E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2014	
Product Status	Not For New Designs
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	CANbus, I ² C, IrDA, SD, SPI, UART/USART, USB, USB OTG
Peripherals	DMA, I ² S, LCD, LVD, POR, PWM, WDT
Number of I/O	64
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 34x16b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mk40dn512zvll10

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Terminology and guidelines

Field	Description	Values
FFF	Program flash memory size	 32 = 32 KB 64 = 64 KB 128 = 128 KB 256 = 256 KB 512 = 512 KB 1M0 = 1 MB 2M0 = 2 MB
R	Silicon revision	 Z = Initial (Blank) = Main A = Revision after main
Т	Temperature range (°C)	 V = -40 to 105 C = -40 to 85
PP	Package identifier	 FM = 32 QFN (5 mm x 5 mm) FT = 48 QFN (7 mm x 7 mm) LF = 48 LQFP (7 mm x 7 mm) LH = 64 LQFP (10 mm x 10 mm) MP = 64 MAPBGA (5 mm x 5 mm) LK = 80 LQFP (12 mm x 12 mm) LL = 100 LQFP (14 mm x 14 mm) MC = 121 MAPBGA (8 mm x 8 mm) LQ = 144 LQFP (20 mm x 20 mm) MD = 144 MAPBGA (13 mm x 13 mm) MJ = 256 MAPBGA (17 mm x 17 mm)
CC	Maximum CPU frequency (MHz)	 5 = 50 MHz 7 = 72 MHz 10 = 100 MHz 12 = 120 MHz 15 = 150 MHz
Ν	Packaging type	 R = Tape and reel (Blank) = Trays

2.4 Example

This is an example part number:

MK40DN512ZVMD10

3 Terminology and guidelines

3.1 Definition: Operating requirement

An *operating requirement* is a specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip.

5.2 Nonswitching electrical specifications

5.2.1 Voltage and current operating requirements Table 1. Voltage and current operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	3.6	V	
V _{DDA}	Analog supply voltage	1.71	3.6	V	
$V_{DD} - V_{DDA}$	V _{DD} -to-V _{DDA} differential voltage	-0.1	0.1	V	
$V_{SS} - V_{SSA}$	V _{SS} -to-V _{SSA} differential voltage	-0.1	0.1	V	
V _{BAT}	RTC battery supply voltage	1.71	3.6	V	
V _{IH}	Input high voltage				
	• $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$	$0.7 \times V_{DD}$	_	V	
	• $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$	$0.75 \times V_{DD}$	_	V	
VIL	Input low voltage				
	• $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$		$0.35 \times V_{DD}$	V	
	• $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$	_	$0.3 \times V_{DD}$	V	
V _{HYS}	Input hysteresis	$0.06 \times V_{DD}$	_	V	
I _{ICDIO}	Digital pin negative DC injection current — single pin	_		_	1
	• V _{IN} < V _{SS} -0.3V	-5	_	mA	
I _{ICAIO}	Analog ² , EXTAL, and XTAL pin DC injection current — single pin				3
	 V_{IN} < V_{SS}-0.3V (Negative current injection) 	-5	_	mA	
	• $V_{IN} > V_{DD}$ +0.3V (Positive current injection)	5	+5		
	$V_{\rm IN} > V_{\rm DD} + 0.3 V$ (Fostive current injection)		+5		
I _{ICcont}	Contiguous pin DC injection current —regional limit,				
	includes sum of negative injection currents or sum of positive injection currents of 16 contiguous pins				
	Negative current injection	-25	—	mA	
	Positive current injection	—	+25		
	-	V	N	V	
V _{ODPU}	Open drain pullup voltage level	V _{DD}	V _{DD}		4
V _{RAM}	V _{DD} voltage required to retain RAM	1.2	—	V	
V _{RFVBAT}	V_{BAT} voltage required to retain the VBAT register file	V _{POR_VBAT}	_	V	

