

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2.15V ~ 3.6V
Data Converters	A/D 10x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f26j13-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pin Nu	ımber			
Pin Name	28-SPDIP/ SSOP/ SOIC	28-QFN	Pin Type	Buffer Type	Description
Vss1	8	5	Р		Ground reference for logic and I/O pins.
Vss2	19	16	—	—	
Vdd	20	17	Ρ	—	Positive supply for peripheral digital logic and I/O pins.
Vddcore/Vcap	6	3	—	—	Core logic power or external filter capacitor connection.
VDDCORE			Ρ	—	Positive supply for microcontroller core logic (regulator disabled).
VCAP			Ρ	—	External filter capacitor connection (regulator enabled).
Legend: TTL = TTL compati ST = Schmitt Trigg I = Input P = Power DIG = Digital outpu	ger input wi	th CMOS	levels	CMOS = CMOS compatible input or output	
Note 1: RA7 and RA6 will be	e disabled	if OSC1 a	nd OSC	2 are us	ed for the clock function.

TABLE 1-3: PIC18F2XJ13 PINOUT I/O DESCRIPTIONS (CONTINUED)

bled if USC1 and US C2 are use for the clock functio

2: 5.5V tolerant.

TABLE 5-2:	INITIALIZAT	ITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)								
Register	Applicabl	e Devices	Power-on Reset, Brown-out Reset, Wake From Deep Sleep	MCLR Resets WDT Reset RESET Instruction Stack Resets CM Resets	Wake-up via WDT or Interrupt					
IPR1	PIC18F2XJ13	PIC18F4XJ13	1111 1111	1111 1111	uuuu uuuu					
PIR1	PIC18F2XJ13	PIC18F4XJ13	0000 0000	0000 0000	uuuu uuuu ⁽³⁾					
PIE1	PIC18F2XJ13	PIC18F4XJ13	0000 0000	0000 0000	սսսս սսսս					
RCSTA2	PIC18F2XJ13	PIC18F4XJ13	0000 0000	0000 0000	սսսս սսսս					
OSCTUNE	PIC18F2XJ13	PIC18F4XJ13	0000 0000	0000 0000	սսսս սսսս					
T1GCON	PIC18F2XJ13	PIC18F4XJ13	0000 0x00	0000 0x00	uuuu uxuu					
T3GCON	PIC18F2XJ13	PIC18F4XJ13	0000 0x00	uuuu uxuu	uuuu uxuu					
TRISE ⁽⁵⁾	—	PIC18F4XJ13	00111	00111	uuuuu					
TRISD ⁽⁵⁾	—	PIC18F4XJ13	1111 1111	1111 1111	սսսս սսսս					
TRISC	PIC18F2XJ13	PIC18F4XJ13	1111 1111	1111 1111	սսսս սսսս					
TRISB	PIC18F2XJ13	PIC18F4XJ13	1111 1111	1111 1111	սսսս սսսս					
TRISA	PIC18F2XJ13	PIC18F4XJ13	111- 1111	111- 1111	นนน- นนนน					
PIE5	PIC18F2XJ13	PIC18F4XJ13	00 0000	00 0000	uu uuuu					
IPR4	PIC18F2XJ13	PIC18F4XJ13	1111 1111	1111 1111	սսսս սսսս					
PIR4	PIC18F2XJ13	PIC18F4XJ13	0000 0000	0000 0000	սսսս սսսս					
PIE4	PIC18F2XJ13	PIC18F4XJ13	0000 0000	0000 0000	սսսս սսսս					
LATE ⁽⁵⁾	—	PIC18F4XJ13	xxx	uuu	uuu					
LATD ⁽⁵⁾	—	PIC18F4XJ13	XXXX XXXX	սսսս սսսս	սսսս սսսս					
LATC	PIC18F2XJ13	PIC18F4XJ13	XXXX XXXX	uuuu uuuu	uuuu uuuu					
LATB	PIC18F2XJ13	PIC18F4XJ13	XXXX XXXX	uuuu uuuu	uuuu uuuu					
LATA	PIC18F2XJ13	PIC18F4XJ13	XXX- XXXX	uuu- uuuu	uuu- uuuu					
DMACON1	PIC18F2XJ13	PIC18F4XJ13	0000 0000	0000 0000	uuuu uuuu					
OSCCON2	PIC18F2XJ13	PIC18F4XJ13	-0-1 01	-0-1 ul	-u-u uu					
DMACON2	PIC18F2XJ13	PIC18F4XJ13	0000 0000	0000 0000	uuuu uuuu					
HLVDCON	PIC18F2XJ13	PIC18F4XJ13	0000 0000	0000 0000	uuuu uuuu					
PORTE ⁽⁵⁾	—	PIC18F4XJ13	xxx	uuu	uuu					
PORTD ⁽⁵⁾	_	PIC18F4XJ13	XXXX XXXX	uuuu uuuu	uuuu uuuu					
PORTC	PIC18F2XJ13	PIC18F4XJ13	XXXX XXXX	uuuu uuuu	uuuu uuuu					
PORTB	PIC18F2XJ13	PIC18F4XJ13	XXXX XXXX	uuuu uuuu	uuuu uuuu					
PORTA	PIC18F2XJ13	PIC18F4XJ13	XXX- XXXX	uuu- uuuu	uuu- uuuu					
SPBRGH1	PIC18F2XJ13	PIC18F4XJ13	0000 0000	0000 0000	uuuu uuuu					
BAUDCON1	PIC18F2XJ13	PIC18F4XJ13	0100 0-00	0100 0-00	uuuu u-uu					

TABLE 5-2: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, – = unimplemented bit, read as '0', q = value depends on condition.

