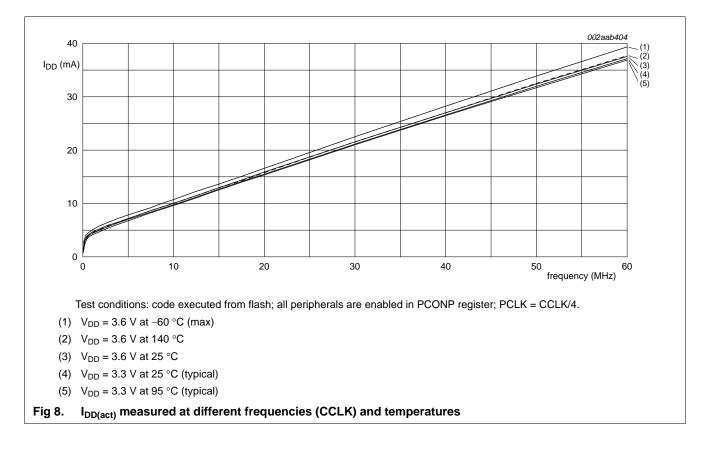
9. Dynamic characteristics

Table 7. Dynamic characteristics

 $T_{amb} = -40$ °C to +85 °C for commercial applications, V_{DD} over specified ranges.^[1]

anno			0			
Symbol	Parameter	Conditions	Min	Typ <u>^[2]</u>	Max	Unit
External cloc	k					
f _{osc}	oscillator frequency		10	-	25	MHz
T _{cy(clk)}	clock cycle time		40	-	100	ns
t _{CHCX}	clock HIGH time		$T_{\text{cy(clk)}} \times 0.4$	-	-	ns
t _{CLCX}	clock LOW time		$T_{\text{cy(clk)}} \times 0.4$	-	-	ns
t _{CLCH}	clock rise time		-	-	5	ns
t _{CHCL}	clock fall time		-	-	5	ns
Port pins (ex	cept P0.2 and P0.3)					
t _{r(o)}	output rise time		-	10	-	ns
t _{f(0)}	output fall time		-	10	-	ns
I ² C-bus pins	(P0.2 and P0.3)					
t _{f(0)}	output fall time	V_{IH} to V_{IL}	$20 + 0.1 \times C_b^{[3]}$	-	-	ns

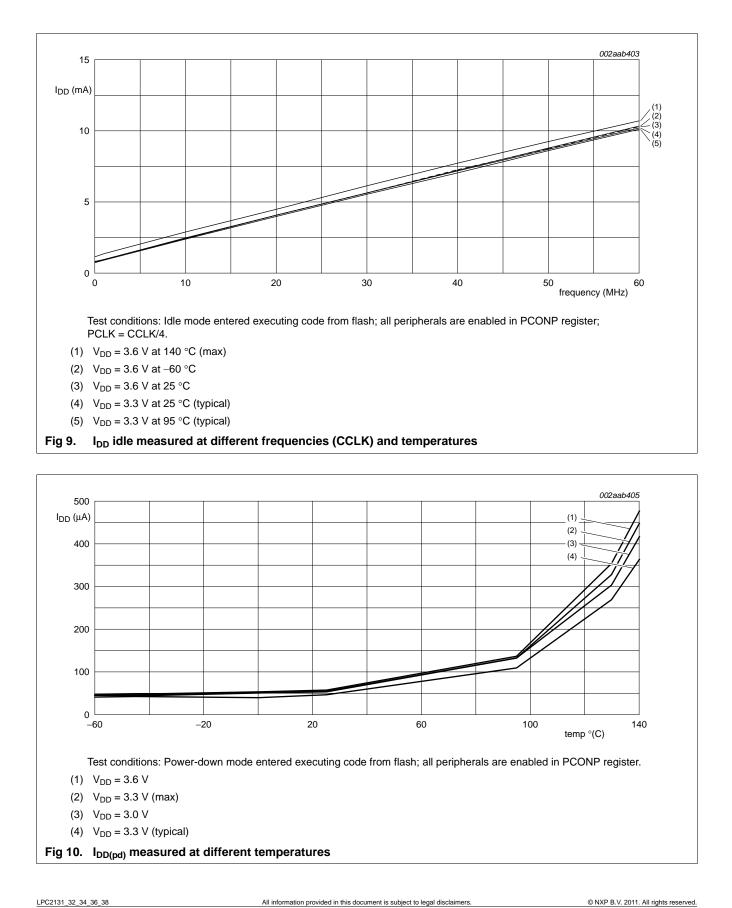

[1] Parameters are valid over operating temperature range unless otherwise specified.


[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages.

[3] Bus capacitance C_b in pF, from 10 pF to 400 pF.

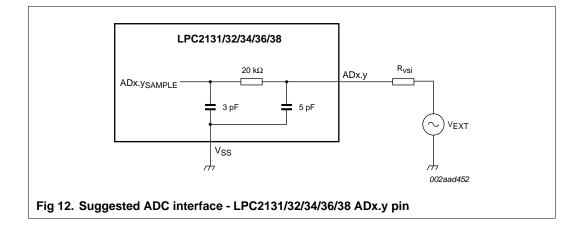
Single-chip 16/32-bit microcontrollers

9.1 Timing



9.2 LPC2138 power consumption measurements

NXP Semiconductors


LPC2131/32/34/36/38

Single-chip 16/32-bit microcontrollers

31 of 45

Single-chip 16/32-bit microcontrollers

Single-chip 16/32-bit microcontrollers

14. Abbreviations

Table 13.	Acronym list
Acronym	Description
A/D	Analog-to-Digital
ADC	Analog-to-Digital Converter
AHB	Advanced High-performance Bus
AMBA	Advanced Microcontroller Bus Architecture
APB	Advanced Peripheral Bus
BOD	BrownOut Detection
CPU	Central Processing Unit
DAC	Digital-to-Analog Converter
DCC	Debug Communications Channel
ETM	Embedded Trace Macrocell
FIFO	First In, First Out
GPIO	General Purpose Input/Output
JTAG	Joint Test Action Group
LSB	Least Significant Bit
PLL	Phase-Locked Loop
POR	Power-On Reset
PWM	Pulse Width Modulator
RAM	Random Access Memory
SPI	Serial Peripheral Interface
SRAM	Static Random Access Memory
SSP	Synchronous Serial Port
UART	Universal Asynchronous Receiver/Transmitter

15. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes	
LPC2131_32_34_36_38 v.5.1	20110729	Product data sheet	-	LPC2131_32_34_36_38 v.5	
Modifications:	 Parameter 	r I _{sink} added in <u>Table 5 "L</u>	imiting values".		
	 Table 6 "S 	tatic characteristics": Up	dated crystal oscilla	tor specs	
LPC2131_32_34_36_38 v.5	20110202	Product data sheet	-	LPC2131_32_34_36_38 v.4	
Modifications:	• Table 3 "P	in description": Added Ta	able note [9] to RTC	X1 and RTCX2 pins.	
	• <u>Table 6 "S</u> 0.5V _{DD} to		-bus pins: Changed	l typical hysteresis voltage from	
	 Table 6 "S 	tatic characteristics": Re	moved table note fo	r V _{IH} and V _{IL} .	
	 Changed all occurrences of VPB to APB. 				
	 Table 6 "S 	tatic characteristics": Ad	ded <u>Table note [6]</u> to	o V _I .	
		tatic characteristics", Sta .4 V) moved from typical		SET, RTCK: V _{hys} hysteresis	
	• <u>Table 6 "S</u>	tatic characteristics": Ch	anged V _{i(VREF)} minir	mum voltage from 3.0 V to 2.5 V	
		tatic characteristics": Up / _{o(XTAL2)} , V _{i(RTCX1)} , and \		nd max values for oscillator pins	
	 Added <u>Sec</u> 	ction 11 "DAC electrical	characteristics".		
	 Added <u>Sec</u> 	ction 12 "Application info	rmation".		
LPC2131_32_34_36_38 v.4	20071016	Product data sheet	-	LPC2131_32_34_36_38 v.3	
LPC2131_32_34_36_38 v.3	20060921	Product data sheet	-	LPC2131_32_34_36_38 v.2	
LPC2131_32_34_36_38 v.2	20050318	Preliminary data sheet	-	LPC2131_2132_2138 v.1	
LPC2131_2132_2138 v.1	20041118	Preliminary data sheet	-	-	

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's

17. Contact information

own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

I²C-bus — logo is a trademark of NXP B.V.

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Single-chip 16/32-bit microcontrollers

18. Contents

1	General description 1	
2	Features and benefits 1	
2.1	Enhancements brought by LPC213x/01 devices	
2.2	Key features common for LPC213x and LPC213x/01 1	
3	Ordering information 2	
3.1	Ordering options 3	ì
4	Block diagram 4	
5	Pinning information 5	i
5.1	Pinning)
5.2	Pin description 9	1
6	Functional description 13	j.
6.1	Architectural overview	
6.2	On-chip flash program memory 13	,
6.3	On-chip static RAM 13	;
6.4	Memory map 14	
6.5	Interrupt controller 15	j –
6.5.1	Interrupt sources 15	j –
6.6	Pin connect block	j –
6.7	General purpose parallel I/O and Fast I/O 16	i
6.7.1	Features	i -
6.7.2	Fast I/O features available in LPC213x/01	
~ ~	only	
6.8	10-bit ADC 17	
6.8.1	Features	
6.8.2	ADC features available in LPC213x/01 only. 17	
6.9	10-bit DAC	
6.9.1 6.10	Features	
6.10.1		
6.10.1	Features	
6.11	l ² C-bus serial I/O controller	
6.11.1	Features	
6.12	SPI serial I/O controller	
6.12.1	Features	
6.13	SSP serial I/O controller	
6.13.1	Features	
6.14	General purpose timers/external event	
0.11	counters	
6.14.1	Features	
6.15	Watchdog timer	
6.15.1	Features	
6.16	Real-time clock	
6.16.1	Features	
6.17	Pulse width modulator	
6.17.1	Features	

6.18 6.18.1 6.18.2	System control	22 22 22
6.18.3	Reset and wake-up timer	22
6.18.4	Brownout detector	23
6.18.5	Code security	23
6.18.6	External interrupt inputs	23
6.18.7	Memory Mapping Control	23
6.18.8	Power Control	24
6.18.9	APB bus	24
6.19	Emulation and debugging	24
6.19.1	EmbeddedICE	24
6.19.2	Embedded trace	25
6.19.3	RealMonitor	25
7	Limiting values	26
8	Static characteristics	27
9	Dynamic characteristics	29
9.1	Timing	30
9.2	LPC2138 power consumption measurements	30
10	ADC electrical characteristics	32
11	DAC electrical characteristics	35
12	Application information	36
12.1	Crystal oscillator XTAL input and component	
	selection	36
12.2	RTC 32 kHz oscillator component selection .	38
12.3	XTAL and RTCX Printed Circuit Board (PCB)	
	layout guidelines	38
13	Package outline	39
14	Abbreviations	41
15	Revision history	42
16	Legal information	43
16.1	Data sheet status	43
16.2	Definitions	43
16.3	Disclaimers	43
16.4	Trademarks	44
17	Contact information	44
18	Contents	45

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2011.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 29 July 2011 Document identifier: LPC2131_32_34_36_38