

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

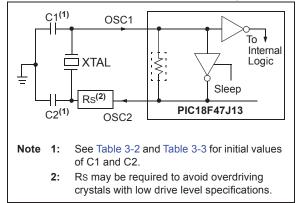
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2.15V ~ 3.6V
Data Converters	A/D 10x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f26j13-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


3.2.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS

In HS and HSPLL Oscillator modes, a crystal or ceramic resonator is connected to the OSC1 and OSC2 pins to establish oscillation. Figure 3-2 displays the pin connections.

The oscillator design requires the use of a parallel resonant crystal.

Note:	Use of a series resonant crystal may give								
	а	frequency	out	of	the	crystal			
	manufacturer's specifications.								

FIGURE 3-2: CRYSTAL/CERAMIC RESONATOR OPERATION (HS OR HSPLL CONFIGURATION)

TABLE 3-2:CAPACITOR SELECTION FOR
CERAMIC RESONATORS

Typical Capacitor Values Used:						
Mode	Freq	OSC1	OSC2			
HS	8.0 MHz 16.0 MHz	27 pF 22 pF	27 pF 22 pF			

Capacitor values are for design guidance only.

These capacitors were tested with the resonators listed below for basic start-up and operation. **These values are not optimized**.

Different capacitor values may be required to produce acceptable oscillator operation. The user should test the performance of the oscillator over the expected VDD and temperature range for the application.

See the notes following Table 3-3 for additional information.

Resonators Used:
4.0 MHz
8.0 MHz
16.0 MHz

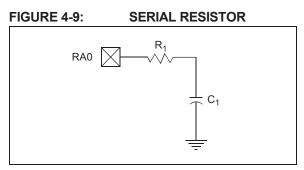
TABLE 3-3:CAPACITOR SELECTION FOR
CRYSTAL OSCILLATOR

Osc Type	Crystal Freq	Typical Capacitor Values Tested:		
	Freq	C1	C2	
HS	4 MHz	27 pF	27 pF	
	8 MHz	22 pF	22 pF	
16 MHz		18 pF	18 pF	

Capacitor values are for design guidance only.

These capacitors were tested with the crystals listed below for basic start-up and operation. **These values are not optimized.**

Different capacitor values may be required to produce acceptable oscillator operation. The user should test the performance of the oscillator over the expected VDD and temperature range for the application.


See the notes following this table for additional information.

Crystals Used:
4 MHz
8 MHz
16 MHz

- Note 1: Higher capacitance not only increases the stability of oscillator, but also increases the start-up time.
 - 2: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.
 - **3:** Rs may be required to avoid overdriving crystals with low drive level specification.
 - **4:** Always verify oscillator performance over the VDD and temperature range that is expected for the application.

An internal postscaler allows users to select a clock frequency other than that of the crystal or resonator. Frequency division is determined by the CPDIV Configuration bits. Users may select a clock frequency of the oscillator frequency, or 1/2, 1/3 or 1/6 of the frequency.

A series resistor between RA0 and the external capacitor provides overcurrent protection for the RA0/AN0/C1INA/ULPWU/RP0 pin and can allow for software calibration of the time-out (see Figure 4-9).

A timer can be used to measure the charge time and discharge time of the capacitor. The charge time can then be adjusted to provide the desired interrupt delay. This technique will compensate for the affects of temperature, voltage and component accuracy. The ULPWU peripheral can also be configured as a simple Programmable Low-Voltage Detect (LVD) or temperature sensor.

Note:	For more information, refer to AN879,
	Using the Microchip Ultra Low-Power
	Wake-up Module application note
	(DS00879).

4.8 Peripheral Module Disable

All peripheral modules (except for I/O ports) also have a second control bit that can disable their functionality. These bits, known as the Peripheral Module Disable (PMD) bits, are generically named "xxxMD" (using "xxx" as the mnemonic version of the module's name).

These bits are located in the PMDISx special function registers. In contrast to the module enable bits (generically named "xxxEN" and located in bit position seven of the control registers), the PMD bits must be set (= 1) to disable the modules.

While the PMD and module enable bits both disable a peripheral's functionality, the PMD bit completely shuts down the peripheral, effectively powering down all circuits and removing all clock sources. This has the additional effect of making any of the module's control and buffer registers, mapped in the SFR space, unavailable for operations. Essentially, the peripheral ceases to exist until the PMD bit is cleared.

This differs from using the module enable bit, which allows the peripheral to be reconfigured and buffer registers preloaded, even when the peripheral's operations are disabled.

The PMD bits are most useful in highly power-sensitive applications. In these cases, the bits can be set before the main body of the application to remove peripherals that will not be needed at all.