Note 1: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

- 2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).
- 3: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).
- 4: See Table 5-1 for the Reset value for a specific condition.
- 5: Not implemented on PIC18F2XJ13 devices.
- 6: Not implemented on "LF" devices.

6.3 Data Memory Organization

Note:	The operation of some aspects of data
	memory are changed when the PIC18
	extended instruction set is enabled. See
	Section 6.6 "Data Memory and the
	Extended Instruction Set" for more
	information.

The data memory in PIC18 devices is implemented as static RAM. Each register in the data memory has a 12-bit address, allowing up to 4096 bytes of data memory. The memory space is divided into as many as 16 banks that contain 256 bytes each. The PIC18F47J13 Family implements all available banks and provides 3.8 Kbytes of data memory available to the user. Figure 6-6 provides the data memory organization for the devices.

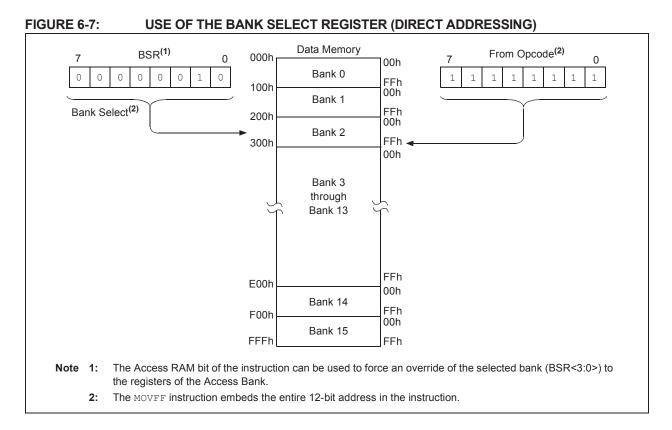
The data memory contains Special Function Registers (SFRs) and General Purpose Registers (GPRs). The SFRs are used for control and status of the controller and peripheral functions, while GPRs are used for data storage and scratchpad operations in the user's application. Any read of an unimplemented location will read as '0's.

The instruction set and architecture allow operations across all banks. The entire data memory may be accessed by Direct, Indirect or Indexed Addressing modes. Addressing modes are discussed later in this section.

To ensure that commonly used registers (select SFRs and select GPRs) can be accessed in a single cycle, PIC18 devices implement an Access Bank. This is a 256-byte memory space that provides fast access to select SFRs and the lower portion of GPR Bank 0 without using the BSR. **Section 6.3.2 "Access Bank**" provides a detailed description of the Access RAM.

6.3.1 BANK SELECT REGISTER

Large areas of data memory require an efficient addressing scheme to make rapid access to any address possible. Ideally, this means that an entire address does not need to be provided for each read or write operation. For PIC18 devices, this is accomplished with a RAM banking scheme. This divides the memory space into 16 contiguous banks of 256 bytes. Depending on the instruction, each location can be addressed directly by its full 12-bit address, or an 8-bit low-order address and a 4-bit Bank Pointer.


Most instructions in the PIC18 instruction set make use of the Bank Pointer, known as the Bank Select Register (BSR). This SFR holds the 4 MSbs of a location's address; the instruction itself includes the 8 LSbs. Only the four lower bits of the BSR are implemented (BSR<3:0>). The upper four bits are unused; they will always read '0' and cannot be written to. The BSR can be loaded directly by using the MOVLB instruction.

The value of the BSR indicates the bank in data memory. The 8 bits in the instruction show the location in the bank and can be thought of as an offset from the bank's lower boundary. The relationship between the BSR's value and the bank division in data memory is illustrated in Figure 6-7.

Because up to 16 registers can share the same low-order address, the user must always be careful to ensure that the proper bank is selected before performing a data read or write. For example, writing what should be program data to an 8-bit address of F9h, while the BSR is 0Fh, will end up resetting the PC.

While any bank can be selected, only those banks that are actually implemented can be read or written to. Writes to unimplemented banks are ignored, while reads from unimplemented banks will return '0's. Even so, the STATUS register will still be affected as if the operation was successful. The data memory map in Figure 6-6 indicates which banks are implemented.

In the core PIC18 instruction set, only the MOVFF instruction fully specifies the 12-bit address of the source and target registers. This instruction ignores the BSR completely when it executes. All other instructions include only the low-order address as an operand and must use either the BSR or the Access Bank to locate their target registers.

6.3.2 ACCESS BANK

While the use of the BSR with an embedded 8-bit address allows users to address the entire range of data memory, it also means that the user must always ensure that the correct bank is selected. Otherwise, data may be read from, or written to, the wrong location. This can be disastrous if a GPR is the intended target of an operation, but an SFR is written to instead. Verifying and/or changing the BSR for each read or write to data memory can become very inefficient.

