

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2.15V ~ 3.6V
Data Converters	A/D 10x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f26j13t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pin N	umber			
Pin Name	44- QFN	44- TQFP	Pin Type	Buffer Type	Description
					PORTA is a bidirectional I/O port.
RA0/AN0/C1INA/ULPWU/PMA6/ RP0	19	19			
RA0 AN0 C1INA ULPWU PMA6			I/O I I I/O	TTL/DIG Analog Analog Analog ST/TTL/ DIG	Digital I/O. Analog Input 0. Comparator 1 Input A. Ultra low-power wake-up input. Parallel Master Port digital I/O.
RP0			I/O	ST/DIG	Remappable Peripheral Pin 0 input/output.
RA1/AN1/C2INA/VBG/CTDIN/ PMA7/RP1 RA1 AN1	20	20	I/O O	TTL/DIG Analog	Digital I/O. Analog Input 1.
VBG CTDIN PMA7			1 0 1 1/0	Analog Analog ST ST/TTL/ DIG	Band Gap Reference Voltage (VBG) output. CTMU pulse delay input. Parallel Master Port digital I/O.
RP1			I/O	ST/DIG	Remappable Peripheral Pin 1 input/output.
RA2/AN2/C2INB/C1IND/C3INB/ VREF-/CVREF RA2 AN2 C2INB C1IND C3INB VREF- CVREF	21	21	I/O I I I I I	TTL/DIG Analog Analog Analog Analog Analog Analog	Digital I/O. Analog Input 2. Comparator 2 Input B. Comparator 1 Input D. Comparator 3 Input B. A/D reference voltage (low) input. Comparator reference voltage output.
RA3/AN3/C1INB/VREF+ RA3 AN3 C1INB VREF+	22	22	I/O I I	TTL/DIG Analog Analog Analog	Digital I/O. Analog Input 3. Comparator 1 Input B. A/D reference voltage (high) input.
RA5/AN4/C1INC/SS1/HLVDIN/RP2 RA5 AN4 C1INC SS1 HLVDIN RP2	24	24	I/O I I I I/O	TTL/DIG Analog Analog TTL Analog ST/DIG	Digital I/O. Analog Input 4. SPI slave select input. Comparator 1 Input C. High/Low-Voltage Detect input. Remappable Peripheral Pin 2 input/output.
RA6 ⁽¹⁾ RA7 ⁽¹⁾					See the OSC2/CLKO/RA6 pin. See the OSC1/CLKI/RA7 pin.
Legend: TTL = TTL compatible in ST = Schmitt Trigger in I = Input P = Power DIG = Digital output Note 1: RA7 and RA6 will be disa	put put wit	h CMO	S level	s SC2 are	CMOS= CMOS compatible input or outputAnalog= Analog inputO= OutputOD= Open-Drain (no P diode to VDD) l^2C = Open-Drain, l^2C specificused for the clock function.

TABLE 1-4: PIC18F4XJ13 PINOUT I/O DESCRIPTIONS (CONTINUED)

2: Available only on 44-pin devices (PIC18F46J13, PIC18F47J13, PIC18LF46J13 and PIC18LF47J13).

3: 5.5V tolerant.

6.2 PIC18 Instruction Cycle

6.2.1 CLOCKING SCHEME

The microcontroller clock input, whether from an internal or external source, is internally divided by four to generate four non-overlapping quadrature clocks (Q1, Q2, Q3 and Q4). Internally, the PC is incremented on every Q1; the instruction is fetched from the program memory and latched into the Instruction Register (IR) during Q4. The instruction is decoded and executed during the following Q1 through Q4. Figure 6-4 illustrates the clocks and instruction execution flow.

6.2.2 INSTRUCTION FLOW/PIPELINING

An "Instruction Cycle" consists of four Q cycles, Q1 through Q4. The instruction fetch and execute are pipelined in such a manner that a fetch takes one instruction cycle, while the decode and execute take another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the PC to change (e.g., GOTO), then two cycles are required to complete the instruction (Example 6-3).

A fetch cycle begins with the PC incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the IR in cycle, Q1. This instruction is then decoded and executed during the Q2, Q3 and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

EXAMPLE 6-3: INSTRUCTION PIPELINE FLOW

	Тсү0	Tcy1	TCY2	Тсү3	TCY4	TCY5
1. MOVLW 55h	Fetch 1	Execute 1		•	•	'
2. MOVWF LATB		Fetch 2	Execute 2			
3. BRA SUB_1			Fetch 3	Execute 3		_
4. BSF LATA, BIT3 (F	orced NOP)			Fetch 4	Flush (NOP)	
5. Instruction @ addre	ss SUB_1				Fetch SUB_1	Execute SUB_1
Note: All instructions	are single-cycle	e, except for any	program brand	hes. These tak	e two cycles sinc	e the fetch instruction

is "flushed" from the pipeline while the new instruction is being fetched and then executed.