- All 5 V tolerant digital I/O pins are internally clamped to V_{SS} through an ESD protection diode. There is no diode connection to V_{DD}. If V_{IN} is less than V_{DIO_MIN}, a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R=(V_{DIO_MIN}-V_{IN})/II_{ICDIO}I.
- 2. Analog pins are defined as pins that do not have an associated general purpose I/O port function. Additionally, EXTAL and XTAL are analog pins.
- 3. All analog pins are internally clamped to V_{SS} and V_{DD} through ESD protection diodes. If V_{IN} is less than V_{AIO_MIN} or greater than V_{AIO_MAX}, a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R=(V_{AIO_MIN}-V_{IN})/II_{ICAIO}I. The positive injection current limiting resistor is calculated as R=(V_{AIO_MIN}-V_{IN})/II_{ICAIO}I. The positive injection current limiting resistor is calculated the pin is exposed to positive and negative injection currents.
- 4. Open drain outputs must be pulled to VDD.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD_VLPR}	Very-low-power run mode current at 3.0 V — all peripheral clocks enabled	_	N/A		mA	7
I _{DD_VLPW}	Very-low-power wait mode current at 3.0 V — all peripheral clocks disabled	—	N/A	_	mA	8
I _{DD_STOP}	Stop mode current at 3.0 V					
	• @ -40 to 25°C	—	0.59	1.4	mA	
	• @ 70°C	—	2.26	7.9	mA	
	• @ 105°C	—	5.94	19.2	mA	
I _{DD_VLPS}	Very-low-power stop mode current at 3.0 V					
	• @ -40 to 25°C	_	93	435	μA	
	• @ 70°C		520	2000	μA	
	• @ 105°C	—	1350	4000	μA	
I _{DD_LLS}	Low leakage stop mode current at 3.0 V					9
	• @ -40 to 25°C		4.8	20	μA	
	• @ 70°C		28	68	μA	
	• @ 105°C	—	126	270	μA	
I _{DD_VLLS3}	Very low-leakage stop mode 3 current at 3.0 V					9
	• @40 to 25°C	_	3.1	8.9	μA	
	• @ 70°C	_	17	35	μA	
	• @ 105°C	—	82	148	μA	
I _{DD_VLLS2}	Very low-leakage stop mode 2 current at 3.0 V					
	• @40 to 25°C	_	2.2	5.4	μA	
	• @ 70°C	_	7.1	12.5	μA	
	• @ 105°C	_	41	125	μA	
I _{DD_VLLS1}	Very low-leakage stop mode 1 current at 3.0 V					
	• @40 to 25°C	_	2.1	7.6	μA	
	• @ 70°C		6.2	13.5	μA	
	• @ 105°C	—	30	46	μA	
I _{DD_VBAT}	Average current with RTC and 32kHz disabled at 3.0 V					
	 @ -40 to 25°C 	_	0.33	0.39	μA	
	• @ 70°C	_	0.60	0.78	μA	
	• @ 105°C		1.97	2.9	μA	

Table 6. Power consumption operating behaviors (continued)

Table continues on the next page...

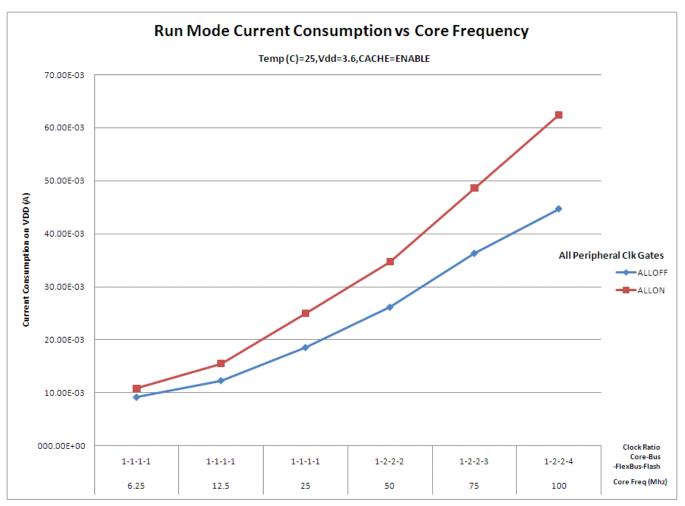


Figure 2. Run mode supply current vs. core frequency

5.2.6 EMC radiated emissions operating behaviors

Table 7. EMC radiated emissions operating behaviors as measured on 144LQFP and 144MAPBGA packages

Symbol	Description	Frequency band (MHz)	144LQFP	144MAPBGA	Unit	Notes
V_{RE1}	Radiated emissions voltage, band 1	0.15–50	23	12	dBµV	1,2
V _{RE2}	Radiated emissions voltage, band 2	50–150	27	24	dBµV	
V _{RE3}	Radiated emissions voltage, band 3	150–500	28	27	dBµV	
V _{RE4}	Radiated emissions voltage, band 4	500–1000	14	11	dBµV	
V_{RE_IEC}	IEC level	0.15–1000	К	К		2, 3

 Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions – TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range.

- 2. V_{DD} = 3.3 V, T_A = 25 °C, f_{OSC} = 12 MHz (crystal), f_{SYS} = 96 MHz, f_{BUS} = 48MHz
- 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions TEM Cell and Wideband TEM Cell Method

5.2.7 Designing with radiated emissions in mind

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

- 1. Go to www.freescale.com.
- 2. Perform a keyword search for "EMC design."