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR
PMDIS3	CCP10MD	CCP9MD	CCP8MD	CCP7MD	CCP6MD	CCP5MD	CCP4MD	_	0000 000-
PMDIS2	—	TMR8MD	—	TMR6MD	TMR5MD	CMP3MD	CMP2MD	CMP1MD	-0-0 0000
PMDIS1	PSPMD ⁽¹⁾	CTMUMD	RTCCMD ⁽²⁾	TMR4MD	TMR3MD	TMR2MD	TMR1MD	_	0000 000-
PMDIS0	ECCP3MD	ECCP2MD	ECCP1MD	UART2MD	UART1MD	SPI2MD	SP11MD	ADCMD	0000 0000

TABLE 4-2:LOW-POWER MODE REGISTERS

Note 1: Not implemented on 28-pin devices (PIC18F26J13, PIC18F27J13, PIC18LF26J13 and PIC18LF27J13).
 2: To prevent accidental RTCC changes, the RTCCMD bit is normally locked. Use the following unlock sequence (with interrupts disabled) to successfully modify the RTCCMD bit:

1. Write 55h to EECON2.

2. Write 0AAh to EECON2.

3. Immediately write the modified RTCCMD setting to PMDIS1.

REGISTER 9-5: PIR2: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 2 (ACCESS FA1h)

R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
OSCFIF	CM2IF	CM1IF	—	BCL1IF	HLVDIF	TMR3IF	CCP2IF
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	OSCFIF: Oscillator Fail Interrupt Flag bit
	 1 = The device oscillator failed, clock input has changed to INTOSC (must be cleared in software) 0 = The device clock operating
bit 6	CM2IF: Comparator 2 Interrupt Flag bit
	 1 = The comparator input has changed (must be cleared in software) 0 = The comparator input has not changed
bit 5	CM1IF: Comparator 1 Interrupt Flag bit
	 1 = The comparator input has changed (must be cleared in software) 0 = The comparator input has not changed
bit 4	Unimplemented: Read as '0'
bit 3	BCL1IF: Bus Collision Interrupt Flag bit (MSSP1 module)
	1 = A bus collision occurred (must be cleared in software)0 = No bus collision occurred
bit 2	HLVDIF: High/Low-Voltage Detect (HLVD) Interrupt Flag bit
	 1 = A High/Low-Voltage condition occurred (must be cleared in software) 0 = An HLVD event has not occurred
bit 1	TMR3IF: TMR3 Overflow Interrupt Flag bit
	1 = The TMR3 register overflowed (must be cleared in software)0 = The TMR3 register did not overflow
bit 0	CCP2IF: ECCP2 Interrupt Flag bit
	<u>Capture mode:</u> 1 = A TMR1/TMR3 register capture occurred (must be cleared in software) 0 = No TMR1/TMR3 register capture occurred
	<u>Compare mode:</u> 1 = A TMR1/TMR3 register compare match occurred (must be cleared in software) 0 = No TMR1/TMR3 register compare match occurred
	<u>PWM mode:</u> Unused in this mode.

REGISTER 10-27: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3 (BANKED EC3h)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP3R4	RP3R3	RP3R2	RP3R1	RP3R0
bit 7							bit 0

Legend:	R/\overline{W} = Readable bit, Writable bit if IOLOCK = 0				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown			

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP3R<4:0>:** Peripheral Output Function is Assigned to RP3 Output Pin bits (see Table 10-14 for peripheral function numbers)

REGISTER 10-28: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4 (BANKED EC4h)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP4R4	RP4R3	RP4R2	RP4R1	RP4R0
bit 7							bit 0

Legend:	R/W = Readable bit, \	R/\overline{W} = Readable bit, Writable bit if IOLOCK = 0				
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP4R<4:0>:** Peripheral Output Function is Assigned to RP4 Output Pin bits (see Table 10-14 for peripheral function numbers)

REGISTER 10-29: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5 (BANKED EC5h)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	—	RP5R4	RP5R3	RP5R2	RP5R1	RP5R0
bit 7							bit 0

Legend:	R/\overline{W} = Readable bit, Writable bit if IOLOCK = 0				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown			

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP5R<4:0>:** Peripheral Output Function is Assigned to RP5 Output Pin bits (see Table 10-14 for peripheral function numbers)

REGISTER 10-36: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12 (BANKED ECCh)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP12R4	RP12R3	RP12R2	RP12R1	RP12R0
bit 7							bit 0

Legend:	R/W = Readable bit, V	R/\overline{W} = Readable bit, Writable bit if IOLOCK = 0				
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP12R<4:0>:** Peripheral Output Function is Assigned to RP12 Output Pin bits (see Table 10-14 for peripheral function numbers)

REGISTER 10-37: RPOR13: PERIPHERAL PIN SELECT OUTPUT REGISTER 13 (BANKED ECDh)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP13R4	RP13R3	RP13R2	RP13R1	RP13R0
bit 7							bit 0

Legend:	R/W = Readable bit,	R/\overline{W} = Readable bit, Writable bit if IOLOCK = 0				
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP13R<4:0>:** Peripheral Output Function is Assigned to RP13 Output Pin bits (see Table 10-14 for peripheral function numbers)

REGISTER 10-38: RPOR14: PERIPHERAL PIN SELECT OUTPUT REGISTER 14 (BANKED ECEh)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	—	RP14R4	RP14R3	RP14R2	RP14R1	RP14R0
bit 7							bit 0

Legend:	R/\overline{W} = Readable bit, W	R/\overline{W} = Readable bit, Writable bit if IOLOCK = 0				
R = Readable bit	W = Writable bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP14R<4:0>:** Peripheral Output Function is Assigned to RP14 Output Pin bits (see Table 10-14 for peripheral function numbers)

REGISTER 11-5: PMEH: PARALLEL PORT ENABLE REGISTER HIGH BYTE (BANKED F57h)⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTEN15	PTEN14	PTEN13	PTEN12	PTEN11	PTEN10	PTEN9	PTEN8
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-6	PTEN<15:14>: PMCS Port Enable bits
	1 = PMA<15:14> function as either PMA<15:14> or PMCS 0 = PMA<15:14> function as port I/O
bit 5-0	PTEN<13:8>: PMP Address Port Enable bits
	 1 = PMA<13:8> function as PMP address lines 0 = PMA<13:8> function as port I/O

Note 1: This register is only available on 44-pin devices.

