

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	30 MIPs
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	52
Program Memory Size	132KB (44K x 24)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic30f6011-30i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

The SA and SB bits are modified each time data passes through the adder/subtracter but can only be cleared by the user. When set, they indicate that the accumulator has overflowed its maximum range (bit 31 for 32-bit saturation, or bit 39 for 40-bit saturation) and will be saturated (if saturation is enabled). When saturation is not enabled, SA and SB default to bit 39 overflow and thus indicate that a catastrophic overflow has occurred. If the COVTE bit in the INTCON1 register is set, SA and SB bits will generate an arithmetic warning trap when saturation is disabled.

The overflow and saturation status bits can optionally be viewed in the STATUS register (SR) as the logical OR of OA and OB (in bit OAB) and the logical OR of SA and SB (in bit SAB). This allows programmers to check one bit in the STATUS register to determine if either accumulator has overflowed, or one bit to determine if either accumulator has saturated. This would be useful for complex number arithmetic which typically uses both the accumulators.

The device supports three saturation and overflow modes:

1. Bit 39 Overflow and Saturation:

When bit 39 overflow and saturation occurs, the saturation logic loads the maximally positive 9.31 (0x7FFFFFFFF), or maximally negative 9.31 value (0x800000000) into the target accumulator. The SA or SB bit is set and remains set until cleared by the user. This is referred to as 'super saturation' and provides protection against erroneous data, or unexpected algorithm problems (e.g., gain calculations).

- Bit 31 Overflow and Saturation: When bit 31 overflow and saturation occurs, the saturation logic then loads the maximally positive 1.31 value (0x007FFFFFF), or maximally negative 1.31 value (0x008000000) into the target accumulator. The SA or SB bit is set and remains set until cleared by the user. When this Saturation mode is in effect, the guard bits are not used (so the OA, OB or OAB bits are never set).
- 3. Bit 39 Catastrophic Overflow:

The bit 39 overflow status bit from the adder is used to set the SA or SB bit which remain set until cleared by the user. No saturation operation is performed and the accumulator is allowed to overflow (destroying its sign). If the COVTE bit in the INTCON1 register is set, a catastrophic overflow can initiate a trap exception.

2.4.2.2 Accumulator 'Write Back'

The MAC class of instructions (with the exception of MPY, MPY.N, ED and EDAC) can optionally write a rounded version of the high word (bits 31 through 16) of the accumulator that is not targeted by the instruction into data space memory. The write is performed across the X bus into combined X and Y address space. The following addressing modes are supported:

1. W13, Register Direct:

The rounded contents of the non-target accumulator are written into W13 as a 1.15 fraction.

 [W13] + = 2, Register Indirect with Post-Increment: The rounded contents of the non-target accumulator are written into the address pointed to by W13 as a 1.15 fraction. W13 is then incremented by 2 (for a word write).

2.4.2.3 Round Logic

The round logic is a combinational block which performs a conventional (biased) or convergent (unbiased) round function during an accumulator write (store). The Round mode is determined by the state of the RND bit in the CORCON register. It generates a 16bit, 1.15 data value which is passed to the data space write saturation logic. If rounding is not indicated by the instruction, a truncated 1.15 data value is stored and the least significant word (lsw) is simply discarded.

Conventional rounding takes bit 15 of the accumulator, zero-extends it and adds it to the ACCxH word (bits 16 through 31 of the accumulator). If the ACCxL word (bits 0 through 15 of the accumulator) is between 0x8000 and 0xFFFF (0x8000 included), ACCxH is incremented. If ACCxL is between 0x0000 and 0x7FFF, ACCxH is left unchanged. A consequence of this algorithm is that over a succession of random rounding operations, the value will tend to be biased slightly positive.

Convergent (or unbiased) rounding operates in the same manner as conventional rounding, except when ACCxL equals 0x8000. If this is the case, the LSb (bit 16 of the accumulator) of ACCxH is examined. If it is '1', ACCxH is incremented. If it is '0', ACCxH is not modified. Assuming that bit 16 is effectively random in nature, this scheme will remove any rounding bias that may accumulate.

The SAC and SAC.R instructions store either a truncated (SAC) or rounded (SAC.R) version of the contents of the target accumulator to data memory via the X bus (subject to data saturation, see **Section 2.4.2.4** "**Data Space Write Saturation**"). Note that for the MAC class of instructions, the accumulator write back operation will function in the same manner, addressing combined MCU (X and Y) data space though the X bus. For this class of instructions, the data is always subject to rounding.

3.0 MEMORY ORGANIZATION

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "*dsPIC30F Family Reference Manual*" (DS70046). For more information on the device instruction set and programming, refer to the "*dsPIC30F/ 33F Programmer's Reference Manual*" (DS70157).

3.1 Program Address Space

The program address space is 4M instruction words. It is addressable by a 24-bit value from either the 23-bit PC, table instruction Effective Address (EA), or data space EA, when program space is mapped into data space as defined by Table 3-1. Note that the program space address is incremented by two between successive program words in order to provide compatibility with data space addressing. User program space access is restricted to the lower 4M instruction word address range (0x000000 to 0x7FFFFE) for all accesses other than TBLRD/TBLWT, which use TBLPAG<7> to determine user or configuration space access. In Table 3-1, Program Space Address Construction, bit 23 allows access to the Device ID, the User ID and the Configuration bits. Otherwise, bit 23 is always clear.