To streamline access for the most commonly used data memory locations, the data memory is configured with an Access Bank, which allows users to access a mapped block of memory without specifying a BSR. The Access Bank consists of the first 96 bytes of memory (00h-5Fh) in Bank 0 and the last 160 bytes of memory (60h-FFh) in Bank 15. The lower half is known as the Access RAM and is composed of GPRs. The upper half is where the device's SFRs are mapped. These two areas are mapped contiguously in the Access Bank and can be addressed in a linear fashion by an 8-bit address (Figure 6-6).

The Access Bank is used by core PIC18 instructions that include the Access RAM bit (the 'a' parameter in the instruction). When 'a' is equal to '1', the instruction uses the BSR and the 8-bit address included in the opcode for the data memory address. When 'a' is '0', however, the instruction is forced to use the Access Bank address map; the current value of the BSR is ignored entirely.

Using this "forced" addressing allows the instruction to operate on a data address in a single cycle without updating the BSR first. For 8-bit addresses of 60h and above, this means that users can evaluate and operate on SFRs more efficiently. The Access RAM below 60h is a good place for data values that the user might need to access rapidly, such as immediate computational results or common program variables. Access RAM also allows for faster and more code efficient context saving and switching of variables.

The mapping of the Access Bank is slightly different when the extended instruction set is enabled (XINST Configuration bit = 1). This is discussed in more detail in Section 6.6.3 "Mapping the Access Bank in Indexed Literal Offset Mode".

6.3.3 GENERAL PURPOSE REGISTER FILE

PIC18 devices may have banked memory in the GPR area. This is data RAM, which is available for use by all instructions. GPRs start at the bottom of Bank 0 (address 000h) and grow upward toward the bottom of the SFR area. GPRs are not initialized by a POR and are unchanged on all other Resets.

REGISTER 9-5: PIR2: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 2 (ACCESS FA1h)

R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
OSCFIF	CM2IF	CM1IF	—	BCL1IF	HLVDIF	TMR3IF	CCP2IF
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	OSCFIF: Oscillator Fail Interrupt Flag bit
	 1 = The device oscillator failed, clock input has changed to INTOSC (must be cleared in software) 0 = The device clock operating
bit 6	CM2IF: Comparator 2 Interrupt Flag bit
	 1 = The comparator input has changed (must be cleared in software) 0 = The comparator input has not changed
bit 5	CM1IF: Comparator 1 Interrupt Flag bit
	 1 = The comparator input has changed (must be cleared in software) 0 = The comparator input has not changed
bit 4	Unimplemented: Read as '0'
bit 3	BCL1IF: Bus Collision Interrupt Flag bit (MSSP1 module)
	1 = A bus collision occurred (must be cleared in software)0 = No bus collision occurred
bit 2	HLVDIF: High/Low-Voltage Detect (HLVD) Interrupt Flag bit
	 1 = A High/Low-Voltage condition occurred (must be cleared in software) 0 = An HLVD event has not occurred
bit 1	TMR3IF: TMR3 Overflow Interrupt Flag bit
	1 = The TMR3 register overflowed (must be cleared in software)0 = The TMR3 register did not overflow
bit 0	CCP2IF: ECCP2 Interrupt Flag bit
	<u>Capture mode:</u> 1 = A TMR1/TMR3 register capture occurred (must be cleared in software) 0 = No TMR1/TMR3 register capture occurred
	<u>Compare mode:</u> 1 = A TMR1/TMR3 register compare match occurred (must be cleared in software) 0 = No TMR1/TMR3 register compare match occurred
	<u>PWM mode:</u> Unused in this mode.

PIC18F47J13 FAMILY

Pin	Function	TRIS Setting	I/O	l/O Type	Description
RB0/AN12/ C3IND/INT0/	RB0	1	Ι	TTL	PORTB<0> data input; weak pull-up when the RBPU bit is cleared. Disabled when analog input is enabled. ⁽¹⁾
RP3		0	0	DIG	LATB<0> data output; not affected by an analog input.
	AN12	1	Ι	ANA	A/D Input Channel 12. ⁽¹⁾
	C3IND	1	Ι	ANA	Comparator 3 Input D.
	INT0	1	Ι	ST	External Interrupt 0 input.
	RP3	1	Ι	ST	Remappable Peripheral Pin 3 input.
		0	0	DIG	Remappable Peripheral Pin 3 output.
RB1/AN10/ C3INC/PMBE/	RB1	1	Ι	TTL	PORTB<1> data input; weak pull-up when the $\overline{\text{RBPU}}$ bit is cleared. Disabled when an analog input is enabled. ⁽¹⁾
RTCC/RP4		0	0	DIG	LATB<1> data output; not affected by an analog input.
	AN10	1	Ι	ANA	A/D Input Channel 10. ⁽¹⁾
	C3INC	1	Ι	ANA	Comparator 3 Input C.
	PMBE ⁽³⁾	х	0	DIG	Parallel Master Port byte enable.
	RTCC	0	0	DIG	Asynchronous serial transmit data output (USART module).
	RP4	1	Ι	ST	Remappable Peripheral Pin 4 input.
		0	0	DIG	Remappable Peripheral Pin 4 output.
RB2/AN8/ C2INC/CTED1/	RB2	1	Ι	TTL	PORTB<2> data input; weak pull-up when the $\overline{\text{RBPU}}$ bit is cleared. Disabled when an analog input is enabled. ⁽¹⁾
PMA3/REFO/		0	0	DIG	LATB<2> data output; not affected by an analog input.
RP5	AN8	1	Ι	ANA	A/D Input Channel 8. ⁽¹⁾
	C2INC	1	Ι	ANA	Comparator 2 Input C.
	CTED1	1	Ι	ST	CTMU Edge 1 input.
	PMA3 ⁽³⁾	Х	0	DIG	Parallel Master Port address.
	REFO	0	0	DIG	Reference output clock.
	RP5	1	Ι	ST	Remappable Peripheral Pin 5 input.
		0	0	DIG	Remappable Peripheral Pin 5 output.
RB3/AN9/	RB3	0	0	DIG	LATB<3> data output; not affected by analog input.
C3INA/CTED2/ PMA2/RP6		1	Ι	TTL	PORTB<3> data input; weak pull-up when the $\overline{\text{RBPU}}$ bit is cleared. Disabled when analog input is enabled. ⁽¹⁾
	AN9	1	Ι	ANA	A/D Input Channel 9. ⁽¹⁾
i F	C3INA	1	Ι	ANA	Comparator 3 Input A.
i F	CTED2	1	Ι	ST	CTMU Edge 2 input.
i F	PMA2 ⁽³⁾	х	0	DIG	Parallel Master Port address.
i F	RP6	1	Ι	ST	Remappable Peripheral Pin 6 input.
		0	0	DIG	Remappable Peripheral Pin 6 output.