5.2.8 Capacitance attributes

Table 8. Capacitance attributes

Symbol	Description	Min.	Max.	Unit
C _{IN_A}	Input capacitance: analog pins	_	7	pF
C _{IN_D}	Input capacitance: digital pins		7	pF

5.3 Switching specifications

5.3.1 Device clock specifications

Table 9. Device clock specifications

Symbol	Description	Min.	Max.	Unit	Notes
	Normal run mo	de			
f _{SYS}	System and core clock	_	100	MHz	
f _{SYS_USB}	System and core clock when Full Speed USB in operation	20	-	MHz	
f _{BUS}	Bus clock	_	50	MHz	
f _{FLASH}	Flash clock	_	25	MHz	
f _{LPTMR}	LPTMR clock	_	25	MHz	

5.3.2 General switching specifications

These general purpose specifications apply to all signals configured for GPIO, UART, CAN, CMT, and I²C signals.

6.1.2 JTAG electricals Table 13. JTAG limited voltage range electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
J1	TCLK frequency of operation			MHz
	Boundary Scan	0	10	
	JTAG and CJTAG	0	25	
	Serial Wire Debug	0	50	
J2	TCLK cycle period	1/J1		ns
J3	TCLK clock pulse width			
	Boundary Scan	50	—	ns
	JTAG and CJTAG	20	—	ns
	Serial Wire Debug	10	—	ns
J4	TCLK rise and fall times	_	3	ns
J5	Boundary scan input data setup time to TCLK rise	20	_	ns
J6	Boundary scan input data hold time after TCLK rise	0	_	ns
J7	TCLK low to boundary scan output data valid	—	25	ns
J8	TCLK low to boundary scan output high-Z	—	25	ns
J9	TMS, TDI input data setup time to TCLK rise	8	—	ns
J10	TMS, TDI input data hold time after TCLK rise	1	—	ns
J11	TCLK low to TDO data valid	—	17	ns
J12	TCLK low to TDO high-Z		17	ns
J13	TRST assert time	100		ns
J14	TRST setup time (negation) to TCLK high	8		ns

Table 14. JTAG full voltage range electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
J1	TCLK frequency of operation			MHz
	Boundary Scan	0	10	
	JTAG and CJTAG	0	20	
	Serial Wire Debug	0	40	
J2	TCLK cycle period	1/J1		ns
J3	TCLK clock pulse width			
	Boundary Scan	50	_	ns
	JTAG and CJTAG	25	_	ns
	Serial Wire Debug	12.5	_	ns
J4	TCLK rise and fall times		3	ns

Table continues on the next page...

6.3.1 MCG specifications

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
f _{ints_ft}	Internal reference factory trimmed at	—	32.768	—	kHz		
f _{ints_t}		frequency (slow clock) — user ked voltage and temperature	31.25	_	38.2	kHz	
$\Delta_{fdco_res_t}$		ned average DCO output voltage and temperature — d SCFTRIM	_	± 0.3	± 0.6	%f _{dco}	1
Δf_{dco_t}		rimmed average DCO output ed voltage and temperature	_	± 1.5	± 4.5	%f _{dco}	1
f _{intf_ft}		frequency (fast clock) — nominal VDD and 25°C	_	4	—	MHz	
f _{intf_t}	Internal reference trimmed at nomina	3	_	5	MHz		
f _{loc_low}	Loss of external cl RANGE = 00	ock minimum frequency —	(3/5) x f _{ints_t}	_	_	kHz	
f _{loc_high}	Loss of external cl RANGE = 01, 10,	(16/5) x f _{ints_t}	_	—	kHz		
		FI	LL				!
f _{fll_ref}	FLL reference freq	uency range	31.25		39.0625	kHz	
f _{dco}	DCO output frequency range	Low range (DRS=00) 640 × f _{fll_ref}	20	20.97	25	MHz	2, 3
		Mid range (DRS=01) 1280 × f _{fll ref}	40	41.94	50	MHz	
		Mid-high range (DRS=10) 1920 × f _{fll ref}	60	62.91	75	MHz	
		High range (DRS=11) 2560 × f _{fll_ref}	80	83.89	100	MHz	
dco_t_DMX32	DCO output frequency	Low range (DRS=00) 732 × f _{fll_ref}	_	23.99	_	MHz	4, 5
		Mid range (DRS=01) 1464 × f _{fll_ref}	_	47.97	_	MHz	
		Mid-high range (DRS=10) 2197 × f _{fll_ref}		71.99	_	MHz	
		High range (DRS=11) 2929 × f _{fll_ref}	—	95.98	-	MHz	
J _{cyc_fll}	FLL period jitter			180		ps	
. –	 f_{VCO} = 48 MI f_{VCO} = 98 MI 			150			
t _{fll_acquire}		cy acquisition time		_	1	ms	6

Table 15. MCG specifications

Table continues on the next page...

