

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	20 MIPS
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	68
Program Memory Size	132KB (44K x 24)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic30f6013t-20i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "dsPIC30F Family Reference Manual" (DS70046). For more information on the device instruction set and programming, refer to the "dsPIC30F/33F Programmer's Reference Manual" (DS70157).

This document contains specific information for the dsPIC30F6011/6012/6013/6014 Digital Signal Controller (DSC) devices. The dsPIC30F devices contain extensive Digital Signal Processor (DSP) functionality within a high-performance 16-bit microcontroller (MCU) architecture. Figure 1-1 and Figure 1-2 show device block diagrams for dsPIC30F6011/6012 and dsPIC30F6013/6014 respectively.

6.0 FLASH PROGRAM MEMORY

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "dsPIC30F Family Reference Manual" (DS70046). For more information on the device instruction set and programming, refer to the "dsPIC30F/33F Programmer's Reference Manual" (DS70157).

The dsPIC30F family of devices contains internal program Flash memory for executing user code. There are two methods by which the user can program this memory:

- 1. Run-Time Self-Programming (RTSP)
- 2. In-Circuit Serial Programming (ICSP)

6.1 In-Circuit Serial Programming (ICSP)

dsPIC30F devices can be serially programmed while in the end application circuit. This is simply done with two lines for Programming Clock and Programming Data (which are named PGC and PGD respectively), and three other lines for Power (VDD), Ground (Vss) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

6.2 Run-Time Self-Programming (RTSP)

RTSP is accomplished using ${\tt TBLRD}$ (table read) and ${\tt TBLWT}$ (table write) instructions.

With RTSP, the user may erase program memory, 32 instructions (96 bytes) at a time and can write program memory data, 32 instructions (96 bytes) at a time.

6.3 Table Instruction Operation Summary

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in Word or Byte mode.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can access program memory in Word or Byte mode.

A 24-bit program memory address is formed using bits<7:0> of the TBLPAG register and the effective address (EA) from a W register specified in the table instruction, as shown in Figure 6-1.

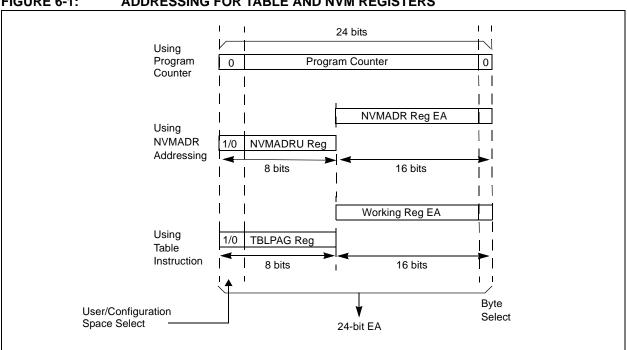


FIGURE 6-1: ADDRESSING FOR TABLE AND NVM REGISTERS

7.4 Write Verify

Depending on the application, good programming practice may dictate that the value written to the memory should be verified against the original value. This should be used in applications where excessive writes can stress bits near the specification limit.

7.5 Protection Against Spurious Write

There are conditions when the device may not want to write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been built-in. On power-up, the WREN bit is cleared; also, the Power-up Timer prevents EEPROM write.

The write initiate sequence and the WREN bit together help prevent an accidental write during brown-out, power glitch, or software malfunction.

8.0 I/O PORTS

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "dsPIC30F Family Reference Manual" (DS70046).

All of the device pins (except VDD, VSS, MCLR and OSC1/CLKI) are shared between the peripherals and the parallel I/O ports.

All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

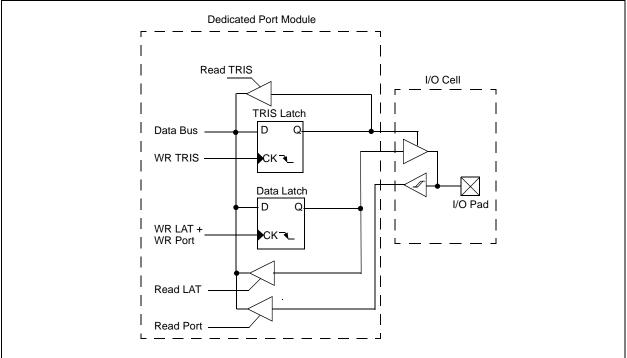
8.1 Parallel I/O (PIO) Ports

When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin may be read but the output driver for the parallel port bit will be disabled. If a peripheral is enabled but the peripheral is not actively driving a pin, that pin may be driven by a port.

All port pins have three registers directly associated with the operation of the port pin. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx), read the latch. Writes to the latch, write the latch (LATx). Reads from the port (PORTx), read the port pins and writes to the port pins, write the latch (LATx).

Any bit and its associated data and control registers that are not valid for a particular device will be disabled. That means the corresponding LATx and TRISx registers and the port pin will read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs. An example is the INT4 pin.

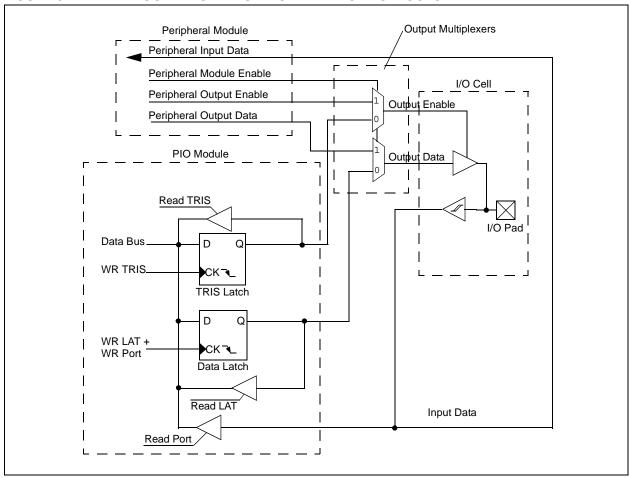

The format of the registers for PORTA are shown in Table 8-1.