6.3.4 SPECIAL FUNCTION REGISTERS

The SFRs are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. SFRs start at the top of data memory (FFFh) and extend downward to occupy more than the top half of Bank 15 (F40h to FFFh). Table 6-2, Table 6-3 and Table 6-4 provide a list of these registers.

The SFRs can be classified into two sets: those associated with the "core" device functionality (ALU, Resets and interrupts) and those related to the peripheral functions. The Reset and Interrupt registers are described in their corresponding chapters, while the ALU's STATUS register is described later in this section. Registers related to the operation of the peripheral features are described in the chapter for that peripheral.

The SFRs are typically distributed among the peripherals whose functions they control. Unused SFR locations are unimplemented and read as '0's

Note: The SFRs located between EB0h and F5Fh are not part of the Access Bank. Either BANKED instructions (using BSR) or the MOVFF instruction should be used to access these locations. When programming in MPLAB[®] C18, the compiler will automatically use the appropriate addressing mode.

TABLE 6-2: ACCESS BANK SPECIAL FUNCTION REGISTER MAP

Address	Name	Address	Name	Address	Name	Address	Name	Address	Name
FFFh	TOSU	FDFh	INDF2 ⁽¹⁾	FBFh	PSTR1CON	F9Fh	IPR1	F7Fh	SPBRGH1
FFEh	TOSH	FDEh	POSTINC2 ⁽¹⁾	FBEh	ECCP1AS	F9Eh	PIR1	F7Eh	BAUDCON1
FFDh	TOSL	FDDh	POSTDEC2 ⁽¹⁾	FBDh	ECCP1DEL	F9Dh	PIE1	F7Dh	SPBRGH2
FFCh	STKPTR	FDCh	PREINC2 ⁽¹⁾	FBCh	CCPR1H	F9Ch	RCSTA2	F7Ch	BAUDCON2
FFBh	PCLATU	FDBh	PLUSW2 ⁽¹⁾	FBBh	CCPR1L	F9Bh	OSCTUNE	F7Bh	TMR3H
FFAh	PCLATH	FDAh	FSR2H	FBAh	CCP1CON	F9Ah	T1GCON	F7Ah	TMR3L
FF9h	PCL	FD9h	FSR2L	FB9h	PSTR2CON	F99h	IPR5	F79h	T3CON
FF8h	TBLPTRU	FD8h	STATUS	FB8h	ECCP2AS	F98h	PIR5	F78h	TMR4
FF7h	TBLPTRH	FD7h	TMR0H	FB7h	ECCP2DEL	F97h	T3GCON	F77h	PR4
FF6h	TBLPTRL	FD6h	TMR0L	FB6h	CCPR2H	F96h	TRISE	F76h	T4CON
FF5h	TABLAT	FD5h	T0CON	FB5h	CCPR2L	F95h	TRISD	F75h	SSP2BUF
FF4h	PRODH	FD4h	(5)	FB4h	CCP2CON	F94h	TRISC	F74h	SSP2ADD ⁽³⁾
FF3h	PRODL	FD3h	OSCCON	FB3h	CTMUCONH	F93h	TRISB	F73h	SSP2STAT
FF2h	INTCON	FD2h	CM1CON	FB2h	CTMUCONL	F92h	TRISA	F72h	SSP2CON1
FF1h	INTCON2	FD1h	CM2CON	FB1h	CTMUICON	F91h	PIE5	F71h	SSP2CON2
FF0h	INTCON3	FD0h	RCON	FB0h	SPBRG1	F90h	IPR4	F70h	CMSTAT
FEFh	INDF0 ⁽¹⁾	FCFh	TMR1H	FAFh	RCREG1	F8Fh	PIR4	F6Fh	PMADDRH ^(2,4)
FEEh	POSTINC0 ⁽¹⁾	FCEh	TMR1L	FAEh	TXREG1	F8Eh	PIE4	F6Eh	PMADDRL ^(2,4)
FEDh	POSTDEC0 ⁽¹⁾	FCDh	T1CON	FADh	TXSTA1	F8Dh	LATE ⁽²⁾	F6Dh	PMDIN1H ⁽²⁾
FECh	PREINC0 ⁽¹⁾	FCCh	TMR2	FACh	RCSTA1	F8Ch	LATD ⁽²⁾	F6Ch	PMDIN1L ⁽²⁾
FEBh	PLUSW0 ⁽¹⁾	FCBh	PR2	FABh	SPBRG2	F8Bh	LATC	F6Bh	TXADDRL
FEAh	FSR0H	FCAh	T2CON	FAAh	RCREG2	F8Ah	LATB	F6Ah	TXADDRH
FE9h	FSR0L	FC9h	SSP1BUF	FA9h	TXREG2	F89h	LATA	F69h	RXADDRL
FE8h	WREG	FC8h	SSP1ADD ⁽³⁾	FA8h	TXSTA2	F88h	DMACON1	F68h	RXADDRH
FE7h	INDF1 ⁽¹⁾	FC7h	SSP1STAT	FA7h	EECON2	F87h	OSCCON2 ⁽⁵⁾	F67h	DMABCL
FE6h	POSTINC1 ⁽¹⁾	FC6h	SSP1CON1	FA6h	EECON1	F86h	DMACON2	F66h	DMABCH
FE5h	POSTDEC1 ⁽¹⁾	FC5h	SSP1CON2	FA5h	IPR3	F85h	HLVDCON	F65h	_
FE4h	PREINC1 ⁽¹⁾	FC4h	ADRESH	FA4h	PIR3	F84h	PORTE ⁽²⁾	F64h	_
FE3h	PLUSW1 ⁽¹⁾	FC3h	ADRESL	FA3h	PIE3	F83h	PORTD ⁽²⁾	F63h	_
FE2h	FSR1H	FC2h	ADCON0	FA2h	IPR2	F82h	PORTC	F62h	—
FE1h	FSR1L	FC1h	ADCON1	FA1h	PIR2	F81h	PORTB	F61h	—
FE0h	BSR	FC0h	WDTCON	FA0h	PIE2	F80h	PORTA	F60h	—