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{pp} ⁵	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0)		0.6		V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1)		V _{DD}		V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0)	—	0.6	—	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1)	_	V _{DD}	_	V	

 Table 16.
 Oscillator DC electrical specifications (continued)

- 1. V_{DD}=3.3 V, Temperature =25 °C
- 2. See crystal or resonator manufacturer's recommendation
- 3. C_x, C_y can be provided by using either the integrated capacitors or by using external components.
- 4. When low power mode is selected, R_F is integrated and must not be attached externally.
- 5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.

6.3.2.2 Oscillator frequency specifications

Table 17. Oscillator frequency specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal or resonator frequency — low frequency mode (MCG_C2[RANGE]=00)	32		40	kHz	
f _{osc_hi_1}	Oscillator crystal or resonator frequency — high 3 — 8 frequency mode (low range) (MCG_C2[RANGE]=01)		8	MHz		
f _{osc_hi_2}	Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)	8	_	32	MHz	
f _{ec_extal}	Input clock frequency (external clock mode)	—	—	50	MHz	1, 2
t _{dc_extal}	Input clock duty cycle (external clock mode)	40	50	60	%	
t _{cst}	Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0)	_	750	-	ms	3, 4
	Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1)	_	250	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0)	_	0.6	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1)	_	1	_	ms	

- 1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.
- 2. When transitioning from FBE to FEI mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency.
- 3. Proper PC board layout procedures must be followed to achieve specifications.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	Swap Control execution time					
t _{swapx01}	control code 0x01	—	200	—	μs	
t _{swapx02}	control code 0x02	_	70	150	μs	
t _{swapx04}	control code 0x04	—	70	150	μs	
t _{swapx08}	control code 0x08	_		30	μs	

Table 21. Flash command timing specifications (continued)

1. Assumes 25 MHz flash clock frequency.

2. Maximum times for erase parameters based on expectations at cycling end-of-life.

6.4.1.3 Flash high voltage current behaviors Table 22. Flash high voltage current behaviors

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DD_PGM}	Average current adder during high voltage flash programming operation	—	2.5	6.0	mA
I _{DD_ERS}	Average current adder during high voltage flash erase operation		1.5	4.0	mA

6.4.1.4 Reliability specifications

Table 23. NVM reliability specifications

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes		
Program Flash								
t _{nvmretp10k}	Data retention after up to 10 K cycles	5	50	_	years			
t _{nvmretp1k}	Data retention after up to 1 K cycles	20	100	—	years			
n _{nvmcycp}	Cycling endurance	10 K	50 K	_	cycles	2		

 Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25°C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619.

2. Cycling endurance represents number of program/erase cycles at -40°C \leq T_j \leq 125°C.

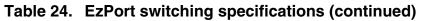

6.4.2 EzPort Switching Specifications

Table 24. EzPort switching specifications

Num	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
EP1	EZP_CK frequency of operation (all commands except READ)	—	f _{SYS} /2	MHz

Table continues on the next page ...

Num	Description	Min.	Max.	Unit
EP1a	EZP_CK frequency of operation (READ command)	_	f _{SYS} /8	MHz
EP2	EZP_CS negation to next EZP_CS assertion	2 x t _{EZP_CK}	_	ns
EP3	EZP_CS input valid to EZP_CK high (setup)	5	_	ns
EP4	EZP_CK high to EZP_CS input invalid (hold)	5	_	ns
EP5	EZP_D input valid to EZP_CK high (setup)	2	_	ns
EP6	EZP_CK high to EZP_D input invalid (hold)	5	_	ns
EP7	EZP_CK low to EZP_Q output valid		16	ns
EP8	EZP_CK low to EZP_Q output invalid (hold)	0	—	ns
EP9	EZP_CS negation to EZP_Q tri-state		12	ns

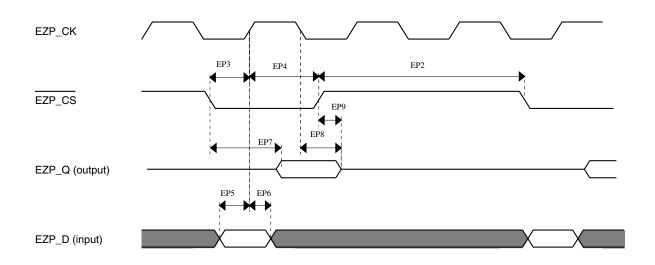


Figure 9. EzPort Timing Diagram

6.5 Security and integrity modules

There are no specifications necessary for the device's security and integrity modules.