REGISTER 11-6: PMEL: PARALLEL PORT ENABLE REGISTER LOW BYTE (BANKED F56h)⁽¹⁾

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| PTEN7 | PTEN6 | PTEN5 | PTEN4 | PTEN3 | PTEN2 | PTEN1 | PTEN0 |
| bit 7 | | | | | | | bit 0 |

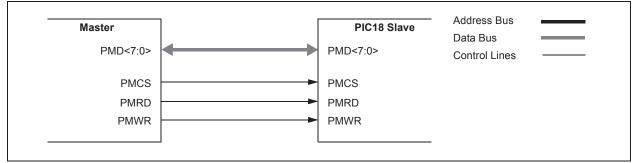
Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-2	PTEN<7:2>: PMP Address Port Enable bits
	1 = PMA<7:2> function as PMP address lines
	0 = PMA<7:2> function as port I/O
bit 1-0	PTEN<1:0>: PMALH/PMALL Strobe Enable bits
	1 = PMA<1:0> function as either PMA<1:0> or PMALH and PMALL
	0 = PMA<1:0> pads functions as port I/O

Note 1: This register is only available on 44-pin devices.

11.2 Slave Port Modes

The primary mode of operation for the module is configured using the MODE<1:0> bits in the PMMODEH register. The setting affects whether the module acts as a slave or a master and it determines the usage of the control pins.


11.2.1 LEGACY MODE (PSP)

In Legacy mode (PMMODEH<1:0> = 00 and PMPEN = 1), the module is configured as a Parallel Slave Port (PSP) with the associated enabled module

pins dedicated to the module. In this mode, an external device, such as another microcontroller or microprocessor, can asynchronously read and write data using the 8-bit data bus (PMD<7:0>), the read (PMRD), write (PMWR) and chip select (PMCS) inputs. It acts as a slave on the bus and responds to the read/write control signals.

Figure 11-2 displays the connection of the PSP. When chip select is active and a write strobe occurs (PMCS = 1 and PMWR = 1), the data from PMD<7:0> is captured into the PMDIN1L register.

FIGURE 11-2: LEGACY PARALLEL SLAVE PORT EXAMPLE

TADLE IT-2.										
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF		
PIR1	PMPIF ⁽²⁾	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF		
PIE1	PMPIE ⁽²⁾	PMPIE ⁽²⁾ ADIE RC1IE TX1IE SSP1IE CCP1IE TMR2IE TMR1								
IPR1	PMPIP ⁽²⁾	MPIP ⁽²⁾ ADIP RC1IP TX1IP SSP1IP CCP1IP TMR2IP TMF								
PMCONH ⁽²⁾	PMPEN	—	—	ADRMUX1	ADRMUX0	PTBEEN	PTWREN	PTRDEN		
PMCONL ⁽²⁾	CSF1	CSF0	ALP	_	CS1P	BEP	WRSP	RDSP		
PMADDRH ^(1,2) /	—	CS1 Parallel Master Port Address High Byte								
PMDOUT1H ^(1,2)	Parallel Port	Parallel Port Out Data High Byte (Buffer 1)								
PMADDRL ^(1,2) /	Parallel Mas	Parallel Master Port Address Low Byte								
PMDOUT1L ^(1,2)	Parallel Port Out Data Low Byte (Buffer 0)									
PMDOUT2H ⁽²⁾	Parallel Port	Parallel Port Out Data High Byte (Buffer 3)								
PMDOUT2L ⁽²⁾	Parallel Port	t Out Data Lo	w Byte (Bu	ffer 2)						
PMDIN1H ⁽²⁾	Parallel Port	t In Data High	n Byte (Buff	er 1)						
PMDIN1L ⁽²⁾	Parallel Port	t In Data Low	Byte (Buffe	er 0)						
PMDIN2H ⁽²⁾	Parallel Port	t In Data High	n Byte (Buff	er 3)						
PMDIN2L ⁽²⁾	Parallel Port	t In Data Low	Byte (Buffe	er 2)						
PMMODEH ⁽²⁾	BUSY	IRQM1	IRQM0	INCM1	INCM0	MODE16	MODE1	MODE0		
PMMODEL ⁽²⁾	WAITB1	WAITB0	WAITM3	WAITM2	WAITM1	WAITM0	WAITE1	WAITE0		
PMEH ⁽²⁾	PTEN15	PTEN14	PTEN13	PTEN12	PTEN11	PTEN10	PTEN9	PTEN8		
PMEL ⁽²⁾	PTEN7	PTEN6	PTEN5	PTEN4	PTEN3	PTEN2	PTEN1	PTEN0		
PMSTATH ⁽²⁾	IBF	IBOV	—	—	IB3F	IB2F	IB1F	IB0F		
PMSTATL ⁽²⁾	OBE	OBUF			OB3E	OB2E	OB1E	OB0E		
PADCFG1	—	—	—	_	—	RTSECSEL1	RTSECSEL0	PMPTTL		

Legend: — = unimplemented, read as '0'. Shaded cells are not used during PMP operation.

Note 1: The PMADDRH/PMDOUT1H and PMADDRL/PMDOUT1L register pairs share the physical registers and addresses, but have different functions determined by the module's operating mode.

2: These bits and/or registers are only available in 44-pin devices.