The TRISA (Data Direction Control) register controls the direction of the RA<7:0> pins, as well as the INTx pins and the VREF pins. The LATA register supplies data to the outputs and is readable/writable. Reading the PORTA register yields the state of the input pins, while writing the PORTA register modifies the contents of the LATA register.

A parallel I/O (PIO) port that shares a pin with a peripheral is, in general, subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pad cell. Figure 8-2 shows how ports are shared with other peripherals and the associated I/O cell (pad) to which they are connected. Table 8-2 through Table 8-9 show the formats of the registers for the shared ports, PORTB through PORTG.

Note: The actual bits in use vary between devices.

FIGURE 8-1: BLOCK DIAGRAM OF A DEDICATED PORT STRUCTURE


8.2 Configuring Analog Port Pins

The use of the ADPCFG and TRIS registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bit set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

When reading the Port register, all pins configured as analog input channels will read as cleared (a low level).

Pins configured as digital inputs will not convert an analog input. Analog levels on any pin that is defined as a digital input (including the ANx pins) may cause the input buffer to consume current that exceeds the device specifications.

FIGURE 8-2: BLOCK DIAGRAM OF A SHARED PORT STRUCTURE

8.3 Input Change Notification Module

The input change notification module provides the dsPIC30F devices the ability to generate interrupt requests to the processor, in response to a change of state on selected input pins. This module is capable of detecting input change of states even in Sleep mode, when the clocks are disabled. There are up to 24 external signals (CN0 through CN23) that may be selected (enabled) for generating an interrupt request on a change of state.

TABLE 8-10: INPUT CHANGE NOTIFICATION REGISTER MAP FOR dsPIC30F6011/6012 (BITS 15-8)

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Reset State
CNEN1	00C0	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	0000 0000 0000 0000
CNEN2	00C2	_	_	_	_	_	_	_	_	0000 0000 0000 0000
CNPU1	00C4	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	0000 0000 0000 0000
CNPU2	00C6	_	_	_	_	_	_	_	_	0000 0000 0000 0000

Note: Refer to "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields.

TABLE 8-11: INPUT CHANGE NOTIFICATION REGISTER MAP FOR dsPIC30F6011/6012 (BITS 7-0)

SFR Name	Addr.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
CNEN1	00C0	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000 0000 0000 0000
CNEN2	00C2	_	_	_	_	_	CN18IE	CN17IE	CN16IE	0000 0000 0000 0000
CNPU1	00C4	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000 0000 0000 0000
CNPU2	00C6	_	_	_	_	_	CN18PUE	CN17PUE	CN16PUE	0000 0000 0000 0000

Note: Refer to "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields.

TABLE 8-12: INPUT CHANGE NOTIFICATION REGISTER MAP FOR dsPIC30F6013/6014 (BITS 15-8)

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Reset State
CNEN1	00C0	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	0000 0000 0000 0000
CNEN2	00C2	_	_	_	_	_	_	_	_	0000 0000 0000 0000
CNPU1	00C4	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	0000 0000 0000 0000
CNPU2	00C6	-	_	-	-	-	_	ı	-	0000 0000 0000 0000

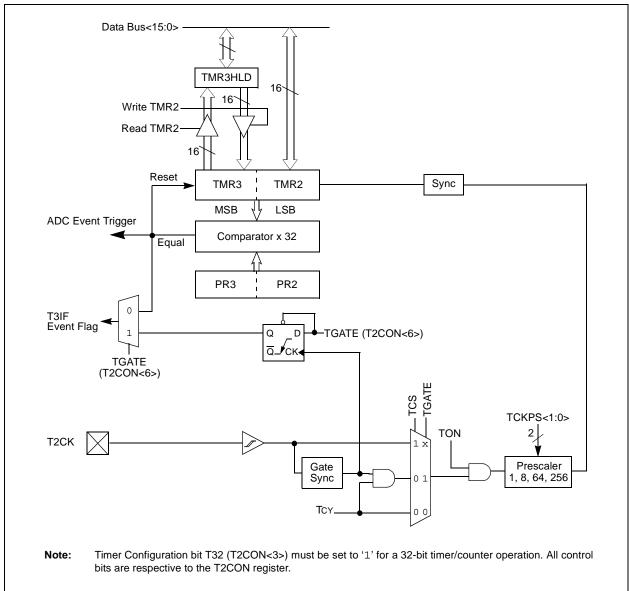

Note: Refer to "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields.

TABLE 8-13: INPUT CHANGE NOTIFICATION REGISTER MAP FOR dsPIC30F6013/6014 (BITS 7-0)

SFR Name	Addr.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
CNEN1	00C0	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000 0000 0000 0000
CNEN2	00C2	CN23IE	CN22IE	CN21IE	CN20IE	CN19IE	CN18IE	CN17IE	CN16IE	0000 0000 0000 0000
CNPU1	00C4	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000 0000 0000 0000
CNPU2	00C6	CN23PUE	CN22PUE	CN21PUE	CN20PUE	CN19PUE	CN18PUE	CN17PUE	CN16PUE	0000 0000 0000 0000

Note: Refer to "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields.