Note 1: This is not a physical register.

2: This register is not available on 28-pin devices.

3: SSPxADD and SSPxMSK share the same address.

4: PMADDRH and PMDOUTH share the same address, and PMADDRL and PMDOUTL share the same address. PMADDRx is used in Master modes and PMDOUTx is used in Slave modes.

5: Reserved; do not write to this location.

FDD SPBRGH2 EUSART2 Baul Rate Generator High Byte Under State S	Addr.	File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on
FLOID SYBNUTZ ECONONE ABDOR ROTT TXCKP BRG16 — WUE ABDEN ABDEN F7Bh TMR3H Timer3 Register LW Byb TXCKP BRG16 — WUE ABDEN XXXX XXXX F7Bh T3CON TMR3CS1 TMSSCS1 TACCS1	C7Db			ud Data Cana	rotor Llich Dut						
FLOR ENGLOCANZ ABALON RADIP	F7DI	SPBRGH2	EUSARTZ Ba			e TVOKD	55040				0000 0000
Prior Time3 / Register Low Byte Texex Xero F73n Time3 / Register Low Byte XeroX Xero XeroX Xero F73n Time3 / Register Low Byte TackPSD TackPSD TackPSD XeroX Xero F73n Time4 Register Time4 Register XeroX Xero XeroX Xero 0000 0000 F73n TACON — TowATPSD TacVPSD Time4 Register 0000 0000 F73n SPS2MD MSSP2 Address Register (¹ C Stave mode)/MSSP2 Baud Fale Relead Register (¹ C Master mode) 0000 0000 F74n SSP2XIS MSK7 MSK6 MSK6 MSK3 MSK2 MSK0 1111 1111 F74n SSP2XIS MSK7 MSK6 MSK5 MSK3 MSK2 MSK1 MSK0 1000 0000 F74n SSP2XIS MSK7 MSK5 MSK5 MSK3 MSK2 MSK1 MSK0 1000 0000 F74n SSP2XIS SSP40 SSP40 SSP40 SSP40 SSP40 0000 0000 F71n SSP2XIS SSP40 ACX	F7Ch	BAUDCON2	ABDOVE	RCIDL	RXDTP	TXCKP	BRG16	_	WUE	ABDEN	0100 0-00
FrAN TIMPLS United register TOCK TOCK <thtock< th=""> <thtock< th=""> <thtock< th=""></thtock<></thtock<></thtock<>	F7Bn	TMR3H	Timer3 Regist	er High Byte							XXXX XXXX
Frein TIME <	F/An	TMR3L	Timera Regist	er Low Byte							XXXX XXXX
PAB Immeri Register 00000 0000	F79h	T3CON	TMR3CS1	TMR3CS0	T3CKPS1	T3CKPS0	T3OSCEN	T3SYNC	RD16	TMR30N	0000 0000
Pr/A Timele Period Register TadUTPS3 TAOUTPS2 TAOUTPS2 TAOUTPS3 TAOUTS3 COUT3	F78h	TMR4	Timer4 Regist	er							0000 0000
From IndUIPS IndUIPS <thinduips< th=""> <thinduips< th=""> <thind< td=""><td>F//h</td><td>PR4</td><td>Timer4 Period</td><td>Register</td><td></td><td></td><td></td><td>THE</td><td>T (0)(D0 (</td><td>TIOUDOO</td><td>1111 1111</td></thind<></thinduips<></thinduips<>	F//h	PR4	Timer4 Period	Register				THE	T (0)(D0 (TIOUDOO	1111 1111