REGISTER 19-2: CCPTMRS0: ECCP1/2/3 TIMER SELECT 0 REGISTER (BANKED F52h)

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| C3TSEL1 | C3TSEL0 | C2TSEL2 | C2TSEL1 | C2TSEL0 | C1TSEL2 | C1TSEL1 | C1TSEL0 |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	C3TSEL<1:0>: ECCP3 Timer Selection bits
	00 = ECCP3 is based off of TMR1/TMR2
	01 = ECCP3 is based off of TMR3/TMR4
	10 = ECCP3 is based off of TMR3/TMR6
	11 = ECCP3 is based off of TMR3/TMR8
bit 5-3	C2TSEL<2:0>: ECCP2 Timer Selection bits
	000 = ECCP2 is based off of TMR1/TMR2
	001 = ECCP2 is based off of TMR3/TMR4
	010 = ECCP2 is based off of TMR3/TMR6
	011 = ECCP2 is based off of TMR3/TMR8
	1xx = Reserved; do not use
bit 2-0	C1TSEL<2:0>: ECCP1 Timer Selection bits
	000 = ECCP1 is based off of TMR1/TMR2
	001 = ECCP1 is based off of TMR3/TMR4
	010 = ECCP1 is based off of TMR3/TMR6
	011 = ECCP1 is based off of TMR3/TMR8
	1xx = Reserved; do not use

In addition to the expanded range of modes available through the CCPxCON and ECCPxAS registers, the ECCP modules have two additional registers associated with Enhanced PWM operation and auto-shutdown features. They are:

- ECCPxDEL Enhanced PWM Control
- PSTRxCON Pulse Steering Control

20.4.4.1 DMACON1

The DMACON1 register is used to select the main operating mode of the SPI DMA module. The SSCON1 and SSCON0 bits are used to control the slave select pin.

When MSSP2 is used in SPI Master mode with the SPI DMA module, SSDMA can be controlled by the DMA module as an output pin. If MSSP2 will be used to communicate with an SPI slave device that needs the SSX pin to be toggled periodically, the SPI DMA hardware can automatically be used to deassert SSx between each byte, every two bytes or every four bytes.

Alternatively, user firmware can manually generate slave select signals with normal general purpose I/O pins, if required by the slave device(s).

When the TXINC bit is set, the TXADDR register will automatically increment after each transmitted byte. Automatic transmit address increment can be disabled by clearing the TXINC bit. If the automatic transmit address increment is disabled, each byte which is output on SDO2, will be the same (the contents of the SRAM pointed to by the TXADDR register) for the entire DMA transaction.

When the RXINC bit is set, the RXADDR register will automatically increment after each received byte. Automatic receive address increment can be disabled by clearing the RXINC bit. If RXINC is disabled in Full-Duplex or Half-Duplex Receive modes, all incoming data bytes on SDI2 will overwrite the same memory location pointed to by the RXADDR register. After the SPI DMA transaction has completed, the last received byte will reside in the memory location pointed to by the RXADDR register.

The SPI DMA module can be used for either half-duplex receive only communication, half-duplex transmit only communication or full-duplex simultaneous transmit and receive operations. All modes are available for both SPI master and SPI slave configurations. The DUPLEX0 and DUPLEX1 bits can be used to select the desired operating mode.

The behavior of the DLYINTEN bit varies greatly depending on the SPI operating mode. For example behavior for each of the modes, see Figure 20-3 through Figure 20-6.

SPI Slave mode, DLYINTEN = 1: In this mode, an SSP2IF interrupt will be generated during a transfer if the time between successful byte transmission events is longer than the value set by the DLYCYC<3:0> bits in the DMACON2 register. This interrupt allows slave firmware to know that the master device is taking an unusually large amount of time between byte transmissions. For example, this information may be useful for implementing application defined communication

protocols involving time-outs if the bus remains Idle for too long. When DLYINTEN = 1, the DLYCYC<3:0> interrupts occur normally according to the selected setting.

SPI Slave mode, DLYINTEN = 0: In this mode, the time-out based interrupt is disabled. No additional SSP2IF interrupt events will be generated by the SPI DMA module, other than those indicated by the INTLVL<3:0> bits in the DMACON2 register. In this mode, always set DLYCYC<3:0> = 0000.

SPI Master mode, DLYINTEN = 0: The DLYCYC<3:0> bits in the DMACON2 register determine the amount of additional inter-byte delay, which is added by the <u>SPI</u> DMA module during a transfer. The Master mode <u>SS2</u> output feature may be used.

SPI Master mode, DLYINTEN = 1: The amount of hardware overhead is slightly reduced in this mode, and the minimum inter-byte delay is 8 TcY for Fosc/4, 9 TcY for Fosc/16 and 15 TcY for Fosc/64. This mode can potentially be used to obtain slightly higher effective SPI bandwidth. In this mode, the SS2 control feature cannot be used, and should always be disabled (DMACON1<7:6> = 00). Additionally, the interrupt generating hardware (used in Slave mode) remains active. To avoid extraneous SSP2IF interrupt events, set the DMACON2 delay bits, DLYCYC<3:0> = 1111, and ensure that the SPI serial clock rate is no slower than Fosc/64.

In SPI Master modes, the DMAEN bit is used to enable the SPI DMA module and to initiate an SPI DMA transaction. After user firmware sets the DMAEN bit, the DMA hardware will begin transmitting and/or receiving data bytes according to the configuration used. In SPI Slave modes, setting the DMAEN bit will finish the initialization steps needed to prepare the SPI DMA module for communication (which still must be initiated by the master device).