FIGURE 10-1: 32-BIT TIMER2/3 BLOCK DIAGRAM

NOTES:

15.4.2 10-BIT MODE SLAVE RECEPTION

Once addressed, the master can generate a Repeated Start, reset the high byte of the address and set the R_W bit without generating a Stop bit, thus initiating a slave transmit operation.

15.5 Automatic Clock Stretch

In the Slave modes, the module can synchronize buffer reads and write to the master device by clock stretching.

15.5.1 TRANSMIT CLOCK STRETCHING

Both 10-bit and 7-bit Transmit modes implement clock stretching by asserting the SCLREL bit after the falling edge of the ninth clock, if the TBF bit is cleared, indicating the buffer is empty.

In Slave Transmit modes, clock stretching is always performed irrespective of the STREN bit.

Clock synchronization takes place following the ninth clock of the transmit sequence. If the device samples an \overline{ACK} on the falling edge of the ninth clock and if the TBF bit is still clear, then the SCLREL bit is automatically cleared. The SCLREL being cleared to '0' will assert the SCL line low. The user's ISR must set the SCLREL bit before transmission is allowed to continue. By holding the SCL line low, the user has time to service the ISR and load the contents of the I2CTRN before the master device can initiate another transmit sequence.

- Note 1: If the user loads the contents of I2CTRN, setting the TBF bit before the falling edge of the ninth clock, the SCLREL bit will not be cleared and clock stretching will not occur.
 - **2:** The SCLREL bit can be set in software, regardless of the state of the TBF bit.

15.5.2 RECEIVE CLOCK STRETCHING

The STREN bit in the I2CCON register can be used to enable clock stretching in Slave Receive mode. When the STREN bit is set, the SCL pin will be held low at the end of each data receive sequence.

15.5.3 CLOCK STRETCHING DURING 7-BIT ADDRESSING (STREN = 1)

When the STREN bit is set in Slave Receive mode, the SCL line is held low when the buffer register is full. The method for stretching the SCL output is the same for both 7 and 10-bit addressing modes.

Clock stretching takes place following the ninth clock of the receive sequence. On the falling edge of the ninth clock at the end of the ACK sequence, if the RBF bit is set, the SCLREL bit is automatically cleared, forcing the SCL output to be held low. The user's ISR must set the SCLREL bit before reception is allowed to continue. By holding the SCL line low, the user has time to service the ISR and read the contents of the I²CRCV before the master device can initiate another receive sequence. This will prevent buffer overruns from occurring.

- Note 1: If the user reads the contents of the I2CRCV, clearing the RBF bit before the falling edge of the ninth clock, the SCLREL bit will not be cleared and clock stretching will not occur.
 - 2: The SCLREL bit can be set in software regardless of the state of the RBF bit. The user should be careful to clear the RBF bit in the ISR before the next receive sequence in order to prevent an overflow condition.

15.5.4 CLOCK STRETCHING DURING 10-BIT ADDRESSING (STREN = 1)

Clock stretching takes place automatically during the addressing sequence. Because this module has a register for the entire address, it is not necessary for the protocol to wait for the address to be updated.

After the address phase is complete, clock stretching will occur on each data receive or transmit sequence as was described earlier.

15.6 Software Controlled Clock Stretching (STREN = 1)

When the STREN bit is '1', the SCLREL bit may be cleared by software to allow software to control the clock stretching. The logic will synchronize writes to the SCLREL bit with the SCL clock. Clearing the SCLREL bit will not assert the SCL output until the module detects a falling edge on the SCL output and SCL is sampled low. If the SCLREL bit is cleared by the user while the SCL line has been sampled low, the SCL output will be asserted (held low). The SCL output will remain low until the SCLREL bit is set, and all other devices on the I²C bus have de-asserted SCL. This ensures that a write to the SCLREL bit will not violate the minimum high time requirement for SCL.

If the STREN bit is '0', a software write to the SCLREL bit will be disregarded and have no effect on the SCLREL bit.

15.7 Interrupts

The I²C module generates two interrupt flags, MI2CIF (I²C Master Interrupt Flag) and SI2CIF (I²C Slave Interrupt Flag). The MI2CIF interrupt flag is activated on completion of a master message event. The SI2CIF interrupt flag is activated on detection of a message directed to the slave.

15.12.3 BAUD RATE GENERATOR

In I²C Master mode, the reload value for the BRG is located in the I2CBRG register. When the BRG is loaded with this value, the BRG counts down to '0' and stops until another reload has taken place. If clock arbitration is taking place, for instance, the BRG is reloaded when the SCL pin is sampled high.

As per the I²C standard, FSCK may be 100 kHz or 400 kHz. However, the user can specify any baud rate up to 1 MHz. I2CBRG values of '0' or '1' are illegal.

EQUATION 15-1: SERIAL CLOCK RATE

$$I2CBRG = \left(\frac{FCY}{FSCK} - \frac{FCY}{1,111,111}\right) - 1$$

15.12.4 CLOCK ARBITRATION

Clock arbitration occurs when the master de-asserts the SCL pin (SCL allowed to float high) during any receive, transmit, or Restart/Stop condition. When the SCL pin is allowed to float high, the Baud Rate Generator is suspended from counting until the SCL pin is actually sampled high. When the SCL pin is sampled high, the Baud Rate Generator is reloaded with the contents of I2CBRG and begins counting. This ensures that the SCL high time will always be at least one BRG rollover count in the event that the clock is held low by an external device.