F76n SSY22UP MSSP2 Receive Butter/Tarsmit Register vxxx xxxx vxxx xxxx F74h SSY22DM MSSP2 Address Register (I ^C C Master mode)/MSSP2 Baut Rate Reload Register (I ^C C Master mode) 000 0000 F74h SSY22DN MSSP2 Address Register (I ^C C Master mode)/MSSP2 Baut Rate Reload Register (I ^C C Master mode) 000 0000 F74h SSY22DN MSCO SSY2DN MSK1	F76H	T4CON	—	T4OUTPS3	T4OUTPS2	T4OUTPS1	T4OUTPS0	TMR4ON	T4CKPS1	T4CKPS0	-000 0000
Fr4m SSP2ADD MSSP2 Address Register (PC Stave mode)/MSSP2 Baud Rate Reload Register (PC Mader Mode) 0000 0000 F74m SSP2MSK MSK7 MSK6 MSK6 MSK4 MSK1 MSK1 MSK2 MSK1 MSK2 MSK1 MSK2 MSK2 MSK2 MSK2 MSK2 MSK2 MSK1 MSK2 MSK1 MSK2 MSK1 MSK2 MSK1 MSK2 MSK1 MSK2 MSK2 MSK1 MSK1 MSK2 MSK1 MSK1 MSK2 MSK1 MSK2 MSK1 MSK1 MSK1 MSK2 MSK1 MSK2 MSK1 MSK2 MSK1 MSK2 MSK1 MSK1 MSK2 MSK1 MSK2 MSK1 MSK1 MSK1 MSK2 M	F75h	SSP2BUF	MSSP2 Recei	ve Buffer/Trar	ismit Register						XXXX XXXX
Fr4n SSP2MSk MSK7 MSK6 MSK4 MSK2 MSK2 MSK2 MSK2 MSK2 MSK2 MSK2 MSK2 MSK1	F74h	SSP2ADD	MSSP2 Addre	ess Register (l	C Slave mod	e)/MSSP2 Bai	ud Rate Reloa	d Register (I ² C	Master mode)		0000 0000
F73n SSP2STAT SMP CKE D/A P S R/W UA BF 0000 0000 F72n SSP2CON1 WCOL SSPV0 SSPM1 SSPM2 SSPM1 SSPM0 0000 0000 F71n SSP2CON2 GCEN ACKSTAT ACKDT ACKEN RCEN RSPM1 SSPM1 SSPM1 SSPM0 0000 0000 F70n CMSTAT - - - - - COUT1 COUT1 - 0000 0000 F70n CMSTAT - - - - - COUT1 COUT1 - - - - - - 0000 <t< td=""><td>F74h</td><td>SSP2MSK</td><td>MSK7</td><td>MSK6</td><td>MSK5</td><td>MSK4</td><td>MSK3</td><td>MSK2</td><td>MSK1</td><td>MSK0</td><td>1111 1111</td></t<>	F74h	SSP2MSK	MSK7	MSK6	MSK5	MSK4	MSK3	MSK2	MSK1	MSK0	1111 1111
F72h SSP2CON1 WCOL SSPW SSPW SSPM SSPM3 SSPM3 SSPM4 SSPM6 0000 0000 F71h SSP2CON2 GCEN ACKSTAT ACKSTAT ACKSTAT ADMSK5 ADMSK3 ADMSK3 ADMSK3 ADMSK4 ADMSK4 ADMSK4 ADMSK1 AD	F73h	SSP2STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000
F71h SSP2C0N2 GCEN ACKSTAT ACKNT ACKNT ACKNT ACKNT ADMSK2 ADMSK2 ADMSK1 F70h CMSTAT — — — — COUT3 COUT2 COUT1	F72h	SSP2CON1	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000
F70h CMSTAT - - - - COUT3 COUT2 COUT1 111 F6Fh PMADDRH/ PMDOUTH(P Parallel Port Out Data High Byte (Buffer 1) - 0000 <t< td=""><td>F71h</td><td>SSP2CON2</td><td>GCEN</td><td>ACKSTAT</td><td>ACKDT ADMSK5</td><td>ACKEN ADMSK4</td><td>RCEN ADMSK3</td><td>PEN ADMSK2</td><td>RSEN ADMSK1</td><td>SEN</td><td>0000 0000</td></t<>	F71h	SSP2CON2	GCEN	ACKSTAT	ACKDT ADMSK5	ACKEN ADMSK4	RCEN ADMSK3	PEN ADMSK2	RSEN ADMSK1	SEN	0000 0000