Note: The address map shown in Figure 3-1 and Figure 3-2 is conceptual, and the actual memory configuration may vary across individual devices depending on available memory.

3.1.2 DATA ACCESS FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

The upper 32 Kbytes of data space may optionally be mapped into any 16K word program space page. This provides transparent access of stored constant data from X data space without the need to use special instructions (i.e., TBLRDL/H, TBLWTL/H instructions).

Program space access through the data space occurs if the MSb of the data space EA is set and program space visibility is enabled by setting the PSV bit in the Core Control register (CORCON). The functions of CORCON are discussed in **Section 2.4** "**DSP Engine**".

Data accesses to this area add an additional cycle to the instruction being executed, since two program memory fetches are required.

Note that the upper half of addressable data space is always part of the X data space. Therefore, when a DSP operation uses program space mapping to access this memory region, Y data space should typically contain state (variable) data for DSP operations, whereas X data space should typically contain coefficient (constant) data.

Although each data space address, 0x8000 and higher, maps directly into a corresponding program memory address (see Figure 3-6), only the lower 16 bits of the 24-bit program word are used to contain the data. The upper 8 bits should be programmed to force an illegal instruction to maintain machine robustness. Refer to the "*dsPIC30F/33F Programmer's Reference Manual*" (DS70157) for details on instruction encoding. Note that by incrementing the PC by 2 for each program memory word, the Least Significant 15 bits of data space addresses directly map to the Least Significant 15 bits in the corresponding program space addresses. The remaining bits are provided by the Program Space Visibility Page register, PSVPAG<7:0>, as shown in Figure 3-6.

Note: PSV access is temporarily disabled during table reads/writes.

For instructions that use PSV which are executed outside a REPEAT loop:

- The following instructions will require one instruction cycle in addition to the specified execution time:
 - MAC class of instructions with data operand prefetch
 - MOV instructions
 - MOV.D instructions
- All other instructions will require two instruction cycles in addition to the specified execution time of the instruction.

For instructions that use PSV which are executed inside a REPEAT loop:

- The following instances will require two instruction cycles in addition to the specified execution time of the instruction:
 - Execution in the first iteration
 - Execution in the last iteration
 - Execution prior to exiting the loop due to an interrupt
 - Execution upon re-entering the loop after an interrupt is serviced
- Any other iteration of the REPEAT loop will allow the instruction accessing data, using PSV, to execute in a single cycle.

TABLE 4-2: BIT-REVERSED ADDRESS SEQUENCE (16-ENTRY)

		Norma	al Addres	s			Bit-Rev	ersed Ad	dress
A3	A2	A1	A0	Decimal	A3	A2	A1	A0	Decimal
0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	0	0	0	8
0	0	1	0	2	0	1	0	0	4
0	0	1	1	3	1	1	0	0	12
0	1	0	0	4	0	0	1	0	2
0	1	0	1	5	1	0	1	0	10
0	1	1	0	6	0	1	1	0	6
0	1	1	1	7	1	1	1	0	14
1	0	0	0	8	0	0	0	1	1
1	0	0	1	9	1	0	0	1	9
1	0	1	0	10	0	1	0	1	5
1	0	1	1	11	1	1	0	1	13
1	1	0	0	12	0	0	1	1	3
1	1	0	1	13	1	0	1	1	11
1	1	1	0	14	0	1	1	1	7
1	1	1	1	15	1	1	1	1	15

TABLE 4-3: BIT-REVERSED ADDRESS MODIFIER VALUES FOR XBREV REGISTER

Buffer Size (Words)	XB<14:0> Bit-Reversed Address Modifier Value
4096	0x0800
2048	0x0400
1024	0x0200
512	0x0100
256	0x0080
128	0x0040
64	0x0020
32	0x0010
16	0x0008
8	0x0004
4	0x0002
2	0x0001