15.12.5 MULTI-MASTER COMMUNICATION, BUS COLLISION, AND BUS ARBITRATION

Multi-master operation support is achieved by bus arbitration. When the master outputs address/data bits onto the SDA pin, arbitration takes place when the master outputs a '1' on SDA by letting SDA float high while another master asserts a '0'. When the SCL pin floats high, data should be stable. If the expected data on SDA is a '1' and the data sampled on the SDA pin = 0, then a bus collision has taken place. The master will set the MI2CIF pulse and reset the master portion of the I^2C port to its Idle state.

If a transmit was in progress when the bus collision occurred, the transmission is halted, the TBF flag is cleared, the SDA and SCL lines are de-asserted and a value can now be written to I2CTRN. When the user services the $\rm I^2C$ master event Interrupt Service Routine, if the $\rm I^2C$ bus is free (i.e., the P bit is set), the user can resume communication by asserting a Start condition.

If a Start, Restart, Stop or Acknowledge condition was in progress when the bus collision occurred, the condition is aborted, the SDA and SCL lines are de-asserted, and the respective control bits in the I2CCON register are cleared to '0'. When the user services the bus collision Interrupt Service Routine, and if the I²C bus is free, the user can resume communication by asserting a Start condition.

The master will continue to monitor the SDA and SCL pins, and if a Stop condition occurs, the MI2CIF bit will be set.

A write to the I2CTRN will start the transmission of data at the first data bit regardless of where the transmitter left off when bus collision occurred.

In a multi-master environment, the interrupt generation on the detection of Start and Stop conditions allows the determination of when the bus is free. Control of the I^2C bus can be taken when the P bit is set in the I2CSTAT register, or the bus is Idle and the S and P bits are cleared.

15.13 I²C Module Operation During CPU Sleep and Idle Modes

15.13.1 I²C OPERATION DURING CPU SLEEP MODE

When the device enters Sleep mode, all clock sources to the module are shutdown and stay at logic '0'. If Sleep occurs in the middle of a transmission and the state machine is partially into a transmission as the clocks stop, then the transmission is aborted. Similarly, if Sleep occurs in the middle of a reception, then the reception is aborted.

15.13.2 I²C OPERATION DURING CPU IDLE MODE

For the I 2 C, the I2CSIDL bit selects if the module will stop on Idle or continue on Idle. If I2CSIDL = 0, the module will continue operation on assertion of the Idle mode. If I2CSIDL = 1, the module will stop on Idle.

16.3.4 TRANSMIT INTERRUPT

The transmit interrupt flag (U1TXIF or U2TXIF) is located in the corresponding interrupt flag register.

The transmitter generates an edge to set the UxTXIF bit. The condition for generating the interrupt depends on the UTXISEL control bit:

- a) If UTXISEL = 0, an interrupt is generated when a word is transferred from the transmit buffer to the Transmit Shift register (UxTSR). This implies that the transmit buffer has at least one empty word.
- b) If UTXISEL = 1, an interrupt is generated when a word is transferred from the transmit buffer to the Transmit Shift register (UxTSR) and the transmit buffer is empty.

Switching between the two Interrupt modes during operation is possible and sometimes offers more flexibility.

16.3.5 TRANSMIT BREAK

Setting the UTXBRK bit (UxSTA<11>) will cause the UxTX line to be driven to logic '0'. The UTXBRK bit overrides all transmission activity. Therefore, the user should generally wait for the transmitter to be Idle before setting UTXBRK.

To send a break character, the UTXBRK bit must be set by software and must remain set for a minimum of 13 baud clock cycles. The UTXBRK bit is then cleared by software to generate Stop bits. The user must wait for a duration of at least one or two baud clock cycles in order to ensure a valid Stop bit(s) before reloading the UxTXB, or starting other transmitter activity. Transmission of a break character does not generate a transmit interrupt.

16.4 Receiving Data

16.4.1 RECEIVING IN 8-BIT OR 9-BIT DATA MODE

The following steps must be performed while receiving 8-bit or 9-bit data:

- 1. Set up the UART (see Section 16.3.1 "Transmitting in 8-bit data mode").
- 2. Enable the UART (see Section 16.3.1 "Transmitting in 8-bit data mode").
- A receive interrupt will be generated when one or more data words have been received, depending on the receive interrupt settings specified by the URXISEL bits (UxSTA<7:6>).
- 4. Read the OERR bit to determine if an overrun error has occurred. The OERR bit must be reset in software.
- Read the received data from UxRXREG. The act of reading UxRXREG will move the next word to the top of the receive FIFO, and the PERR and

FERR values will be updated.

16.4.2 RECEIVE BUFFER (UxRXB)

The receive buffer is 4 words deep. Including the Receive Shift register (UxRSR), the user effectively has a 5-word deep FIFO buffer.

URXDA (UxSTA<0>) = 1 indicates that the receive buffer has data available. URXDA = 0 implies that the buffer is empty. If a user attempts to read an empty buffer, the old values in the buffer will be read and no data shift will occur within the FIFO.

The FIFO is reset during any device Reset. It is not affected when the device enters or wakes up from a power-saving mode.

16.4.3 RECEIVE INTERRUPT

The receive interrupt flag (U1RXIF or U2RXIF) can be read from the corresponding interrupt flag register. The interrupt flag is set by an edge generated by the receiver. The condition for setting the receive interrupt flag depends on the settings specified by the URXISEL<1:0> (UxSTA<7:6>) control bits.