TABLE 10-5: PORTB I/O SUMMARY

Legend: DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; ANA = Analog level input/output; x = Don't care (TRISx bit does not affect port direction or is overridden for this option)

Note 1: Pins are configured as analog inputs by default on POR. Using these pins for digital inputs requires setting the appropriate bits in the ANCON1 register.

2: All other pin functions are disabled when ICSP[™] or ICD is enabled.

3: Only on 44-pin devices (PIC18F46J13, PIC18F47J13, PIC18LF46J13 and PIC18LF47J13).

4: Only on 28-pin devices (PIC18F26J13, PIC18F27J13, PIC18LF26J13 and PIC18LF27J13).

REGISTER 10-33: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9 (BANKED EC9h)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP9R4	RP9R3	RP9R2	RP9R1	RP9R0
bit 7							bit 0

Legend:	R/\overline{W} = Readable bit, Writable bit if IOLOCK = 0				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP9R<4:0>:** Peripheral Output Function is Assigned to RP9 Output Pin bits (see Table 10-14 for peripheral function numbers)

REGISTER 10-34: RPOR10: PERIPHERAL PIN SELECT OUTPUT REGISTER 10 (BANKED ECAh)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP10R4	RP10R3	RP10R2	RP10R1	RP10R0
bit 7							bit 0

Legend:	R/W = Readable bit,	R/\overline{W} = Readable bit, Writable bit if IOLOCK = 0				
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP10R<4:0>:** Peripheral Output Function is Assigned to RP10 Output Pin bits (see Table 10-14 for peripheral function numbers)

REGISTER 10-35: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTER 11 (BANKED ECBh)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			RP11R4	RP11R3	RP11R2	RP11R1	RP11R0
bit 7							bit 0

Legend:	R/\overline{W} = Readable bit, Writa	R/\overline{W} = Readable bit, Writable bit if IOLOCK = 0					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 7-5 Unimplemented: Read as '0'

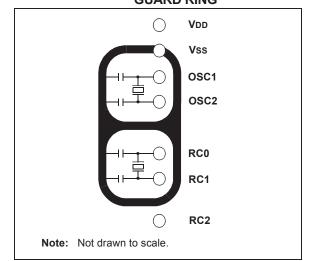
bit 4-0 **RP11R<4:0>:** Peripheral Output Function is Assigned to RP11 Output Pin bits (see Table 10-14 for peripheral function numbers)

13.5.1 USING TIMER1 AS A CLOCK SOURCE

The Timer1 oscillator is also available as a clock source in power-managed modes. By setting the clock select bits, SCS<1:0> (OSCCON<1:0>), to '01', the device switches to SEC_RUN mode. Both the CPU and peripherals are clocked from the Timer1 oscillator. If the IDLEN bit (OSCCON<7>) is cleared and a SLEEP instruction is executed, the device enters SEC_IDLE mode. Additional details are available in Section 4.0 "Low-Power Modes".

Whenever the Timer1 oscillator is providing the clock source, the Timer1 system clock status flag, SOSCRUN (OSCCON2<6>), is set. This can be used to determine the controller's current clocking mode. It can also indicate the clock source currently being used by the Fail-Safe Clock Monitor. If the Clock Monitor is enabled and the Timer1 oscillator fails while providing the clock, polling the SOSCRUN bit will indicate whether the clock is being provided by the Timer1 oscillator or another source.

13.5.2 TIMER1 OSCILLATOR LAYOUT CONSIDERATIONS


The Timer1 oscillator circuit draws very little power during operation. Due to the low-power nature of the oscillator, it may also be sensitive to rapidly changing signals in close proximity. This is especially true when the oscillator is configured for extremely Low-Power mode (SOSCSEL = 0b01).

The oscillator circuit, displayed in Figure 13-2, should be located as close as possible to the microcontroller. There should be no circuits passing within the oscillator circuit boundaries other than VSS or VDD.