To avoid possible data corruption, once the DMAEN bit is set, user firmware should not attempt to modify any of the MSSP2 or SPI DMA related registers, with the exception of the INTLVL bits in the DMACON2 register.

If user firmware wants to Halt an ongoing DMA transaction, the DMAEN bit can be manually cleared by the firmware. Clearing the DMAEN bit while a byte is currently being transmitted will not immediately Halt the byte in progress. Instead, any byte currently in progress will be completed before the MSSP2 and SPI DMA modules go back to their Idle conditions. If user firmware clears the DMAEN bit, the TXADDR, RXADDR and DMABC registers will no longer update, and the DMA module will no longer make any additional read or writes to SRAM; therefore, state information can be lost.

REGISTER 20-5: SSPxSTAT: MSSPx STATUS REGISTER (I²C MODE) (1, ACCESS FC7h; 2, F73h)

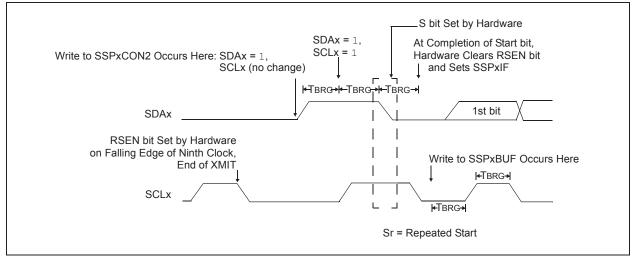
R/W-1	R/W-1	R-1	R-1	R-1	R-1	R-1	R-1				
SMP	CKE	D/A	P ⁽¹⁾	S ⁽¹⁾	R/W ^(2,3)	UA	BF				
bit 7							bit 0				
Legend:			1.11			1					
R = Read		W = Writable		-	emented bit, rea						
-n = Value	at POR	'1' = Bit is se	ľ	'0' = Bit is cl	eared	x = Bit is unkr	IOWN				
bit 7	SMP: Slew	Rate Control bit	t								
	In Master or	Slave mode:									
				•	de (100 kHz an	d 1 MHz)					
bit 6	0 = Slew ra	ite control is en:	abled for High-s	speed mode (4	400 KHZ)						
DILO		Slave mode:									
		SMBus specific	inputs								
		SMBus specific									
bit 5	D/A: Data/A	ddress bit									
	In Master mode:										
		Reserved. In Slave mode:									
		s that the last b	yte received or	transmitted wa	as data						
		s that the last b	yte received or	transmitted wa	as address						
bit 4	P: Stop bit ⁽¹										
	 1 = Indicates that a Stop bit has been detected last 0 = Stop bit was not detected last 										
bit 3	Start bit ⁽¹⁾										
	1 = Indicates that a Start bit has been detected last										
		was not detecte									
bit 2		Write Informatio	on bit ^(2,3)								
	In Slave mo	<u>de:</u>									
	1 = Read 0 = Write										
	In Master m	ode:									
		t is in progress									
		t is not in progr									
bit 1	•	Address bit (10				D an ainte a					
	 1 = Indicates that the user needs to update the address in the SSPxADD register 0 = Address does not need to be updated 										
bit 0		ull Status bit									
	In Transmit mode:										
	1 = SSPxBL										
	0 = SSPxBl										
	<u>In Receive r</u> 1 = SSPxBL	<u>node:</u> JF is full (does ı	not include the	ACK and Stop	bits)						
		JF is empty (do			,						
Note 1:	This bit is cleare	ed on Reset and	when SSPEN	is cleared.							
2:	This bit holds th				ess match. This	bit is only valid	from the				
	address match t	to the next Start	bit, Stop bit or	not ACK bit.							

3: ORing this bit with SEN, RSEN, PEN, RCEN or ACKEN will indicate if the MSSPx is in Active mode.

20.5.9 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition occurs when the RSEN bit (SSPxCON2<1>) is programmed high and the I²C logic module is in the Idle state. When the RSEN bit is set, the SCLx pin is asserted low. When the SCLx pin is sampled low, the BRG is loaded with the contents of SSPxADD<5:0> and begins counting. The SDAx pin is released (brought high) for one BRG count (TBRG). When the BRG times out, and if SDAx is sampled high, the SCLx pin will be deasserted (brought high). When SCLx is sampled high, the BRG is reloaded with the contents of SSPxADD<6:0> and begins counting. SDAx and SCLx must be sampled high for one TBRG. This action is then followed by assertion of the SDAx pin (SDAx = 0) for one TBRG while SCLx is high. Following this, the RSEN bit (SSPxCON2<1>) will be automatically cleared and the BRG will not be reloaded, leaving the SDAx pin held low. As soon as a Start condition is detected on the SDAx and SCLx pins, the Start bit (SSPxSTAT<3>) will be set. The SSPxIF bit will not be set until the BRG has timed out.

- Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.
 - **2:** A bus collision during the Repeated Start condition occurs if:
 - SDAx is sampled low when SCLx goes from low-to-high.
 - SCLx goes low before SDAx is asserted low. This may indicate that another master is attempting to transmit a data '1'.


Immediately following the SSPxIF bit getting set, the user may write the SSPxBUF with the 7-bit address in 7-bit mode, or the default first address in 10-bit mode. After the first eight bits are transmitted and an ACK is received, the user may then transmit an additional 8 bits of address (10-bit mode) or 8 bits of data (7-bit mode).