- a) If URXISEL<1:0> = 00 or 01, an interrupt is generated every time a data word is transferred from the Receive Shift register (UxRSR) to the receive buffer. There may be one or more characters in the receive buffer.
- b) If URXISEL<1:0> = 10, an interrupt is generated when a word is transferred from the Receive Shift register (UxRSR) to the receive buffer, which as a result of the transfer, contains 3 characters.
- c) If URXISEL<1:0> = 11, an interrupt is set when a word is transferred from the Receive Shift register (UxRSR) to the receive buffer, which as a result of the transfer, contains 4 characters (i.e., becomes full).

Switching between the Interrupt modes during operation is possible, though generally not advisable during normal operation.

16.5 Reception Error Handling

16.5.1 RECEIVE BUFFER OVERRUN ERROR (OERR BIT)

The OERR bit (UxSTA<1>) is set if all of the following conditions occur:

- a) The receive buffer is full.
- b) The Receive Shift register is full, but unable to transfer the character to the receive buffer.
- The Stop bit of the character in the UxRSR is detected, indicating that the UxRSR needs to transfer the character to the buffer.

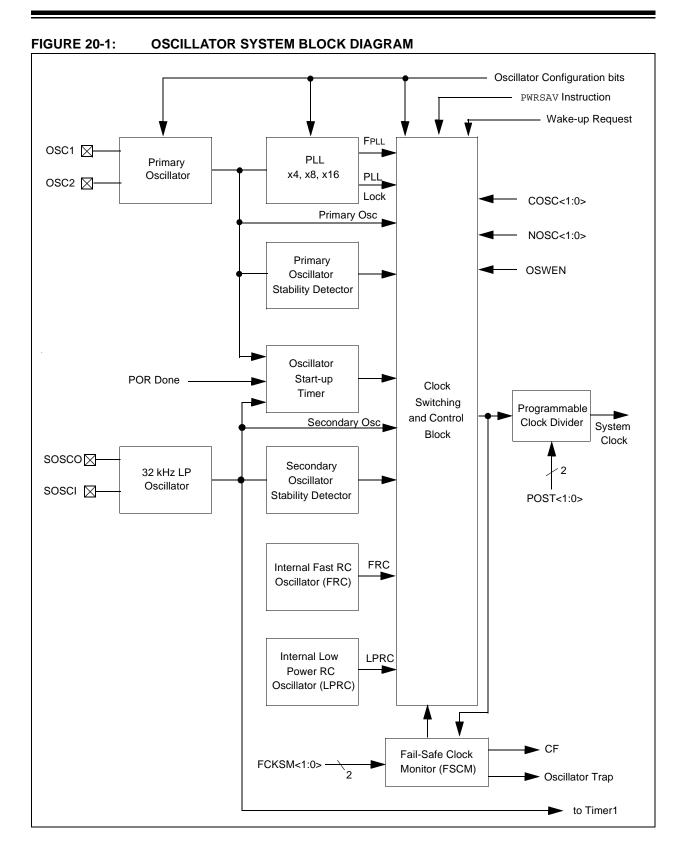
© 2006 Microchip Technology Inc.

TABLE 17-2: CAN2 REGISTER MAP (CONTINUED)