If a high-speed circuit must be located near the oscillator (such as the ECCP1 pin in Output Compare or PWM mode, or the primary oscillator using the OSC2 pin), a grounded guard ring around the oscillator circuit, as displayed in Figure 13-3, may be helpful when used on a single-sided PCB or in addition to a ground plane.

FIGURE 13-3:

OSCILLATOR CIRCUIT WITH GROUNDED GUARD RING

In the Low Drive Level mode, SOSCSEL = 0b01, it is critical that the RC2 I/O pin signals be kept away from the oscillator circuit. Configuring RC2 as a digital output, and toggling it, can potentially disturb the oscillator circuit, even with relatively good PCB layout. If possible, it is recommended to either leave RC2 unused, or use it as an input pin with a slew rate limited signal source. If RC2 must be used as a digital output, it may be necessary to use the Higher Drive Level Oscillator mode (SOSCSEL = 0b11) with many PCB layouts. Even in the High Drive Level mode, careful layout procedures should still be followed when designing the oscillator circuit.

In addition to dV/dt induced noise considerations, it is also important to ensure that the circuit board is clean. Even a very small amount of conductive soldering flux residue can cause PCB leakage currents which can overwhelm the oscillator circuit.

13.6 Timer1 Interrupt

The TMR1 register pair (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The Timer1 interrupt, if enabled, is generated on overflow which is latched in interrupt flag bit, TMR1IF (PIR1<0>). This interrupt can be enabled or disabled by setting or clearing the Timer1 Interrupt Enable bit, TMR1IE (PIE1<0>).

PIC18F47J13 FAMILY

REGISTER 17-5: ALRMRPT: ALARM REPEAT COUNTER (ACCESS F46h)

ARPT7 ARPT6 ARPT5 ARPT4 ARPT3 ARPT2 ARPT1 ARPT0 bit 7 bit 0	R/W-0							
bit 7 bit 0	ARPT7	ARPT6	ARPT5	ARPT4	ARPT3	ARPT2	ARPT1	ARPT0
	bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 ARPT<7:0>: Alarm Repeat Counter Value bits 11111111 = Alarm will repeat 255 more times

00000000 = Alarm will not repeat

The counter decrements on any alarm event. The counter is prevented from rolling over from 00h to FFh unless CHIME = 1.

17.1.4 RTCEN BIT WRITE

An attempt to write to the RTCEN bit while RTCWREN = 0 will be ignored. RTCWREN must be set before a write to RTCEN can take place.

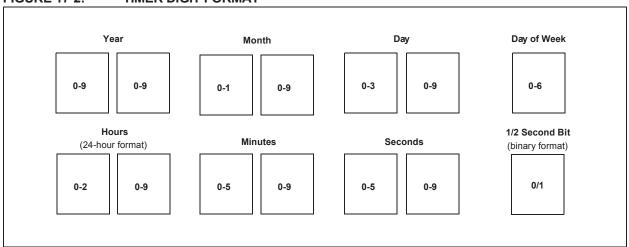
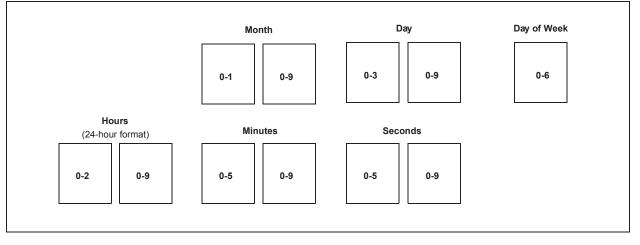

Like the RTCEN bit, the RTCVALH and RTCVALL registers can only be written to when RTCWREN = 1. A write to these registers, while RTCWREN = 0, will be ignored.

FIGURE 17-2: TIMER DIGIT FORMAT


17.2 Operation

17.2.1 REGISTER INTERFACE

The register interface for the RTCC and alarm values is implemented using the Binary Coded Decimal (BCD) format. This simplifies the firmware when using the module, as each of the digits is contained within its own 4-bit value (see Figure 17-2 and Figure 17-3).

FIGURE 17-3: ALARM DIGIT FORMAT

19.4 PWM (Enhanced Mode)

The Enhanced PWM mode can generate a PWM signal on up to four different output pins with up to 10 bits of resolution. It can do this through four different PWM Output modes:

- Single PWM mode
- Half-Bridge PWM mode
- Full-Bridge PWM, Forward mode
- Full-Bridge PWM, Reverse mode

To select an Enhanced PWM mode, the PxM bits of the CCPxCON register must be set appropriately.

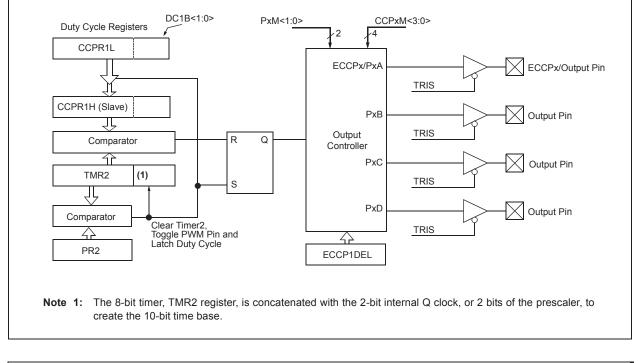

The PWM outputs are multiplexed with I/O pins and are designated: PxA, PxB, PxC and PxD. The polarity of the PWM pins is configurable and is selected by setting the CCPxM bits in the CCPxCON register appropriately.