| TABLE 5-2: INTERRUPT CONTROLLER REGISTER MAP

SFR Name	ADR	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
INTCON1	0080	NSTDIS	_	_	_	_	OVATE	OVBTE	COVTE	—	_	_	MATHERR	ADDRERR	STKERR	OSCFAIL	_	0000 0000 0000 0000
INTCON2	0082	ALTIVT	DISI		_		—			_	_		INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000 0000 0000 0000
IFS0	0084	CNIF	MI2CIF	SI2CIF	NVMIF	ADIF	U1TXIF	U1RXIF	SPI1IF	T3IF	T2IF	OC2IF	IC2IF	T1IF	OC1IF	IC1IF	INT0IF	0000 0000 0000 0000
IFS1	0086	IC6IF	IC5IF	IC4IF	IC3IF	C1IF	SPI2IF	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	IC8IF	IC7IF	INT1IF	0000 0000 0000 0000
IFS2	0088	_	_	_	_	_	LVDIF	DCIIF	_	_	C2IF	INT4IF	INT3IF	OC8IF	OC7IF	OC6IF	OC5IF	0000 0000 0000 0000
IEC0	008C	CNIE	MI2CIE	SI2CIE	NVMIE	ADIE	U1TXIE	U1RXIE	SPI1IE	T3IE	T2IE	OC2IE	IC2IE	T1IE	OC1IE	IC1IE	INTOIE	0000 0000 0000 0000
IEC1	008E	IC6IE	IC5IE	IC4IE	IC3IE	C1IE	SPI2IE	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	IC8IE	IC7IE	INT1IE	0000 0000 0000 0000
IEC2	0090						LVDIE	DCIIE		_	C2IE	INT4IE	INT3IE	OC8IE	OC7IE	OC6IE	OC5IE	0000 0000 0000 0000
IPC0	0094	_	-	T1IP<2:0>		_	c	DC1IP<2:0	>	_		IC1IP<	2:0>	_		NT0IP<2:0>	>	0100 0100 0100 0100
IPC1	0096	_	٦	[31P<2:0	>	-		T2IP<2:0>		_		OC2IP<	2:0>	_		IC2IP<2:0>		0100 0100 0100 0100
IPC2	0098	_	ŀ	ADIP<2:0>	>	_	U	1TXIP<2:0)>	_		U1RXIP	<2:0>	_	5	SPI1IP<2:0>	>	0100 0100 0100 0100
IPC3	009A		(CNIP<2:0	>	١	N	112CIP<2:0	>	_		SI2CIP<	:2:0>		١	VMIP<2:0	>	0100 0100 0100 0100
IPC4	009C	_	С	C3IP<2:0	>	_	I	C8IP<2:0>	>	_		IC7IP<	2:0>	_	I	NT1IP<2:0>	>	0100 0100 0100 0100
IPC5	009E	_	И	NT2IP<2:0	>	_		T5IP<2:0>		_		T4IP<2	2:0>	_	(OC4IP<2:0>	•	0100 0100 0100 0100
IPC6	00A0		(C1IP<2:0>	•	I	s	PI2IP<2:0	>	_		U2TXIP.	<2:0>		U	2RXIP<2:0	>	0100 0100 0100 0100
IPC7	00A2		Ť	C6IP<2:0:	^	١	I	C5IP<2:0>	>	_		IC4IP<	2:0>			IC3IP<2:0>		0100 0100 0100 0100
IPC8	00A4	_	C	C8IP<2:0	>	-	C	0C7IP<2:0	>	_		OC6IP<	2:0>	_	(OC5IP<2:0>	, <u> </u>	0100 0100 0100 0100
IPC9	00A6	_	_	_	_	_		C2IP<2:0>		_		INT41IP	<2:0>	_		NT3IP<2:0>	>	0000 0100 0100 0100
IPC10	00A8	_	_	_	_	_	L	VDIP<2:0:	>	_		DCIIP<	2:0>	_	_	_	_	0000 0100 0100 0000

Legend: u = uninitialized bit

Note: Refer to "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields.

NOTES:

TABLE 10-1: TIMER2/3 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
TMR2	0106								Ti	mer2 Regist	er							uuuu uuuu uuuu
TMR3HLD	0108		Timer3 Holding Register (for 32-bit timer operations only)												uuuu uuuu uuuu			
TMR3	010A		Timer3 Register												սսսս սսսս սսսս սսսս			
PR2	010C		Period Register 2												1111 1111 1111 1111			
PR3	010E								Pe	riod Registe	r 3							1111 1111 1111 1111
T2CON	0110	TON	—	TSIDL	_	_	—	_		_	TGATE	TCKPS1	TCKPS0	T32	_	TCS	_	0000 0000 0000 0000
T3CON	0112	TON	-	TSIDL	_	_	—	_	_	_	TGATE	TCKPS1	TCKPS0	_	_	TCS		0000 0000 0000 0000

Legend: u = uninitialized bit

Note: Refer to dsPIC30F Family Reference Manual (DS70046) for descriptions of register bit fields.

	TABLE 12-1:	INPUT CAPTURE REGISTER MAP
--	-------------	----------------------------

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
IC1BUF	0140							Inpu	ut 1 Captur	e Register								uuuu uuuu uuuu
IC1CON	0142	_	_	ICSIDL	_	_	_	_	_	ICTMR	ICI<	1:0>	ICOV	ICBNE	I	CM<2:0>		0000 0000 0000 0000
IC2BUF	0144							Inpu	ut 2 Captur	e Register								uuuu uuuu uuuu
IC2CON	0146		_	ICSIDL	—	—			—	ICTMR	ICI<	1:0>	ICOV	ICBNE	-	CM<2:0>		0000 0000 0000 0000
IC3BUF	0148							Inpu	ut 3 Captur	e Register								uuuu uuuu uuuu
IC3CON	014A		_	ICSIDL	—	—			—	ICTMR	ICI<	1:0>	ICOV	ICBNE	-	CM<2:0>		0000 0000 0000 0000
IC4BUF	014C							Inpu	ut 4 Captur	e Register								uuuu uuuu uuuu
IC4CON	014E		_	ICSIDL	—	—			—	ICTMR	ICI<	1:0>	ICOV	ICBNE	-	CM<2:0>		0000 0000 0000 0000
IC5BUF	0150							Inpu	ut 5 Captur	e Register								uuuu uuuu uuuu
IC5CON	0152	-	_	ICSIDL	—	_	_	-	—	ICTMR	ICI<	1:0>	ICOV	ICBNE	I	CM<2:0>		0000 0000 0000 0000
IC6BUF	0154							Inpu	ut 6 Captur	e Register								uuuu uuuu uuuu uuuu
IC6CON	0156	-	_	ICSIDL	—	_	_	-	—	ICTMR	ICI<	1:0>	ICOV	ICBNE	I	CM<2:0>		0000 0000 0000 0000
IC7BUF	0158							Inpu	ut 7 Captur	e Register								uuuu uuuu uuuu uuuu
IC7CON	015A		_	ICSIDL	_	-			-	ICTMR	ICI<	1:0>	ICOV	ICBNE	-	CM<2:0>		0000 0000 0000 0000
IC8BUF	015C							Inpu	ut 8 Captur	e Register								uuuu uuuu uuuu
IC8CON	015E	—	_	ICSIDL	—	—	—	—	—	ICTMR	ICI<	1:0>	ICOV	ICBNE	I	CM<2:0>		0000 0000 0000 0000