6.6 Analog

6.6.1 ADC electrical specifications

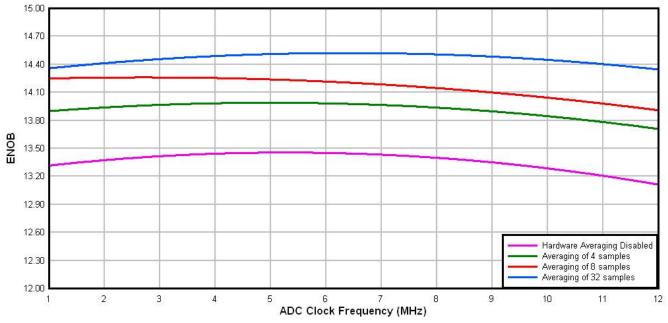
The 16-bit accuracy specifications listed in Table 25 and Table 26 are achievable on the differential pins ADCx_DP0, ADCx_DM0, ADCx_DP1, ADCx_DM1, ADCx_DP3, and ADCx_DM3.

The ADCx_DP2 and ADCx_DM2 ADC inputs are connected to the PGA outputs and are not direct device pins. Accuracy specifications for these pins are defined in Table 27 and Table 28.

All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy specifications.

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
V _{DDA}	Supply voltage	Absolute	1.71	_	3.6	V	
ΔV_{DDA}	Supply voltage	Delta to V _{DD} (V _{DD} - V _{DDA})	-100	0	+100	mV	2
ΔV_{SSA}	Ground voltage	Delta to V _{SS} (V _{SS} - V _{SSA})	-100	0	+100	mV	2
V _{REFH}	ADC reference voltage high		1.13	V _{DDA}	V _{DDA}	V	
V _{REFL}	ADC reference voltage low		V _{SSA}	V _{SSA}	V _{SSA}	V	
V _{ADIN}	Input voltage	16-bit differential mode	VREFL		31/32 * VREFH	V	
	All other modes	VREFL	_	VREFH			
C _{ADIN} Input capacitance	16-bit mode	_	8	10	pF		
		 8-bit / 10-bit / 12-bit modes 	_	4	5		
R _{ADIN}	Input resistance			2	5	kΩ	
R _{AS}	Analog source	13-bit / 12-bit modes					3
	resistance	f _{ADCK} < 4 MHz	_	—	5	kΩ	
f _{ADCK}	ADC conversion clock frequency	≤ 13-bit mode	1.0		18.0	MHz	4
f _{ADCK}	ADC conversion clock frequency	16-bit mode	2.0		12.0	MHz	4
C _{rate}	ADC conversion	≤ 13-bit modes					5
	rate	No ADC hardware averaging Continuous conversions enabled, subsequent conversion time	20.000		818.330	Ksps	

6.6.1.1 16-bit ADC operating conditions Table 25. 16-bit ADC operating conditions


Table continues on the next page...

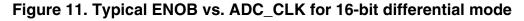

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
EIL	Input leakage error			$I_{In} \times R_{AS}$		mV	I _{In} = leakage current
							(refer to the MCU's voltage and current operating ratings)
	Temp sensor slope	Across the full temperature range of the device	1.55	1.62	1.69	mV/°C	
V _{TEMP25}	Temp sensor voltage	25 °C	706	716	726	mV	

Table 26. 16-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

- 1. All accuracy numbers assume the ADC is calibrated with V_{REFH} = V_{DDA}
- Typical values assume V_{DDA} = 3.0 V, Temp = 25°C, f_{ADCK} = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
- The ADC supply current depends on the ADC conversion clock speed, conversion rate and the ADLPC bit (low power). For lowest power operation the ADLPC bit must be set, the HSC bit must be clear with 1 MHz ADC conversion clock speed.
- 4. 1 LSB = $(V_{REFH} V_{REFL})/2^N$
- 5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
- 6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.
- 7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
C _{rate}	ADC conversion	≤ 13 bit modes	18.484	_	450	Ksps	7
	rate	No ADC hardware averaging					
		Continuous conversions enabled					
		Peripheral clock = 50 MHz					
		16 bit modes	37.037	_	250	Ksps	8
		No ADC hardware averaging					
		Continuous conversions enabled					
		Peripheral clock = 50 MHz					

Table 27. 16-bit ADC with PGA operating conditions (continued)