Table 19-1 provides the pin assignments for each Enhanced PWM mode.

Figure 19-3 provides an example of a simplified block diagram of the Enhanced PWM module.

Note: To prevent the generation of an incomplete waveform when the PWM is first enabled, the ECCP module waits until the start of a new PWM period before generating a PWM signal.

FIGURE 19-3: SIMPLIFIED BLOCK DIAGRAM OF THE ENHANCED PWM MODE EXAMPLE

Note 1: The TRIS register value for each PWM output must be configured appropriately.2: Any pin not used by an Enhanced PWM mode is available for alternate pin functions.

When a shutdown event occurs, two things happen:

- The ECCPxASE bit is set to '1'. The ECCPxASE will remain set until cleared in firmware or an auto-restart occurs. (See Section 19.4.5 "Auto-Restart Mode".)
- The enabled PWM pins are asynchronously placed in their shutdown states. The PWM output pins are grouped into pairs (PxA/PxC and

PxB/PxD). The state of each pin pair is determined by the PSSxAC and PSSxBD bits (ECCPxAS<3:0>).

Each pin pair may be placed into one of three states:

- Drive logic '1'
- Drive logic '0'
- Tri-state (high-impedance)

REGISTER 19-4: ECCPxAS: ECCP1/2/3 AUTO-SHUTDOWN CONTROL REGISTER (1, ACCESS FBEh; 2, FB8h; 3, BANKED F19h)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ECCPxASE	ECCPxAS2	ECCPxAS1	ECCPxAS0	PSSxAC1	PSSxAC0	PSSxBD1	PSSxBD0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	ECCPxASE: ECCP Auto-Shutdown Event Status bit
	 1 = A shutdown event has occurred; ECCP outputs are in a shutdown state 0 = ECCP outputs are operating
bit 6-4	ECCPxAS<2:0>: ECCP Auto-Shutdown Source Select bits
	 000 = Auto-shutdown is disabled 001 = Comparator, C1OUT, output is high 010 = Comparator, C2OUT, output is high 011 = Either comparator, C1OUT or C2OUT, is high 100 = VIL on FLT0 pin 101 = VIL on FLT0 pin or comparator, C1OUT, output is high 110 = VIL on FLT0 pin or comparator, C2OUT, output is high 111 = VIL on FLT0 pin or comparator, C1OUT, or comparator, C2OUT, is high
bit 3-2	PSSxAC<1:0>: PxA and PxC Pins Shutdown State Control bits
	00 = Drive pins, PxA and PxC, to '0' 01 = Drive pins, PxA and PxC, to '1' 1x = PxA and PxC pins tri-state
bit 1-0	PSSxBD<1:0>: PxB and PxD Pins Shutdown State Control bits 00 = Drive pins, PxB and PxD, to '0' 01 = Drive pins, PxB and PxD, to '1' 1x = PxB and PxD pins tri-state
Note 1:	The auto-shutdown condition is a level-based signal, not an edge-based signal. As long as the level is
	present, the auto-shutdown will persist.
2:	Writing to the ECCPxASE bit is disabled while an auto-shutdown condition persists.

3: Once the auto-shutdown condition has been removed and the PWM restarted (either through firmware or auto-restart), the PWM signal will always restart at the beginning of the next PWM period.

REGISTER 20-2: SSPxCON1: MSSPx CONTROL REGISTER 1 (SPI MODE) (1, ACCESS FC6h; 2, F72h)

			-				
R/W-0	R/C-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WCOL	SSPOV ⁽¹⁾	SSPEN ⁽²⁾	CKP	SSPM3 ⁽³⁾	SSPM2 ⁽³⁾	SSPM1 ⁽³⁾	SSPM0 ⁽³⁾
bit 7							bit 0
		0 01 11	1.14				
Legend:		C = Clearable					
R = Reada		W = Writable		-	nented bit, read		
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 7	1 = The SSP	•		e it is still transm	nitting the previ	ous word (mus	t be cleared in
	software) 0 = No collisi	/					
bit 6		eive Overflow I	ndicator hit(1)				
bit 0	SPI Slave mo						
	flow, the	data in SSPxS F, even if only tr	R is lost. Over	BUF register is s flow can only or a, to avoid settir	ccur in Slave n	node. The user	must read the
bit 5		ter Synchronou	s Serial Port F	nable bit ⁽²⁾			
	1 = Enables s	serial port and o	onfigures SCI	<pre><x, as="" i="" o="" p<="" pins="" pre="" sdix="" sdox,="" se=""></x,></pre>		erial port pins	
bit 4		Polarity Select b			-		
	1 = Idle state	for clock is a hi for clock is a lo	igh level				
bit 3-0	SSPM<3:0>:	Master Synchr	onous Serial F	Port Mode Selec	t bits ⁽³⁾		
	0101 = SPI S 0100 = SPI S 0011 = SPI N 0010 = SPI N 0001 = SPI N 1010 = SPI N	Slave mode, clo	ck = SCKx pin ck = SCKx pin ock = TMR2 o ock = Fosc/64 ock = Fosc/16 ock = Fosc/8	; <u>SSx</u> pin contro ; SSx pin contro utput/2	ol disabled, SS	x can be used	as I/O pin
	In Master mode, t writing to the SSF			e each new rec	eption (and tra	insmission) is ir	nitiated by

- 2: When enabled, this pin must be properly configured as input or output.
- 3: Bit combinations not specifically listed here are either reserved or implemented in I²C mode only.