Legend: u = uninitialized bit

Note: Refer to "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields.

dsPIC30F6011/6012/6013/6014

FIGURE 14-1: SPI BLOCK DIAGRAM

FIGURE 14-2: SPI MASTER/SLAVE CONNECTION

17.6.2 PRESCALER SETTING

There is a programmable prescaler with integral values ranging from 1 to 64, in addition to a fixed divide-by-2 for clock generation. The time quantum (TQ) is a fixed unit of time derived from the oscillator period, and is given by Equation 17-1.

Note:	FCAN	must	not	exceed	30	MHz.	lf
	CANC	KS = 0	, the	n FCY mu	ist no	ot exce	ed
	7.5 MH	Ηz.					

EQUATION 17-1: TIME QUANTUM FOR CLOCK GENERATION

TQ = 2 (BRP < 5:0 > + 1)/FCAN

17.6.3 PROPAGATION SEGMENT

This part of the bit time is used to compensate physical delay times within the network. These delay times consist of the signal propagation time on the bus line and the internal delay time of the nodes. The Prop Seg can be programmed from 1 TQ to 8 TQ by setting the PRSEG<2:0> bits (CiCFG2<2:0>).

17.6.4 PHASE SEGMENTS

The phase segments are used to optimally locate the sampling of the received bit within the transmitted bit time. The sampling point is between Phase1 Seg and Phase2 Seg. These segments are lengthened or shortened by resynchronization. The end of the Phase1 Seg determines the sampling point within a bit period. The segment is programmable from 1 TQ to 8 TQ. Phase2 Seg provides delay to the next transmitted data transition. The segment is programmable from 1 TQ to 8 TQ, or it may be defined to be equal to the greater of Phase1 Seg or the information processing time (2 TQ). The Phase1 Seg is initialized by setting bits SEG1PH<2:0> (CiCFG2<5:3>), and Phase2 Seg is initialized by setting SEG2PH<2:0> (CiCFG2<10:8>).

The following requirement must be fulfilled while setting the lengths of the phase segments:

Prop Seg + Phase1 Seg > = Phase2 Seg

17.6.5 SAMPLE POINT

The sample point is the point of time at which the bus level is read and interpreted as the value of that respective bit. The location is at the end of Phase1 Seg. If the bit timing is slow and contains many TQ, it is possible to specify multiple sampling of the bus line at the sample point. The level determined by the CAN bus then corresponds to the result from the majority decision of three values. The majority samples are taken at the sample point and twice before with a distance of TQ/2. The CAN module allows the user to choose between sampling three times at the same point or once at the same point, by setting or clearing the SAM bit (CiCFG2<6>).

Typically, the sampling of the bit should take place at about 60-70% through the bit time, depending on the system parameters.

17.6.6 SYNCHRONIZATION

To compensate for phase shifts between the oscillator frequencies of the different bus stations, each CAN controller must be able to synchronize to the relevant signal edge of the incoming signal. When an edge in the transmitted data is detected, the logic will compare the location of the edge to the expected time (Synchronous Segment). The circuit will then adjust the values of Phase1 Seg and Phase2 Seg. There are 2 mechanisms used to synchronize.

17.6.6.1 Hard Synchronization

Hard synchronization is only done whenever there is a 'recessive' to 'dominant' edge during bus Idle indicating the start of a message. After hard synchronization, the bit time counters are restarted with the Sync Seg. Hard synchronization forces the edge which has caused the hard synchronization to lie within the synchronization segment of the restarted bit time. If a hard synchronization within that bit time.

17.6.6.2 Resynchronization

As a result of resynchronization, Phase1 Seg may be lengthened or Phase2 Seg may be shortened. The amount of lengthening or shortening of the phase buffer segment has an upper bound known as the synchronization jump width, and is specified by the SJW<1:0> bits (CiCFG1<7:6>). The value of the synchronization jump width will be added to Phase1 Seg or subtracted from Phase2 Seg. The resynchronization jump width is programmable between 1 Tq and 4 Tq.

The following requirement must be fulfilled while setting the SJW<1:0> bits:

Phase2 Seg > Synchronization Jump Width

TABLE 17-1: CAN1 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
C1RXF0SID	0300	_	_	—			R	eceive Ac	ceptance	Filter 0 Stand	ard Ident	ifier <10:0	>			—	EXIDE	000u uuuu uuuu uu0u
C1RXF0EIDH	0302	_	_	—	_				Receive	e Acceptance	Filter 0 E	xtended l	dentifier «	<17:6>				0000 uuuu uuuu uuuu
C1RXF0EIDL	0304	Receive	e Acceptan	ce Filter 0	Extended	Identifier <	<5:0>	_	_	_		_	_	_	—	_	_	uuuu uu00 0000 0000
C1RXF1SID	0308	_	_	—			R	eceive Ac	ceptance	Filter 1 Stand	ard Ident	ifier <10:0	>	•		—	EXIDE	000u uuuu uuuu uu0u
C1RXF1EIDH	030A	_	_	—	_				Receive	e Acceptance	Filter 1 E	xtended l	dentifier «	<17:6>				0000 uuuu uuuu uuuu
C1RXF1EIDL	030C	Receive	e Acceptan	ce Filter 1	Extended	Identifier <	<5:0>	—	_	_	—	_	—	_	_	_	_	uuuu uu00 0000 0000
C1RXF2SID	0310	_	_	—			R	eceive Ac	ceptance	Filter 2 Stand	ard Ident	ifier <10:0	>			_	EXIDE	000u uuuu uuuu uu0u
C1RXF2EIDH	0312	_	_	—	—				Receive	e Acceptance	Filter 2 E	xtended l	dentifier -	<17:6>				0000 uuuu uuuu uuuu
C1RXF2EIDL	0314	Receive	e Acceptan	ce Filter 2	Extended	Identifier <	<5:0>	_	_	_	_	_	_	_	-		_	uuuu uu00 0000 0000
C1RXF3SID	0318	—	_	—			R	eceive Ac	ceptance	Filter 3 Stand	ard Ident	ifier <10:0	>			—	EXIDE	000u uuuu uuuu uu0u
C1RXF3EIDH	031A		_	—	_				Receive	e Acceptance	Filter 3 E	xtended l	dentifier -	<17:6>				0000 uuuu uuuu uuuu
C1RXF3EIDL	031C	Receive	e Acceptan	ce Filter 3	Extended	Identifier <	<5:0>	—	—	_	—	—	—	_	—	—		uuuu uu00 0000 0000
C1RXF4SID	0320		_	—			R	eceive Ac	ceptance	Filter 4 Stand	ard Ident	ifier <10:0	>				EXIDE	000u uuuu uuuu uu0u
C1RXF4EIDH	0322	_	_	—	—				Receive	e Acceptance	Filter 4 E	xtended l	dentifier -	<17:6>				0000 uuuu uuuu uuuu
C1RXF4EIDL	0324	Receive	e Acceptan	ce Filter 4	Extended	Identifier <	<5:0>	_	_	_	_	_	_	_	-		_	uuuu uu00 0000 0000
C1RXF5SID	0328	-	—	—			R	eceive Ac	ceptance	Filter 5 Stand	ard Ident	ifier <10:0	>				EXIDE	000u uuuu uuuu uu0u
C1RXF5EIDH	032A		_	—	_				Receive	e Acceptance	Filter 5 E	xtended l	dentifier -	<17:6>				0000 uuuu uuuu uuuu
C1RXF5EIDL	032C	Receive	e Acceptan	ce Filter 5	Extended	Identifier <	<5:0>	_	_	—	—	-	_	—	—		_	uuuu uu00 0000 0000
C1RXM0SID	0330		_	—			R	eceive Ac	ceptance	Mask 0 Stand	lard Ident	ifier <10:0	>				MIDE	000u uuuu uuuu uu0u
C1RXM0EIDH	0332	_	_	—	—				Receive	e Acceptance	Mask 0 E	Extended I	dentifier ·	<17:6>				0000 uuuu uuuu uuuu
C1RXM0EIDL	0334	Receive	Acceptant	ce Mask 0	Extended	Identifier «	<5:0>	—	_	_	—		—	_	—	-	_	uuuu uu00 0000 0000
C1RXM1SID	0338	_	-	—			R	eceive Ac	ceptance l	Mask 1 Stand	lard Ident	ifier <10:0	>			—	MIDE	000u uuuu uuuu uu0u
C1RXM1EIDH	033A			—	—				Receive	e Acceptance	Mask 1 E	Extended I	dentifier ·	<17:6>				0000 uuuu uuuu uuuu
C1RXM1EIDL	033C	Receive	Acceptant	ce Mask 1	Extended	Identifier «	<5:0>	_	_	_	—		_	_	-		_	uuuu uu00 0000 0000
C1TX2SID	0340	Transm	it Buffer 2	Standard I	dentifier <	10:6>	_	—	—	Tra	nsmit Bu	fer 2 Stan	dard Ider	tifier <5:0>		SRR	TXIDE	uuuu u000 uuuu uuuu
C1TX2EID	0342	Transmit	Buffer 2 Ex <17:1-	ktended Id 4>	entifier		—	_	_		Trar	ismit Buffe	er 2 Exten	ded Identifie	er <13:6>	>		uuuu 0000 uuuu uuuu
C1TX2DLC	0344	Tr	ansmit Buff	fer 2 Exter	nded Ident	ifier <5:0>		TXRTR	TXRB1	TXRB0		DLC	C<3:0>		-		_	uuuu uuuu uuuu u000
C1TX2B1	0346			Trai	nsmit Buffe	er 2 Byte 1						Tran	smit Buff	er 2 Byte 0				uuuu uuuu uuuu uuuu
C1TX2B2	0348			Trai	nsmit Buffe	er 2 Byte 3						Tran	smit Buff	er 2 Byte 2				uuuu uuuu uuuu uuuu
C1TX2B3	034A			Trai	nsmit Buffe	er 2 Byte 5						Tran	ismit Buff	er 2 Byte 4				uuuu uuuu uuuu
C1TX2B4	034C			Trai	nsmit Buffe	er 2 Byte 7						Tran	smit Buff	er 2 Byte 6				uuuu uuuu uuuu
C1TX2CON	034E	—	_	—	—	—	—	—	—	—	TXABT	TXLARB	TXERR	TXREQ	—	TXPF	RI<1:0>	0000 0000 0000 0000
C1TX1SID	0350	Transm	it Buffer 1	Standard I	dentifier <	10:6>	—	_	_	Tra	nsmit Bu	fer 1 Stan	dard Ider	tifier <5:0>		SRR	TXIDE	uuuu u000 uuuu uuuu

Legend: u = uninitialized bit

Note: Refer to "*dsPIC30F Family Reference Manual*" (DS70046) for descriptions of register bit fields.