- 1. Typical values assume V_{DDA} = 3.0 V, Temp = 25°C, f_{ADCK} = 6 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
- 2. ADC must be configured to use the internal voltage reference (VREF_OUT)
- 3. PGA reference is internally connected to the VREF_OUT pin. If the user wishes to drive VREF_OUT with a voltage other than the output of the VREF module, the VREF module must be disabled.
- 4. For single ended configurations the input impedance of the driven input is R_{PGAD}/2
- 5. The analog source resistance (R_{AS}), external to MCU, should be kept as minimum as possible. Increased R_{AS} causes drop in PGA gain without affecting other performances. This is not dependent on ADC clock frequency.
- The minimum sampling time is dependent on input signal frequency and ADC mode of operation. A minimum of 1.25µs time should be allowed for F_{in}=4 kHz at 16-bit differential mode. Recommended ADC setting is: ADLSMP=1, ADLSTS=2 at 8 MHz ADC clock.
- 7. ADC clock = 18 MHz, ADLSMP = 1, ADLST = 00, ADHSC = 1
- 8. ADC clock = 12 MHz, ADLSMP = 1, ADLST = 01, ADHSC = 1

6.6.1.4 16-bit ADC with PGA characteristics Table 28. 16-bit ADC with PGA characteristics

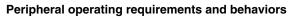

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
I _{DDA_PGA}	Supply current	Low power (ADC_PGA[PGALPb]=0)	-	420	644	μA	2
I _{DC_PGA}	Input DC current		$\frac{2}{R_{\rm PGAD}} \left(\frac{(V_{\rm REFPGA} \times 0.583) - V_{\rm CM}}{({\rm Gain}+1)} \right)$			A	3
		Gain =1, V_{REFPGA} =1.2V, V_{CM} =0.5V	_	1.54	—	μA	
		Gain =64, V_{REFPGA} =1.2V, V_{CM} =0.1V	_	0.57	_	μA	

Table continues on the next page ...

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
G	Gain ⁴	PGAG=0	0.95	1	1.05		R _{AS} < 100Ω
		• PGAG=1	1.9	2	2.1		
		• PGAG=2	3.8	4	4.2		
		• PGAG=3	7.6	8	8.4		
		• PGAG=4	15.2	16	16.6		
		• PGAG=5	30.0	31.6	33.2		
		• PGAG=6	58.8	63.3	67.8		
BW	Input signal	16-bit modes	_	_	4	kHz	
	bandwidth	 < 16-bit modes 	_	_	40	kHz	
PSRR	Power supply rejection ratio	Gain=1	_	-84		dB	V _{DDA} = 3V ±100mV, f _{VDDA} = 50Hz, 60Hz
CMRR	Common mode	Gain=1	—	-84	—	dB	V _{CM} =
	rejection ratio	• Gain=64	-	-85	_	dB	500mVpp, f _{VCM} = 50Hz, 100Hz
V _{OFS}	Input offset voltage		-	0.2	_	mV	Output offset = V _{OFS} *(Gain+1)
T _{GSW}	Gain switching settling time		-	_	10	μs	5
E _{IL}	Input leakage error	All modes		$I_{ln} \times R_{AS}$		mV	I _{In} = leakage current (refer to the MCU's voltage and current
							operating ratings)
V _{PP,DIFF}	Maximum differential input signal swing			$\frac{V_{x}V_{DDA} - V_{x}}{Gain}$ $x = V_{REFPG}$)	V	6
SNR	Signal-to-noise	Gain=1	80	90		dB	16-bit
	ratio	• Gain=64	52	66	_	dB	differential mode, Average=32
THD	Total harmonic	Gain=1	85	100	_	dB	16-bit
	distortion	• Gain=64	49	95		dB	differential mode, Average=32, f _{in} =100Hz
SFDR	Spurious free	Gain=1	85	105	_	dB	16-bit
	dynamic range	• Gain=64	53	88	_	dB	differential mode, Average=32, f _{in} =100Hz

Table 28. 16-bit ADC with PGA characteristics (continued)

Table continues on the next page...