20.5.9.1 WCOL Status Flag

If the user writes the SSPxBUF when a Repeated Start sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write does not occur).

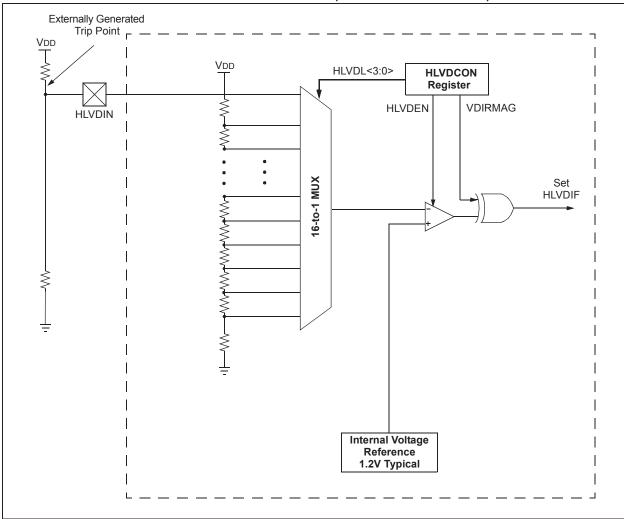
Note: Because queueing of events is not allowed, writing of the lower five bits of SSPxCON2 is disabled until the Repeated Start condition is complete.

FIGURE 20-22: REPEATED START CONDITION WAVEFORM

The module is enabled by setting the HLVDEN bit. Each time the module is enabled, the circuitry requires some time to stabilize. The IRVST bit is a read-only bit that indicates when the circuit is stable. The module can generate an interrupt only after the circuit is stable and IRVST is set.

The VDIRMAG bit determines the overall operation of the module. When VDIRMAG is cleared, the module monitors for drops in VDD below a predetermined set point. When the bit is set, the module monitors for rises in VDD above the set point.

25.1 Operation


When the HLVD module is enabled, a comparator uses an internally generated reference voltage as the set point. The set point is compared with the trip point, where each node in the resistor divider represents a trip point voltage. The "trip point" voltage is the voltage level at which the device detects a high or low-voltage event, depending on the configuration of the module.

When the supply voltage is equal to the trip point, the voltage tapped off of the resistor array is equal to the internal reference voltage generated by the voltage reference module. The comparator then generates an interrupt signal by setting the HLVDIF bit.

The trip point voltage is software programmable to any one of 16 values. The trip point is selected by programming the HLVDL<3:0> bits (HLVDCON<3:0>).

Additionally, the HLVD module allows the user to supply the trip voltage to the module from an external source. This mode is enabled when bits, HLVDL<3:0>, are set to '1111'. In this state, the comparator input is multiplexed from the external input pin, HLVDIN. This gives users flexibility because it allows them to configure the HLVD interrupt to occur at any voltage in the valid operating range.

FIGURE 25-1: HLVD MODULE BLOCK DIAGRAM (WITH EXTERNAL INPUT)

EXAMPLE 26-1: SETUP FOR CTMU CALIBRATION ROUTINES

```
#include <pl8cxxx.h>
void setup(void)
{ //CTMUCON - CTMU Control register
  CTMUCONH = 0 \times 00;
                            //make sure CTMU is disabled
  CTMUCONL = 0 \times 90;
  //CTMU continues to run when emulator is stopped,CTMU continues
  //to run in idle mode, Time Generation mode disabled, Edges are blocked
  //No edge sequence order, Analog current source not grounded, trigger
  //output disabled, Edge2 polarity = positive level, Edge2 source =
  //source 0, Edge1 polarity = positive level, Edge1 source = source 0,
  //CTMUICON - CTMU Current Control Register
  CTMUICON = 0 \times 01;
                           //0.55uA, Nominal - No Adjustment
//Setup AD converter;
TRISA=0x04;
                            //set channel 2 as an input
  // Configured AN2 as an analog channel
  // ANCONO
  ANCONO = 0xFB;
  // ANCON1
  ANCON1 = 0 \times 1F;
  // ADCON1
                           // Result format 1= Right justified
  ADCON1bits.ADFM=1;
                            // Normal A/D conversion operation
  ADCON1bits.ADCAL=0;
                            // Acquisition time 7 = 20TAD 2 = 4TAD 1=2TAD
  ADCON1bits.ACQT=1;
  ADCON1bits.ADCS=2;
                            // Clock conversion bits 6= FOSC/64 2=FOSC/32
     // ADCONO
                        // Vref+ = AVdd
  ADCONObits.VCFG0 =0;
  ADCONObits.VCFG1 =0;
                           // Vref- = AVss
  ADCON0bits.CHS=2;
                            // Select ADC channel
  ADCON0bits.ADON=1;
                           // Turn on ADC
}
```

REGISTER 27-1: CONFIG1L: CONFIGURATION REGISTER 1 LOW (BYTE ADDRESS 300000h)