18.3.14 BUFFER LENGTH CONTROL

The amount of data that is buffered between interrupts is determined by the buffer length (BLEN<1:0>) control bits in the DCICON2 SFR. The size of the transmit and receive buffers may be varied from 1 to 4 data words using the BLEN control bits. The BLEN control bits are compared to the current value of the DCI buffer control unit address counter. When the 2 LSbs of the DCI address counter match the BLEN<1:0> value, the buffer control unit will be reset to '0'. In addition, the contents of the receive buffer registers are transferred to the receive buffer registers are transferred to the transmit buffer registers.

18.3.15 BUFFER ALIGNMENT WITH DATA FRAMES

There is no direct coupling between the position of the AGU address pointer and the data frame boundaries. This means that there will be an implied assignment of each transmit and receive buffer that is a function of the BLEN control bits and the number of enabled data slots via the TSE and RSE control bits.

As an example, assume that a 4-word data frame is chosen and that we want to transmit on all four time slots in the frame. This configuration would be established by setting the TSE0, TSE1, TSE2, and TSE3 control bits in the TSCON SFR. With this module setup, the TXBUF0 register would be naturally assigned to slot #0, the TXBUF1 register would be naturally assigned to slot #1, and so on.

Note: When more than four time slots are active within a data frame, the user code must keep track of which time slots are to be read/written at each interrupt. In some cases, the alignment between transmit/ receive buffers and their respective slot assignments could be lost. Examples of such cases include an emulation breakpoint or a hardware trap. In these situations, the user should poll the SLOT status bits to determine what data should be loaded into the buffer registers to resynchronize the software with the DCI module.

18.3.16 TRANSMIT STATUS BITS

There are two transmit status bits in the DCISTAT SFR.

The TMPTY bit is set when the contents of the transmit buffer registers are transferred to the transmit shadow registers. The TMPTY bit may be polled in software to determine when the transmit buffer registers may be written. The TMPTY bit is cleared automatically by the hardware when a write to one of the four transmit buffers occurs.

The TUNF bit is read only and indicates that a transmit underflow has occurred for at least one of the transmit buffer registers that is in use. The TUNF bit is set at the time the transmit buffer registers are transferred to the transmit shadow registers. The TUNF status bit is cleared automatically when the buffer register that underflowed is written by the CPU.

18.3.17 RECEIVE STATUS BITS

There are two receive status bits in the DCISTAT SFR.

The RFUL status bit is read only and indicates that new data is available in the receive buffers. The RFUL bit is cleared automatically when all receive buffers in use have been read by the CPU.

The ROV status bit is read only and indicates that a receive overflow has occurred for at least one of the receive buffer locations. A receive overflow occurs when the buffer location is not read by the CPU before new data is transferred from the shadow registers. The ROV status bit is cleared automatically when the buffer register that caused the overflow is read by the CPU.

When a receive overflow occurs for a specific buffer location, the old contents of the buffer are overwritten.

Note: The receive status bits only indicate status for buffer locations that are used by the module. If the buffer length is set to less than four words, for example, the unused buffer locations will not affect the transmit status bits.

Note: The transmit status bits only indicate status for buffer locations that are used by the module. If the buffer length is set to less than four words, for example, the unused buffer locations will not affect the transmit status bits.

TABLE 18-2: DCI REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	State
DCICON1	0240	DCIEN	—	DCISIDL	—	DLOOP	CSCKD	CSCKE	COFSD	UNFM	CSDOM	DJST	_		-	COFSM1	COFSM0	0000 0000	0000 0000
DCICON2	0242	_	_		—	BLEN1	BLEN0	_		COFS	G<3:0>				١	VS<3:0>		0000 0000	0000 0000
DCICON3	0244				—						BCG<1	1:0>						0000 0000	0000 0000
DCISTAT	0246				_	SLOT3	SLOT2	SLOT1	SLOT0		-			ROV	RFUL	TUNF	TMPTY	0000 0000	0000 0000
TSCON	0248	TSE15	TSE14	TSE13	TSE12	TSE11	TSE10	TSE9	TSE8	TSE7	TSE6	TSE5	TSE4	TSE3	TSE2	TSE1	TSE0	0000 0000	0000 0000
RSCON	024C	RSE15	RSE14	RSE13	RSE12	RSE11	RSE10	RSE9	RSE8	RSE7	RSE6	RSE5	RSE4	RSE3	RSE2	RSE1	RSE0	0000 0000	0000 0000
RXBUF0	0250							Receive B	uffer #0 D	ata Regi	ster							0000 0000	0000 0000
RXBUF1	0252							Receive B	uffer #1 D	ata Regi	ster							0000 0000	0000 0000
RXBUF2	0254							Receive B	uffer #2 D	ata Regi	ster							0000 0000	0000 0000
RXBUF3	0256							Receive B	uffer #3 D	ata Regi	ster							0000 0000	0000 0000
TXBUF0	0258		Transmit Buffer #0 Data Register										0000 0000	0000 0000					
TXBUF1	025A		Transmit Buffer #1 Data Register										0000 0000	0000 0000					
TXBUF2	025C							Transmit E	Buffer #2 D	ata Regi	ster							0000 0000	0000 0000
TXBUF3	025E		Transmit Buffer #3 Data Register											0000 0000	0000 0000				

Note: Refer to "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields.

dsPIC30F6011/6012/6013/6014

19.0 12-BIT ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "*dsPIC30F Family Reference Manual*" (DS70046).