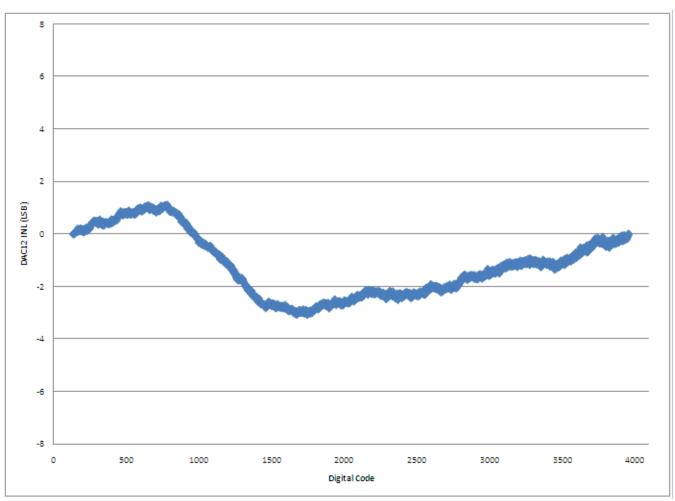


Figure 15. Typical INL error vs. digital code

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{out}	Voltage reference output with factory trim at nominal V_{DDA} and temperature=25C	1.1915	1.195	1.1977	V	
V _{out}	Voltage reference output — factory trim	1.1584	—	1.2376	V	
V _{step}	Voltage reference trim step	_	0.5	—	mV	
V _{tdrift}	Temperature drift (Vmax -Vmin across the full temperature range)	_		80	mV	
I _{bg}	Bandgap only current	_	—	80	μA	1
I _{lp}	Low-power buffer current	_	—	360	uA	1
I _{hp}	High-power buffer current	_	_	1	mA	1
ΔV_{LOAD}	Load regulation				mV	1, 2
	• current = + 1.0 mA	_	2	_		
	• current = - 1.0 mA	_	5	_		
T _{stup}	Buffer startup time			100	μs	
V _{vdrift}	Voltage drift (Vmax -Vmin across the full voltage range)	—	2	-	mV	1

Table 33. VREF full-range operating behaviors

1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register.

2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load

Table 34. VREF limited-range operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
T _A	Temperature	0	50	°C	

Table 35. VREF limited-range operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
V _{out}	Voltage reference output with factory trim	1.173	1.225	V	

6.7 Timers

See General switching specifications.

6.8 Communication interfaces

6.8.9 SDHC specifications

The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface.

Num	Symbol	Description	Min.	Max.	Unit		
	Card input clock						
SD1	fpp	Clock frequency (low speed)	0	400	kHz		
	fpp	Clock frequency (SD\SDIO full speed\high speed)	0	25\50	MHz		
	fpp	Clock frequency (MMC full speed\high speed)	0	20\50	MHz		
	f _{OD}	Clock frequency (identification mode)	0	400	kHz		
SD2	t _{WL}	Clock low time	7	—	ns		
SD3	t _{WH}	Clock high time	7	—	ns		
SD4	t _{TLH}	Clock rise time	—	3	ns		
SD5	t _{THL}	Clock fall time	—	3	ns		
	SDHC output / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)						
SD6	t _{OD}	SDHC output delay (output valid)	-5	8.3	ns		
	SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)						
SD7	t _{ISU}	SDHC input setup time	5	—	ns		
SD8	t _{IH}	SDHC input hold time	0	—	ns		

Table 43. SDHC switching specifications

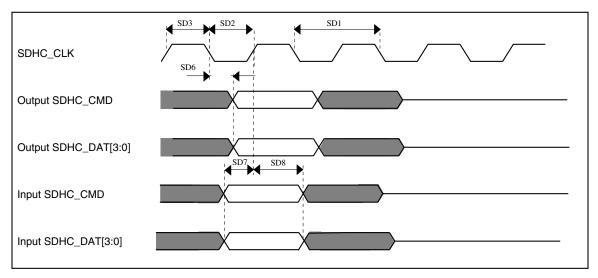


Figure 22. SDHC timing

Num	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S11	I2S_BCLK cycle time (input)	8 x t _{SYS}	_	ns
S12	I2S_BCLK pulse width high/low (input)	45%	55%	MCLK period
S13	I2S_FS input setup before I2S_BCLK	10	_	ns
S14	I2S_FS input hold after I2S_BCLK	3.5	_	ns
S15	I2S_BCLK to I2S_TXD/I2S_FS output valid	—	28.6	ns
S16	I2S_BCLK to I2S_TXD/I2S_FS output invalid	0	_	ns
S17	I2S_RXD setup before I2S_BCLK	10	_	ns
S18	I2S_RXD hold after I2S_BCLK	2	—	ns

Table 47.	I ² S slave mode	timing (ful	voltage range)
-----------	-----------------------------	-------------	----------------