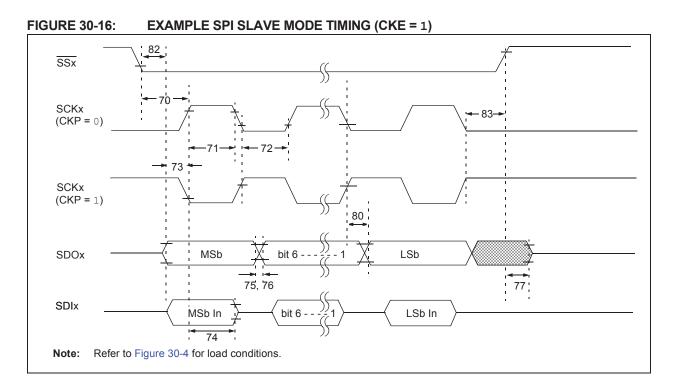
R/WO-1	R/WO-1	R/WO-1	R/WO-1	R/WO-1	R/WO-1	R/WO-1	R/WO-1
DEBUG	XINST	STVREN	CFGPLLEN	PLLDIV2	PLLDIV1	PLLDIV0	WDTEN
bit 7							bit 0

Legend:						
R = Readal	ole bit	WO = Write-Once bit	U = Unimplemented bit,	read as '0'		
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		
bit 7	DEBUG: B	ackground Debugger Enable	e bit			
		round debugger is disabled; round debugger is enabled; F		ed as general purpose I/O pins I to In-Circuit Debug		
bit 6	XINST: Ext	ended Instruction Set Enable	e bit			
		ction set extension and Index ction set extension and Index				
bit 5	STVREN: S	Stack Overflow/Underflow Re	eset Enable bit			
		on stack overflow/underflow on stack overflow/underflow				
bit 4	1 = PLL is	 PLL Enable bit disabled until firmware sets t enabled at start-up 	the PLLEN bit at run time (C	DSCTUNE<6>)		
bit 3-1	PLLDIV<2	:0>: Oscillator Selection bits				
	on 4x 111 = No o 110 = Osc 101 = Osc 011 = Osc 010 = Osc 010 = Osc 001 = Osc	st be configured to provide a PLL operation. divide – oscillator is used dire illator divided by 2 (8 MHz ing illator divided by 3 (12 MHz ir illator divided by 4 (16 MHz ir illator divided by 5 (20 MHz ir illator divided by 6 (24 MHz ir illator divided by 10 (40 MHz illator divided by 12 (48 MHz	ctly (4 MHz input) put) nput) nput) nput) nput) input) input)	Hz PLL. These bits have no effect		
bit 0	1 = WDT is	Vatchdog Timer Enable bit s enabled s disabled (control is placed c	on the SWDTEN bit)			

PIC18F47J13 FAMILY

MOVFF	Move f to f			MOVLB	Move Liter	al to Low Nil	bble in BSR	
Syntax:	MOVFF f _s	,f _d		Syntax:	MOVLW k	,		
Operands:		$0 \le f_s \le 4095$		Operands:	$Operands: \qquad 0 \leq k \leq 255$			
	$0 \le f_d \le 409$	95		Operation:	Operation: $k \rightarrow BSR$			
Operation:	$(f_s) \to f_d$			Status Affected:	None			
Status Affected:	None			Encoding:	0000	0001 kk	kk kkkk	
Encoding: 1st word (source) 2nd word (destin.)	1100 1111	ffff ff: ffff ff:	5	Description:	Bank Selec	The 8-bit literal 'k' is loaded into the Bank Select Register (BSR). The value of BSR<7:4> always remains '0'		
Description:		ts of source re				of the value o		
		estination regi	ster 'f _d '. i be anywhere	Words:	1			
		-byte data spa		Cycles:	1			
		location of des		Q Cycle Activity:				
	can also be FFFh.	anywhere fro	m uuun to	Q1	Q2	Q3	Q4	
	Either sour	ce or destinati	on can be W	Decode	Read literal 'k'	Process Data	Write literal 'k' to BSR	
		ecial situation				Data	K to Bolt	
	peripheral r buffer or an The MOVFF	egister (such a I/O port). instruction ca J, TOSH or TC		After Instruc	egister = 02			
Words:	2							
Cycles:	2							
Q Cycle Activity:								
Q1	Q2	Q3	Q4					
Decode	Read register 'f' (src)	Process Data	No operation					
Decode	No operation No dummy read	No operation	Write register 'f' (dest)					
Example: Before Instru REG1 REG2 After Instructi REG1 REG2	ction = 33 = 11	h						

TABLE 30-5: ULPWU SPECIFICATIONS


DC CH/	ARACT	ERISTICS	Standard Operating Conditions (unless otherwise stated Operating temperature -40°C \leq TA \leq +85°C for industrial				
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
D100	IULP	Ultra Low-Power Wake-up Current		60		nA	Net of I/O leakage and current sink at 1.6V on pin, VDD = 3.3V See Application Note AN879, "Using the Microchip Ultra Low-Power Wake-up Module" (DS00879)

† Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

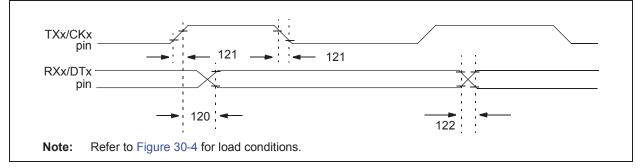
TABLE 30-6: CTMU CURRENT SOURCE SPECIFICATIONS

I DC CHARACTERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions
	IOUT1	CTMU Current Source, Base Range	—	550	—	nA	CTMUICON<1:0> = 01
	IOUT2	CTMU Current Source, 10x Range	—	5.5	_	μA	CTMUICON<1:0> = 10
	IOUT3	CTMU Current Source, 100x Range	—	55	_	μA	CTMUICON<1:0> = 11

Note 1: Nominal value at center point of current trim range (CTMUICON<7:2> = 000000).