REGISTER 20-5: SSPxSTAT: MSSPx STATUS REGISTER (I²C MODE) (1, ACCESS FC7h; 2, F73h)

R/W-1	R/W-1	R-1	R-1	R-1	R-1	R-1	R-1
SMP	CKE	D/A	P ⁽¹⁾	S ⁽¹⁾	R/W ^(2,3)	UA	BF
bit 7							bit 0
Legend:			1.11			1	
R = Read		W = Writable		-	emented bit, rea		
-n = Value	at POR	'1' = Bit is se	ľ	'0' = Bit is cl	eared	x = Bit is unkr	IOWN
bit 7	SMP: Slew	Rate Control bit	t				
	In Master or	Slave mode:					
				•	de (100 kHz an	d 1 MHz)	
bit 6	0 = Slew ra	ite control is en:	abled for High-s	speed mode (4	400 KHZ)		
DILO		Slave mode:					
		SMBus specific	inputs				
		SMBus specific					
bit 5	D/A: Data/A	ddress bit					
	In Master m Reserved.	ode:					
	In Slave mo	de:					
		s that the last b	yte received or	transmitted wa	as data		
		s that the last b	yte received or	transmitted wa	as address		
bit 4	P: Stop bit ⁽¹						
		s that a Stop bit was not detected		cted last			
bit 3	S: Start bit ⁽¹						
	1 = Indicate	s that a Start bi	has been dete	cted last			
		was not detected					
bit 2		Write Informatio	on bit ^(2,3)				
	In Slave mo	<u>de:</u>					
	1 = Read 0 = Write						
	In Master m	ode:					
		t is in progress					
		t is not in progr					
bit 1	•	Address bit (10				D an ainte a	
		s that the user i does not need	-	e the address	in the SSPxADI	Dregister	
bit 0		ull Status bit					
	In Transmit	mode:					
	1 = SSPxBL						
	0 = SSPxBl						
	In Receive r	<u>node:</u> JF is full (does ı	not include the	ACK and Stop	bits)		
		JF is empty (do			,		
Note 1:	This bit is cleare	ed on Reset and	when SSPEN	is cleared.			
2:	This bit holds th				ess match. This	bit is only valid	from the
	address match f	to the next Start	bit, Stop bit or	not ACK bit.			

3: ORing this bit with SEN, RSEN, PEN, RCEN or ACKEN will indicate if the MSSPx is in Active mode.

29.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

29.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

30.2 DC Characteristics: Power-Down and Supply Current PIC18F47J13 Family (Industrial) (Continued)

PIC18LF47J	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial								
PIC18F47J1	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial								
Param No.	Тур	Max	Units		Conc	litions			
	PIC18LFXXJ13	9	45	μA	-40°C				
		9	45	μA	+25°C	VDD = 2.5V, VDDCORE = 2.5V			
		12	61	μA	+85°C				
	PIC18FXXJ13	24	95	μA	-40°C		Fosc = 32 kHz ⁽³⁾ ,		
		28	95	μA	+25°C	VDD = 2.15V, VDDCORE = 10 μF	SEC_RUN mode,		
		35	105	μA	+85°C	το μι	SOSCSEL = 0b01		
	PIC18FXXJ13	27	110	μA	-40°C				
		31	110	μA	+25°C	VDD = $3.3V$, VDDCORE = 10μ F			
		35	150	μA	+85°C	το μι			
	PIC18LFXXJ13	2.5	31	μA	-40°C				
		3.0	31	μA	+25°C	VDD = 2.5V, VDDCORE = 2.5V			
		6.1	50	μA	+85°C	12300AL 2.0V			
	PIC18FXXJ13	19	87	μA	-40°C		Fosc = 32 kHz ⁽³⁾ ,		
		24	89	μA	+25°C	VDD = 2.15V, VDDCORE = 10 μF	SEC_IDLE mode,		
		31	97	μA	+85°C	το μι	SOSCSEL = 0b01		
	PIC18FXXJ13	21	100	μA	-40°C				
		25	100	μΑ	+25°C	VDD = $3.3V$, VDDCORE = 10μ F			
		31	140	μA	+85°C	νουσικέ – το μι			

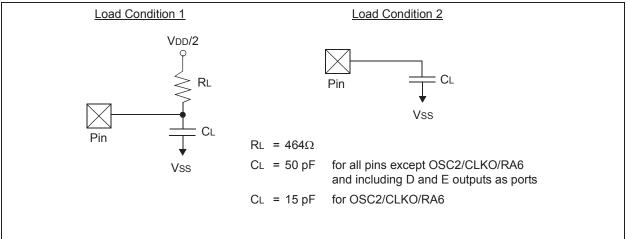
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in a high-impedance state and tied to VDD or VSS, and all features that add delta current are disabled (such as WDT, Timer1 oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption. All features that add delta current are disabled (such as WDT). The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD/Vss;

MCLR = VDD; WDT disabled unless otherwise specified.

3: Low-power Timer1 with standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.