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
C2TX1EID	0412	Transn	nit Buffer 1 I <17:	Extended Ide :14>	ntifier	_	_	_	_		Tr	ansmit Buf	fer 1 Exte	nded Identifie	r <13:6>			uuuu 0000 uuuu uuu
C2TX1DLC	0414		Transmit B	Suffer 1 Exter	nded Ident	ifier <5:0>		TXRTR	TXRB1	TXRB0		DLC	<3:0>		_		_	uuuu uuuu uuuu u00
C2TX1B1	0416			Tra	nsmit Buff	er 1 Byte 1				Transmit Buffer 1 Byte 0							uuuu uuuu uuuu uuu	
C2TX1B2	0418			Tra	nsmit Buff	er 1 Byte 3						Tra	ansmit Bu	fer 1 Byte 2				uuuu uuuu uuuu uuu
C2TX1B3	041A			Tra	nsmit Buff	er 1 Byte 5				Transmit Buffer 1 Byte 4							uuuu uuuu uuuu uuu	
C2TX1B4	041C			Tra	nsmit Buff	er 1 Byte 7						Tra	ansmit Bu	fer 1 Byte 6				uuuu uuuu uuuu uuu
C2TX1CON	041E	_	_	1	_	_	_	_	_	- TXABT TXLARB TXERR TXREQ - TXPRI<1:0>					0000 0000 0000 000			
C2TX0SID	0420	Tran	smit Buffer	0 Standard Id	dentifier <	10:6>	_	_	_	Tr	ansmit Bu	ffer 0 Stand	dard Ident	ifier <5:0>		SRR	TXIDE	uuuu u000 uuuu uuu
C2TX0EID	0422	Transn	nit Buffer 0 I <17:	Extended Ide :14>	entifier	_	_	_	_	Transmit Buffer 0 Extended Identifier <13:6>					uuuu 0000 uuuu uuu			
C2TX0DLC	0424		Transmit B	Suffer 0 Exter	nded Ident	ifier <5:0>		TXRTR	TXRB1	TXRB0 DLC<3:0> — — —					uuuu uuuu uuuu u00			
C2TX0B1	0426			Tra	nsmit Buff	er 0 Byte 1						Tra	ansmit Bu	fer 0 Byte 0				uuuu uuuu uuuu uuu
C2TX0B2	0428	Transmit Buffer 0 Byte 3										Tra	ansmit Bu	ffer 0 Byte 2				uuuu uuuu uuuu uuu
C2TX0B3	042A	Transmit Buffer 0 Byte 5										Tra	ansmit Bu	fer 0 Byte 4				uuuu uuuu uuuu uuu
C2TX0B4	042C			Transmit Buffer 0 Byte 7						Transmit Buffer 0 Byte 6						uuuu uuuu uuuu uuu		
C2TX0CON	042E	_	_	_	_	_	_	_	_	_	TXABT	TXLARB	TXERR	TXREQ	_	TXPR	I<1:0>	0000 0000 0000 000
C2RX1SID	0430	_	_	_		_		Red	ceive Buffe	r 1 Standard Id	entifier <1	0:0>				SRR	RXIDE	000u uuuu uuuu uuu
C2RX1EID	0432	_	_	1	_					Receive Buffe	er 1 Exten	ded Identifi	er <17:6>					0000 uuuu uuuu uuu
C2RX1DLC	0434		Receive B	uffer 1 Exten	ided Identi	fier <5:0>		RXRTR	RXRB1	_	_	_	RXRB0		DLC	<3:0>		uuuu uuuu 000u uuu
C2RX1B1	0436		Receive Buffer 1 Byte 1 Receive Buffer 1 Byte 0								uuuu uuuu uuuu uuu							
C2RX1B2	0438		Receive Buffer 1 Byte 3						Receive Buffer 1 Byte 2						uuuu uuuu uuu uuu			
C2RX1B3	043A			Re	ceive Buff	er 1 Byte 5						Re	ceive Buf	fer 1 Byte 4				uuuu uuuu uuu uuu
C2RX1B4	043C			Re	ceive Buff	er 1 Byte 7						Re	ceive Buf	fer 1 Byte 6				uuuu uuuu uuu uuu
C2RX1CON	043E	_	_	1	_	_	_	_	_	RXFUL	_	-	_	RXRTRRO		FILHIT<2:0	0>	0000 0000 0000 000
C2RX0SID	0440	_	_	ı		•	•	Red	eive Buffe	r 0 Standard Id	entifier <1	0:0>	-	•		SRR	RXIDE	000u uuuu uuuu uuu
C2RX0EID	0442	_	_	ı	_					Receive Buffe	er 0 Exten	ded Identifi	er <17:6>					0000 uuuu uuuu uuu
C2RX0DLC	0444		Receive B	uffer 0 Exten	ded Identi	fier <5:0>		RXRTR	RXRB1	_	_	_	RXRB0		DLC	<3:0>		uuuu uuuu 000u uuu
C2RX0B1	0446			Re	ceive Buff	er 0 Byte 1						Re	ceive Buf	fer 0 Byte 0				uuuu uuuu uuuu uuu
C2RX0B2	0448			Re	ceive Buff	er 0 Byte 3						Re	ceive Buf	fer 0 Byte 2				uuuu uuuu uuuu uuu
C2RX0B3	044A			Re	ceive Buff	er 0 Byte 5						Re	ceive Buf	fer 0 Byte 4				uuuu uuuu uuu uuu
C2RX0B4	044C			Re	ceive Buff	er 0 Byte 7						Re	ceive But	fer 0 Byte 6				uuuu uuuu uuu uuu
C2RX0CON	044E			_	_	_	_	_		RXFUL	_		_	RXRTRRO	DBEN	JTOFF	FILHIT0	0000 0000 0000 000
C2CTRL	0450	CANCAP	_	CSIDLE	ABAT	CANCKS	R	REQOP<2:	0>	OPM	1ODE<2:0	>	_	ICO	ODE<2:0	>	_	0000 0100 1000 000
C2CFG1	0452	_	_	1	_	_	_	_	_	SJW<1	:0>			BRP<5	:0>			0000 0000 0000 000
C2CFG2	0454	_	WAKFIL	_	_	_	S	EG2PH<2	:0>	SEG2PHTS	SAM	S	EG1PH<	2:0>		PRSEG<2:	0>	0u00 0uuu uuuu uuu

Legend: u = uninitialized bit

Refer to "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields. Note:


TABLE 20-1: OSCILLATOR OPERATING MODES

Oscillator Mode	Description
XTL	200 kHz-4 MHz crystal on OSC1:OSC2.
XT	4 MHz-10 MHz crystal on OSC1:OSC2.
XT w/PLL 4x	4 MHz-10 MHz crystal on OSC1:OSC2, 4x PLL enabled.
XT w/PLL 8x	4 MHz-10 MHz crystal on OSC1:OSC2, 8x PLL enabled.
XT w/PLL 16x	4 MHz-10 MHz crystal on OSC1:OSC2, 16x PLL enabled ⁽¹⁾ .
LP	32 kHz crystal on SOSCO:SOSCI ⁽²⁾ .
HS	10 MHz-25 MHz crystal.
EC	External clock input (0-40 MHz).
ECIO	External clock input (0-40 MHz), OSC2 pin is I/O.
EC w/PLL 4x	External clock input (4-10 MHz), OSC2 pin is I/O, 4x PLL enabled ⁽¹⁾ .
EC w/PLL 8x	External clock input (4-10 MHz), OSC2 pin is I/O, 8x PLL enabled ⁽¹⁾ .
EC w/PLL 16x	External clock input (4-7.5 MHz), OSC2 pin is I/O, 16x PLL enabled ⁽¹⁾ .
ERC	External RC oscillator, OSC2 pin is Fosc/4 output ⁽³⁾ .
ERCIO	External RC oscillator, OSC2 pin is I/O ⁽³⁾ .
FRC	7.37 MHz internal RC oscillator.
LPRC	512 kHz internal RC oscillator.