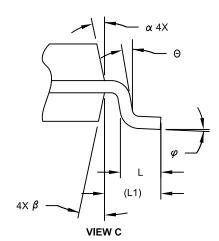
TABLE 30-24: EXAMPLE SPI SLAVE MODE REQUIREMENTS (CKE = 1

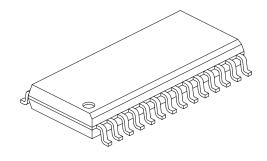
Param No.	Symbol	Characteristic	Min	Мах	Units	Conditions	
70	TssL2scH, TssL2scL	$\overline{\mathrm{SSx}}\downarrow$ to SCKx \downarrow or SCKx \uparrow Input	3 Тсү	—	ns		
70A	TssL2WB	$\overline{SSx} \downarrow$ to Write to SSPxBUF	3 Tcy	_	ns		
71	TscH	SCKx Input High Time	Continuous	1.25 Tcy + 30	_	ns	
71A		(Slave mode)	Single byte	40	—	ns	(Note 1)
72	TscL	SCKx Input Low Time	Continuous	1.25 Tcy + 30	—	ns	
72A		(Slave mode)	Single byte	40	—	ns	(Note 1)
73	TDIV2SCH, TDIV2SCL	Setup Time of SDIx Data Input to SCK	25	—	ns		
73A	Тв2в	Last Clock Edge of Byte 1 to the First Clo	1.5 Tcy + 40	—	ns	(Note 2)	
74	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx	35	—	ns	VDD = 3.3V, VDDCORE = 2.5V	
			100	_	ns	VDD = 2.15V	
75	TDOR	SDOx Data Output Rise Time	—	25	ns		
76	TDOF	SDOx Data Output Fall Time	—	25	ns		
77	TssH2doZ	SSx ↑ to SDOx Output High-Impedanc	e	10	70	ns	
80	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Ed	—	50	ns	VDD = 3.3V, VDDCORE = 2.5V	
				—	100	ns	VDD = 2.15V
81	TDOV2SCH, TDOV2SCL	SDOx Data Output Setup to SCKx Edg	Тсү	—	ns		
82	TssL2DoV	SDOx Data Output Valid after $\overline{SSx} \downarrow E$	dge	_	50	ns	
83	TscH2ssH, TscL2ssH	SSx ↑ after SCKx Edge	1.5 Tcy + 40	—	ns		


Note 1: Requires the use of Parameter #73A.

2: Only if Parameter #71A and #72A are used.

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions		
100	Тнідн	Clock High Time	100 kHz mode	2(Tosc)(BRG + 1)	_	μS			
			400 kHz mode	2(Tosc)(BRG + 1)	_	μS			
101 TLOW		Clock Low Time	100 kHz mode	2(Tosc)(BRG + 1)	_	μS			
			400 kHz mode	2(Tosc)(BRG + 1)	_	μS			
102	TR	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be		
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF		
103	TF	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be		
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF		
90	TSU:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	μS	Only relevant for		
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	—	μS	Repeated Start condition		
91	THD:STA	Start Condition Hold Time	100 kHz mode	2(Tosc)(BRG + 1)	_	μS	After this period, the first		
			400 kHz mode	2(Tosc)(BRG + 1)	—	μS	clock pulse is generated		
106 THD:DAT		Data Input	100 kHz mode	0	—	ns			
		Hold Time	400 kHz mode	0	0.9	μS			
107	TSU:DAT	TSU:DAT	TSU:DAT	Data Input	100 kHz mode	250	—	ns	(Note 1)
		Setup Time	400 kHz mode	100	—	ns			
92	Tsu:sto	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	μS			
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	—	μS			
109	ΤΑΑ	Output Valid	100 kHz mode	—	3450	ns			
		from Clock	400 kHz mode	—	900	ns			
110	TBUF	Bus Free Time	100 kHz mode	4.7	_	μS	Time the bus must be		
			400 kHz mode	1.3	—	μS	free before a new transmission can start		
D102	Св	Bus Capacitive Lo	bading	—	400	pF			


Note 1: A Fast mode I²C bus device can be used in a Standard mode I²C bus system, but parameter #107 ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCLx signal. If such a device does stretch the LOW period of the SCLx signal, it must output the next data bit to the SDAx line, parameter #102 + parameter #107 = 1000 + 250 = 1250 ns (for 100 kHz mode), before the SCLx line is released.



28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	N	IILLIMETER	S		
Dimension	Limits	MIN	NOM	MAX		
Number of Pins	N		28			
Pitch	е		1.27 BSC			
Overall Height	A	-	-	2.65		
Molded Package Thickness	A2	2.05	-	-		
Standoff §	A1	0.10	-	0.30		
Overall Width	E		10.30 BSC			
Molded Package Width	E1	7.50 BSC				
Overall Length	D	17.90 BSC				
Chamfer (Optional)	h	0.25	-	0.75		
Foot Length	L	0.40	-	1.27		
Footprint	L1	1.40 REF				
Lead Angle	O	0°	-	-		
Foot Angle	φ	0°	-	8°		
Lead Thickness	С	0.18	-	0.33		
Lead Width	b	0.31	-	0.51		
Mold Draft Angle Top	α	5°	-	15°		
Mold Draft Angle Bottom	β	5°	-	15°		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2