The 12-bit Analog-to-Digital Converter (ADC) allows conversion of an analog input signal to a 12-bit digital number. This module is based on a Successive Approximation Register (SAR) architecture and provides a maximum sampling rate of 200 ksps. The ADC module has up to 16 analog inputs which are multiplexed into a sample and hold amplifier. The output of the sample and hold is the input into the converter which generates the result. The analog reference voltage is software selectable to either the device supply voltage (AVDD/AVSS) or the voltage level on the (VREF+/VREF-) pin. The ADC has a unique feature of being able to operate while the device is in Sleep mode with RC oscillator selection.

The ADC module has six 16-bit registers:

- ADC Control Register 1 (ADCON1)
- ADC Control Register 2 (ADCON2)
- ADC Control Register 3 (ADCON3)
- ADC Input Select Register (ADCHS)
- ADC Port Configuration Register (ADPCFG)
- ADC Input Scan Selection Register (ADCSSL)

The ADCON1, ADCON2 and ADCON3 registers control the operation of the A/D module. The ADCHS register selects the input channels to be converted. The ADPCFG register configures the port pins as analog inputs or as digital I/O. The ADCSSL register selects inputs for scanning.

The block diagram of the 12-bit ADC module is shown in Figure 19-1.

FIGURE 19-1: 12-BIT ADC FUNCTIONAL BLOCK DIAGRAM

Note: The SSRC<2:0>, ASAM, SMPI<3:0>, BUFM and ALTS bits, as well as the ADCON3 and ADCSSL registers, must not be written to while ADON = 1. This would lead to indeterminate results.

19.13 Configuring Analog Port Pins

The use of the ADPCFG and TRIS registers control the operation of the ADC port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bit set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The ADC operation is independent of the state of the CH0SA<3:0>/CH0SB<3:0> bits and the TRIS bits.

When reading the Port register, all pins configured as analog input channels will read as cleared.

Pins configured as digital inputs will not convert an analog input. Analog levels on any pin that is defined as a digital input (including the ANx pins) may cause the input buffer to consume current that exceeds the device specifications.

19.14 Connection Considerations

The analog inputs have diodes to VDD and VSS as ESD protection. This requires that the analog input be between VDD and VSS. If the input voltage exceeds this range by greater than 0.3V (either direction), one of the diodes becomes forward biased and it may damage the device if the input current specification is exceeded.

An external RC filter is sometimes added for antialiasing of the input signal. The R component should be selected to ensure that the sampling time requirements are satisfied. Any external components connected (via high impedance) to an analog input pin (capacitor, zener diode, etc.) should have very little leakage current at the pin.

TABLE 21-2: INSTRUCTION SET OVERVIEW

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
1	ADD	ADD	Acc	Add Accumulators	1	1	OA,OB,SA,SB
		ADD	f	f = f + WREG	1	1	C,DC,N,OV,Z
		ADD	f,WREG	WREG = f + WREG	1	1	C,DC,N,OV,Z
		ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C,DC,N,OV,Z
		ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C,DC,N,OV,Z
		ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C,DC,N,OV,Z
		ADD	Wso,#Slit4,Acc	16-bit Signed Add to Accumulator	1	1	OA,OB,SA,SB
2	ADDC	ADDC	f	f = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	f,WREG	WREG = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C,DC,N,OV,Z
3	AND	AND	f	f = f .AND. WREG	1	1	N,Z
		AND	f,WREG	WREG = f .AND. WREG	1	1	N,Z
		AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N,Z
		AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N,Z
		AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N,Z
4	ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C,N,OV,Z
		ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N,Z
		ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N,Z
5	BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
		BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
6	BRA	BRA	C,Expr	Branch if Carry	1	1 (2)	None
		BRA	GE, Expr	Branch if greater than or equal	1	1 (2)	None
		BRA	GEU, Expr	Branch if unsigned greater than or equal	1	1 (2)	None
		BRA	GT, Expr	Branch if greater than	1	1 (2)	None
		BRA	GTU, Expr	Branch if unsigned greater than	1	1 (2)	None
		BRA	LE, Expr	Branch if less than or equal	1	1 (2)	None
		BRA	LEU, Expr	Branch if unsigned less than or equal	1	1 (2)	None
		BRA	LT, Expr	Branch if less than	1	1 (2)	None
		BRA	LTU. Expr	Branch if unsigned less than	1	1 (2)	None
		BRA	N, Expr	Branch if Negative	1	1 (2)	None
		BRA	NC, Expr	Branch if Not Carry	1	1 (2)	None
		BRA	NN, Expr	Branch if Not Negative	1	1 (2)	None
		BRA	NOV, Expr	Branch if Not Overflow	1	1 (2)	None
		BRA	NZ, Expr	Branch if Not Zero	1	1 (2)	None
		BRA	OA, Expr	Branch if Accumulator A overflow	1	1 (2)	None
		BRA	OB, Expr	Branch if Accumulator B overflow	1	1 (2)	None
		BRA	OV.Expr	Branch if Overflow	1	1 (2)	None
		BRA	SA. Expr	Branch if Accumulator A saturated	1	1 (2)	None
		BRA	SB.Expr	Branch if Accumulator B saturated	1	1 (2)	None
		BRA	Expr	Branch Unconditionally	1	2	None
		BRA	Z.Expr	Branch if Zero	1	1 (2)	None
		BRA	, <u>r</u> =	Computed Branch	. 1	2	None
7	BSET	BSET	f,#bit4	Bit Set f	1	1	None
		BSET	Ws,#bit4	Bit Set Ws	1	1	None
8	BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None
		BSW.Z	Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	None