Note 1: dsPIC30F maximum operating frequency of 120 MHz must be met.

2: LP oscillator can be conveniently shared as system clock, as well as real-time clock for Timer1.

3: Requires external R and C. Frequency operation up to 4 MHz.

NOTES:

All instructions are a single word, except for certain double-word instructions, which were made double-word instructions so that all the required information is available in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all table reads and writes, and RETURN/RETFIE instructions,

which are single-word instructions but take two or three cycles. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single word or two-word instruction. Moreover, double-word moves require two cycles. The double-word instructions execute in two instruction cycles.

Note: For more details on the instruction set, refer to the "dsPIC30F/33F Programmer's Reference Manual" (DS70157)

TABLE 21-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

Field	Description
#text	Means literal defined by "text"
(text)	Means "content of text"
[text]	Means "the location addressed by text"
{ }	Optional field or operation
<n:m></n:m>	Register bit field
.b	Byte mode selection
.d	Double-Word mode selection
.S	Shadow register select
.w	Word mode selection (default)
Acc	One of two accumulators {A, B}
AWB	Accumulator write back destination address register ∈ {W13, [W13]+=2}
bit4	4-bit bit selection field (used in word addressed instructions) ∈ {015}
C, DC, N, OV, Z	MCU status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0x00000x1FFF}
lit1	1-bit unsigned literal ∈ {0,1}
lit4	4-bit unsigned literal ∈ {015}
lit5	5-bit unsigned literal ∈ {031}
lit8	8-bit unsigned literal ∈ {0255}
lit10	10-bit unsigned literal ∈ {0255} for Byte mode, {0:1023} for Word mode
lit14	14-bit unsigned literal ∈ {016384}
lit16	16-bit unsigned literal ∈ {065535}
lit23	23-bit unsigned literal ∈ {08388608}; LSB must be 0
None	Field does not require an entry, may be blank
OA, OB, SA, SB	DSP status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate
PC	Program Counter
Slit10	10-bit signed literal ∈ {-512511}
Slit16	16-bit signed literal ∈ {-3276832767}
Slit6	6-bit signed literal ∈ {-1616}

23.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC30F electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

For detailed information about the dsPIC30F architecture and core, refer to "dsPIC30F Family Reference Manual" (DS70046).

Absolute maximum ratings for the dsPIC30F family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings(†)

Ambient temperature under bigs	40°C to 1125°C
Ambient temperature under bias	
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD and MCLR) (Note 1)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss	0.3V to +5.5V
Voltage on MCLR with respect to Vss	0V to +13.25V
Maximum current out of Vss pin	300 mA
Maximum current into VDD pin (Note 2)	250 mA
Input clamp current, IiK (VI < 0 or VI > VDD)	±20 mA
Output clamp current, IOK (VO < 0 or VO > VDD)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports (Note 2)	200 mA
Note 1: Voltage spikes below Vss at the MCLR/VPP pin, inducing currents greater	

Note 1: Voltage spikes below Vss at the MCLR/VPP pin, inducing currents greater than 80 mA, may cause latchup. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR/VPP pin, rather than pulling this pin directly to Vss.

2: Maximum allowable current is a function of device maximum power dissipation. See Table 23-2 for PDMAX.

[†]NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Note: All peripheral electrical characteristics are specified. For exact peripherals available on specific devices, please refer the Family Cross Reference Table.

23.1 DC Characteristics

TABLE 23-1: OPERATING MIPS VS. VOLTAGE

Vpp Bongo	Temp Range	Max MIPS							
VDD Range	Temp Kange	dsPIC30F601X-30I	dsPIC30F601X-20I	dsPIC30F601X-20E					
4.75-5.5V	-40°C to 85°C	30	20	_					
4.75-5.5V	-40°C to 125°C	_	_	20					
3.0-3.6V	-40°C to 85°C	15	10	_					
3.0-3.6V	-40°C to 125°C	_	_	10					
2.5-3.0V	-40°C to 85°C	7.5	7.5	_					

TABLE 23-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
dsPIC30F601x-30I					
Operating Junction Temperature Range	T_J	-40		+125	°C
Operating Ambient Temperature Range	T_A	-40		+85	°C
dsPIC30F601x-20I					
Operating Junction Temperature Range	T_J	-40		+150	°C
Operating Ambient Temperature Range	T _A	-40		+85	°C
dsPIC30F601x-20E					
Operating Junction Temperature Range	T_J	-40		+150	°C
Operating Ambient Temperature Range	T_A	-40		+125	°C
Power Dissipation: Internal chip power dissipation: $P_{INT} = V_{DD} \times (I_{DD} - \sum I_{OH})$ I/O Pin power dissipation: $P_{I/O} = \sum (\{V_{DD} - V_{OH}\} \times I_{OH}) + \sum (V_{OL} \times I_{OL})$	P _D	P _{INT} + P _{I/O}			W
Maximum Allowed Power Dissipation	Ромах	(7	$\Gamma_J - T_A) / \Theta$	JA	W

TABLE 23-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit	Notes
Package Thermal Resistance, 80-pin TQFP (14x14x1mm)	$\theta_{\sf JA}$		50	°C/W	1
Package Thermal Resistance, 64-pin TQFP (14x14x1mm)	$\theta_{\sf JA}$		50	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-ja (θ_{JA}) numbers are achieved by package simulations.