6.9 Human-machine interfaces (HMI)

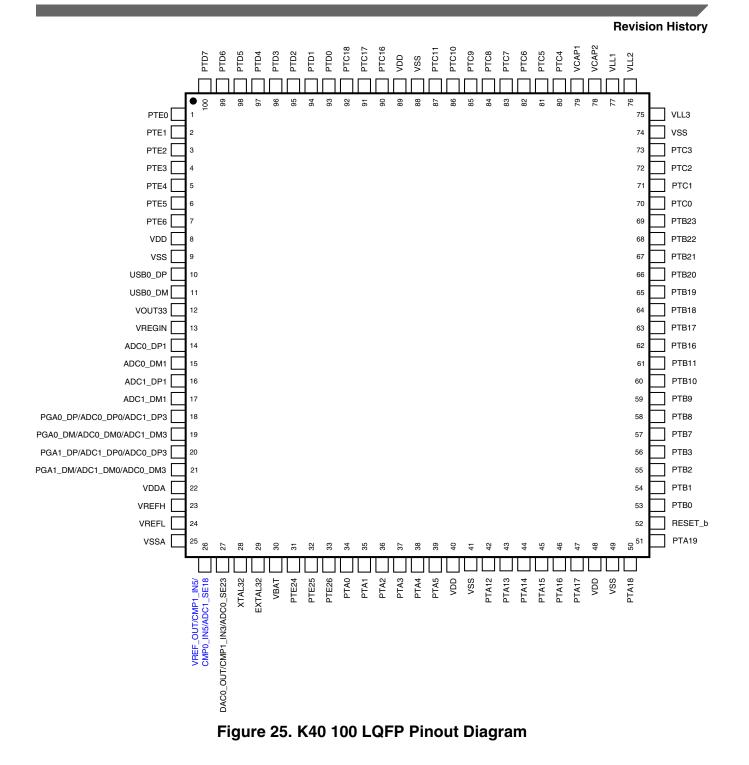

6.9.1 TSI electrical specifications

Table 48. TSI electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{DDTSI}	Operating voltage	1.71	—	3.6	V	
C _{ELE}	Target electrode capacitance range	1	20	500	pF	1
f _{REFmax}	Reference oscillator frequency	_	5.5	12.7	MHz	2
f _{ELEmax}	Electrode oscillator frequency	—	0.5	4.0	MHz	3
C _{REF}	Internal reference capacitor	0.5	1	1.2	pF	
V _{DELTA}	Oscillator delta voltage	100	600	760	mV	4
I _{REF}	Reference oscillator current source base current • 1uA setting (REFCHRG=0)	_	1.133	1.5	μA	3,5
	 32uA setting (REFCHRG=31) 	—	36	50		
I _{ELE}	Electrode oscillator current source base current • 1uA setting (EXTCHRG=0)	_	1.133	1.5	μA	3,6
	• 32uA setting (EXTCHRG=31)	_	36	50		
Pres5	Electrode capacitance measurement precision	_	8.3333	38400	fF/count	7
Pres20	Electrode capacitance measurement precision	_	8.3333	38400	fF/count	8
Pres100	Electrode capacitance measurement precision	_	8.3333	38400	fF/count	9
MaxSens	Maximum sensitivity	0.003	12.5	_	fF/count	10
Res	Resolution	_	—	16	bits	
T _{Con20}	Response time @ 20 pF	8	15	25	μs	11
I _{TSI_RUN}	Current added in run mode	—	55	—	μA	
I _{TSI_LP}	Low power mode current adder	_	1.3	2.5	μA	12

1. The TSI module is functional with capacitance values outside this range. However, optimal performance is not guaranteed.

2. CAPTRM=7, DELVOL=7, and fixed external capacitance of 20 pF.

9 Revision History

The following table provides a revision history for this document.

Rev. No.	Date	Substantial Changes
6	01/2012	 Added AC electrical specifications. Replaced TBDs with silicon data throughout. In "Power mode transition operating behaviors" table, removed entry times. Updated "EMC radiated emissions operating behaviors" to remove SAE level and also added data for 144LQFP. Clarified "EP7" in "EzPort switching specifications" table and "EzPort Timing Diagram". Added "ENOB vs. ADC_CLK for 16-bit differential and 16-bit single-ended modes" figures. Updated I_{DD_RUN} numbers in 'Power consumption operating behaviors' section. Clarified 'Diagram: Typical IDD_RUN operating behavior' section and updated 'Run mode supply current vs. core frequency — all peripheral clocks disabled' figure. In 'Voltage reference electrical specifications' section, updated V_{DP_SRC}, I_{DDstby}, and 'V_{Reg33out} values. In 'LCD electrical characteristics' section, updated V_{IREG} and Δ_{RTRIM} values.
7	02/2013	 In "ESD handling ratings", added a note for I_{LAT}. Updated "Voltage and current operating requirements". Updated "Voltage and current operating behaviors". Updated "Power mode transition operating behaviors". Updated "EMC radiated emissions operating behaviors" to add MAPBGA data. In "MCG specifications", updated the description of f_{ints_t}. In "16-bit ADC operating conditions", updated the max spec of V_{ADIN}. In "16-bit ADC electrical characteristics", updated the temp sensor slope and voltage specs. Updated "I2C switching specifications". In "SDHC specifications", removed the operating voltage limits and updated the SD1 and SD6 specs. In "I2S switching specifications", added separate specification tables for the full operating voltage range.

Table 50. Revision History (continued)