TABLE 23-6: DC CHARACTERISTICS: IDLE CURRENT (lidle)

DC CHARACT	ERISTICS		Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial							
			Operating te	emperature	$-40^{\circ}C \le TA \le +$ $-40^{\circ}C \le TA \le +$	-85°C for Industrial				
Parameter No.	Typical ⁽¹⁾	Мах	Units		Co	onditions				
Operating Cur	rent (IIDLE) ⁽²⁾									
DC51a	6.3	9	mA	25°C						
DC51b	5.9	9	mA	85°C	3.3V					
DC51c	5.7	9	mA	125°C		0.128 MIPS				
DC51e	16	21	mA	25°C		LPRC (512 kHz)				
DC51f	15	21	mA	85°C	5V					
DC51g	15	21	mA	125°C						
DC50a	10	15	mA	25°C						
DC50b	10	15	mA	85°C	3.3V					
DC50c	10	15	mA	125°C		(1.8 MIPS)				
DC50e	21	30	mA	25°C		FRC (7.37 MHz)				
DC50f	20	30	mA	85°C	5V					
DC50g	19	30	mA	125°C						
DC43a	15	23	mA	25°C						
DC43b	15	23	mA	85°C	3.3V					
DC43c	15	23	mA	125°C						
DC43e	30	45	mA	25°C		4 MIFS				
DC43f	29	45	mA	85°C	5V					
DC43g	29	45	mA	125°C						
DC44a	28	42	mA	25°C						
DC44b	28	42	mA	85°C	3.3V					
DC44c	28	42	mA	125°C						
DC44e	50	70	mA	25°C		TO MIPS				
DC44f	49	70	mA	85°C	5V					
DC44g	49	70	mA	125°C						
DC47a	49	70	mA	25°C	2.21/					
DC47b	50	70	mA	85°C	3.3V					
DC47d	84	110	mA	25°C		20 MIPS				
DC47e	84	110	mA	85°C	5V					
DC47f	83	110	mA	125°C						
DC49a	117	145	mA	25°C	E\/					
DC49b	117	145	mA	85°C	57	SU IVIIES				

Note 1: Data in "Typical" column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Base IIDLE current is measured with Core off, Clock on and all modules turned off.

FIGURE 23-8: TYPE A, B AND C TIMER EXTERNAL CLOCK TIMING CHARACTERISTICS

TABLE 23-23: TYPE A TIMER (TIMER1) EXTERNAL CLOCK TIMING REQUIREMENTS⁽¹⁾

AC CHARACTERISTICS					Standard Operating Conditions: 2.5V to 5.5V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Charact	eristic		Min	Тур	Max	Units	Conditions	
TA10 TTXH TXCK Hig		TxCK High Time	Synchronous, no prescaler		0.5 TCY + 20		—	ns	Must also meet parameter TA15	
			Synchronous, with prescaler		10		_	ns		
			Asynchronou		10	_	—	ns		
TA11	ΤτχL	TxCK Low Time	Synchronous, no prescaler		0.5 TCY + 20		_	ns	Must also meet parameter TA15	
			Synchronous, with prescaler		10		—	ns		
			Asynchronous		10		—	ns		
TA15	ΤτχΡ	TxCK Input Period	Synchronous, no prescaler		Tcy + 10		—	ns		
			Synchronous, with prescaler		Greater of: 20 ns or (TCY + 40)/N		_	_	N = prescale value (1, 8, 64, 256)	
			Asynchronous		20		—	ns		
OS60	Ft1	SOSC1/T1CK oscil frequency range (o by setting bit TCS (DSC1/T1CK oscillator input quency range (oscillator enabled setting bit TCS (T1CON, bit 1))		DC		50	kHz		
TA20	TCKEXTMRL	Delay from External TxCK Clock Edge to Timer Increment			0.5 TCY		1.5 TCY	_		

Note 1: Timer1 is a Type A.

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent						
RE:	Reader Response							
From:	Name							
	Company							
	Address							
	City / State / ZIP / Country							
	Telephone: ()	FAX: ()						
Application (optional):								
Would you like a reply?YN								
Devic	e: dsPIC30F6011/6012/6013/6014	Literature Number: DS70117F						
Quest	ions:							
1. W	1. What are the best features of this document?							
2. H	2. How does this document meet your hardware and software development needs?							
_								
2 <u>–</u>	a you find the organization of this do	aument equite follow? If not why?						
3. D	Do you find the organization of this document easy to follow? If not, why?							
4. W	/hat additions to the document do yo	u think would enhance the structure and subject?						
5. W	What deletions from the document could be made without affecting the overall usefulness?							
_								
6. Is	Is there any incorrect or misleading information (what and where)?							
 7 山	ow would you improve this documon	+2						
7. 11								