TABLE 23-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARACTERISTICS			Standard Operating Co. (unless otherwise state Operating temperature						
Param No. Symbol Characteristic			Min	Typ ⁽¹⁾	Max	Units	Conditions		
Operatir	Operating Voltage ⁽²⁾								
DC10	VDD	Supply Voltage	2.5	_	5.5	V	Industrial temperature		
DC11	VDD	Supply Voltage	3.0	_	5.5	V	Extended temperature		
DC12	VDR	RAM Data Retention Voltage ⁽³⁾	_	1.5	_	V			
DC16	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	_	Vss	_	V			
DC17	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.05			V/ms	0-5V in 0.1 sec 0-3V in 60 ms		

Note 1: Data in "Typ" column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 2: These parameters are characterized but not tested in manufacturing.
- 3: This is the limit to which VDD can be lowered without losing RAM data.

TABLE 23-15: PLL CLOCK TIMING SPECIFICATIONS (VDD = 2.5 TO 5.5 V)

AC CHARACTERISTICS			Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended					
Param No.	Sympol Characteristi			Min Typ ⁽²⁾ Max Units Condit				
OS50	FPLLI	PLL Input Frequency	Range ⁽²⁾	4	_	10	MHz	EC with 4x PLL
				4	_	10	MHz	EC with 8x PLL
				4	_	7.5 ⁽³⁾	MHz	EC with 16x PLL
				4	_	10	MHz	XT with 4x PLL
				4	_	10	MHz	XT with 8x PLL
				4	_	7.5 ⁽³⁾	MHz	XT with 16x PLL
OS51	Fsys	On-Chip PLL Output ⁽²⁾		16	_	120	MHz	EC, XT modes with PLL
OS52	TLOC	PLL Start-up Time (L	ock Time)	_	20	50	μs	

- Note 1: These parameters are characterized but not tested in manufacturing.
 - 2: Data in "Typ" column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
 - 3: Limited by device operating frequency range.

TABLE 23-16: PLL JITTER

AC CHARACTERISTICS		Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended							
Param No.	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions			
OS61	x4 PLL	_	0.251	0.413	%	-40°C ≤ TA ≤ +85°C	VDD = 3.0 to 3.6V		
		_	0.251	0.413	%	-40°C ≤ TA ≤ +125°C	VDD = 3.0 to 3.6V		
		_	0.256	0.47	%	-40°C ≤ TA ≤ +85°C	VDD = 4.5 to 5.5V		
		_	0.256	0.47	%	-40°C ≤ TA ≤ +125°C	VDD = 4.5 to 5.5V		
	x8 PLL	_	0.355	0.584	%	-40°C ≤ TA ≤ +85°C	VDD = 3.0 to 3.6V		
		_	0.355	0.584	%	-40°C ≤ TA ≤ +125°C	VDD = 3.0 to 3.6V		
		_	0.362	0.664	%	-40°C ≤ TA ≤ +85°C	VDD = 4.5 to 5.5V		
			0.362	0.664	%	-40°C ≤ TA ≤ +125°C	VDD = 4.5 to 5.5V		
	x16 PLL	_	0.67	0.92	%	-40°C ≤ TA ≤ +85°C	VDD = 3.0 to 3.6V		
		_	0.632	0.956	%	-40°C ≤ TA ≤ +85°C	VDD = 4.5 to 5.5V		
		_	0.632	0.956	%	-40°C ≤ TA ≤ +125°C	VDD = 4.5 to 5.5V		

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 23-17: INTERNAL CLOCK TIMING EXAMPLES

Clock Oscillator Mode	Fosc (MHz) ⁽¹⁾	Tcγ (μsec) ⁽²⁾	MIPS ⁽³⁾ w/o PLL	MIPS ⁽³⁾ w/PLL x4	MIPS ⁽³⁾ w/PLL x8	MIPS ⁽³⁾ w/PLL x16
EC	0.200	20.0	0.05	_	_	_
	4	1.0	1.0	4.0	8.0	16.0
	10	0.4	2.5	10.0	20.0	_
	25	0.16	6.25	_	_	_
XT	4	1.0	1.0	4.0	8.0	16.0
	10	0.4	2.5	10.0	20.0	_

TABLE 23-39: 12-BIT A/D CONVERSION TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.7V to 5.5V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{Ta} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{Ta} \le +125^{\circ}\text{C}$ for Extended						
Param No.	Symbol	Characteristic	Min.	Тур	Conditions				
		Clock	k Parame	ters					
AD50	TAD	A/D Clock Period	_	334	_	ns	VDD = 3-5.5V (Note 1)		
AD51	trc	A/D Internal RC Oscillator Period	od 1.2 1.5 1.8 μs				_		
		Con	version R	ate					
AD55	tCONV	Conversion Time	_	14 TAD		ns	_		
AD56	FCNV	Throughput Rate	_	200	_	ksps	VDD = VREF = 3-5.5V		
AD57	Тѕамр	Sample Time	_	1 TAD		ns	VDD = 3-5.5V Source resistance Rs = 0-2.5 kΩ		
	Timing Parameters								
AD60	tPCS	Conversion Start from Sample Trigger		1 TAD	1	ns	_		
AD61	tPSS	Sample Start from Setting Sample (SAMP) Bit	0.5 TAD	_	1.5 TAD	ns	_		
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1)	_	0.5 TAD	1	ns	_		
AD63	tDPU	Time to Stabilize Analog Stage from A/D Off to A/D On	_	20	_	μs	_		

Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.