30.5.2 TIMING CONDITIONS

The temperature and voltages specified in Table 30-8 apply to all timing specifications unless otherwise noted. Figure 30-4 specifies the load conditions for the timing specifications.


TABLE 30-8: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

Standard Operating Conditions (unless otherwise stated)								
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
	Operating voltage VDD range as described in Section 30.1 and Section 30.3 .							

FIGURE 30-4: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

PIC18F47J13 FAMILY

TABLE 30-20: PARALLEL SLAVE PORT REQUIREMENTS

AC CHARACTERISTICS				Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated) Operating temperature -40°C \leq TA \leq +85°C for Industrial				
Param. No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions	
PS1	TdtV2wrH	Data In Valid before PMWR or PMCS Inactive (setup time)	20	_	_	ns		
PS2	TwrH2dtl	PMWR or PMCS Inactive to Data–In Invalid (hold time)	20	—	_	ns		
PS3	TrdL2dtV	PMRD and PMCS Active to Data–Out Valid	—	—	80	ns		
PS4	TrdH2dtl	PMRD Inactive or PMCS Inactive to Data–Out Invalid	10	—	30	ns		

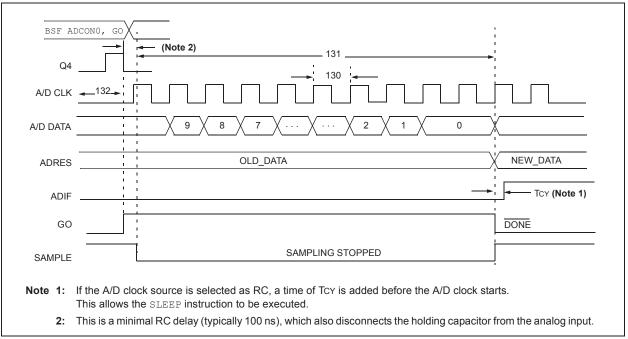
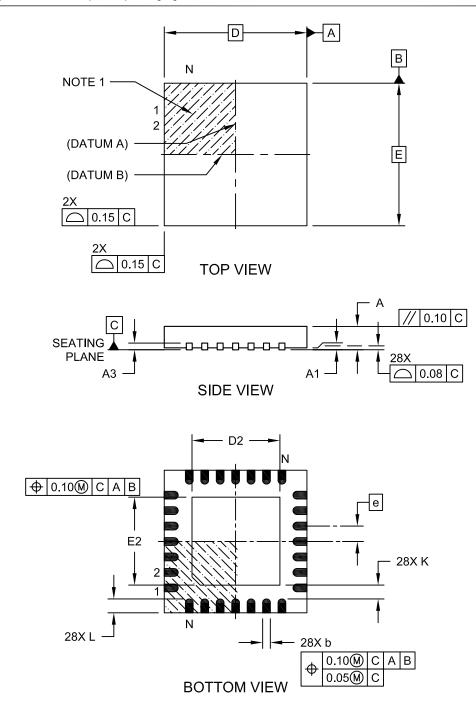

Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
A01	NR	Resolution	_	_	12	bit	$\Delta VREF \ge 3.0V$
A03	EIL	Integral Linearity Error	_	<±1	±2	LSb	$\Delta VREF \ge 3.0V$
A04	Edl	Differential Linearity Error	—	<±1	1.5	LSb	$\Delta VREF \ge 3.0V$
A06	EOFF	Offset Error	—	<±1	5	LSb	$\Delta VREF \ge 3.0V$
A07	Egn	Gain Error	—		<±3.5	LSb	$\Delta V \text{REF} \geq 3.0 V$
A10		Monotonicity	Guaranteed ⁽¹⁾			—	$VSS \leq VAIN \leq VREF$
A20	$\Delta VREF$	Reference Voltage Range (VREFH – VREFL)	2.0 3	_		V V	$\begin{array}{l} VDD < 3.0V \\ VDD \geq 3.0V \end{array}$
A21	Vrefh	Reference Voltage High For 10-bit resolution For 12-bit resolution	VREFL Vss + 3V	_	Vdd + 0.3V Vdd + 0.3V	V V	
A22	Vrefl	Reference Voltage Low For 10-bit resolution For 12-bit resolution	Vss – 0.3V Vss – 0.3V		Vrefh Vdd - 3V	V V	
A25	VAIN	Analog Input Voltage	VREFL	_	VREFH	V	
A30	ZAIN	Recommended Impedance of Analog Voltage Source For 10-bit resolution For 12-bit resolution		_	2.5 1	kΩ kΩ	
A50	IREF	VREF Input Current ⁽²⁾	_	_	5 150	μΑ μΑ	During VAIN acquisition. During A/D conversion cycle.

TABLE 30-31: A/D CONVERTER CHARACTERISTICS: PIC18F47J13 FAMILY (INDUSTRIAL)

Note 1: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

2: VREFH current is from RA3/AN3/C1INBVREF+ pin or VDD, whichever is selected as the VREFH source. VREFL current is from RA2/AN2/C2INB/C1IND/C3INB/VREF-/CVREF pin or VSS, whichever is selected as the VREFL source.

FIGURE 30-23: A/D CONVERSION TIMING



31.2 Package Details

The following sections give the technical details of the packages.

28-Lead Plastic Quad Flat, No Lead Package (ML) - 6x6 mm Body [QFN] With 0.55 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-105C Sheet 1 of 2