F6Fh PMADDR/I — CS1 Parallel Master Port Address High Byte — 0.00 0.000 F6Eh PMADDR/I/ PMDOUT1L ⁽²⁾ Parallel Port Out Data Low Byte (Buffer 1) .	F70h	CMSTAT	—			_	—	COUT3	COUT2	COUT1	111
PMLOUTINE Parallel Port Out Data High Byte (Buffer 1) 0000 0000 F6Eh PMADDRL/ PMDOUTIL(¹⁰) Parallel Port ID ata Low Byte (Buffer 1) 0000 0000 F6Dh PMININI(²⁰) Parallel Port ID ata Low Byte (Buffer 1) 0000 0000 F6Dh PMDNTIL(¹⁰) Parallel Port ID ata Low Byte (Buffer 1) 0000 0000 F6Dh TXADDRI SPI DMA Transmit Data Pointer Low Byte 0000 0000 F6Ah TXADDRI SPI DMA Receive Data Pointer Low Byte 0000 0000 F6Ah TXADDRI SPI DMA Receive Data Pointer Low Byte 0000 0000 F6Ah TXADDRI — — — SPI DMA Receive Data Pointer High Byte 0000 F6Ah TXADDRI — — — SPI DMA Receive Data Pointer High Byte	F6Fh	PMADDRH/	—	CS1	Parallel Mast	er Port Addres	ss High Byte				-000 0000
F6Eh PMADDRL Parallel Master Port Address Low Byte/ Parallel Port Un Data Low Byte (Buffer 1) 0000 0000 F6Dh PMDIN1H ⁽²⁾ Parallel Port In Data High Byte (Buffer 1) 0000 <td></td> <td>PMDOUT1H-</td> <td>Parallel Port C</td> <td>Dut Data High</td> <td>Byte (Buffer 1)</td> <td>)</td> <td></td> <td></td> <td></td> <td></td> <td>0000 0000</td>		PMDOUT1H-	Parallel Port C	Dut Data High	Byte (Buffer 1))					0000 0000
F6Dh PMDIN1H ⁽²⁾ Parallel Port In Data Low Byte (Buffer 1) 0000 <	F6Eh	PMADDRL/ PMDOUT1L ⁽²⁾	Parallel Maste Parallel Port C	er Port Address Out Data Low B	s Low Byte/ 3yte (Buffer 1)						0000 0000
F6Ch PMDIN1L ⁽²⁾ Parallel Port In Data Low Byte (Buffer 1) 0000 0000 F6Bh TXADDRL SPI DMA Transmit Data Pointer Low Byte 0000 0000 F6Ah TXADDRL SPI DMA Receive Data Pointer Low Byte 0000 0000 F68h RXADDRL SPI DMA Receive Data Pointer Low Byte 0000 0000 F68h RXADDRH — — — SPI DMA Receive Data Pointer High Byte 0000 F68h RXADDRH — — — SPI DMA Receive Data Pointer High Byte 0000 F68h DMABCL SPI DMA Byte Count Low Byte	F6Dh	PMDIN1H ⁽²⁾	Parallel Port In	n Data High B	yte (Buffer 1)						0000 0000
F6Bh TXADDRL SPI DMA Transmit Data Pointer Low Byte 0000 0000 F6Ah TXADDRH — — — SPI DMA Transmit Data Pointer High Byte 0000 F69h RXADDRL SPI DMA Receive Data Pointer Low Byte 0000 0000 0000 F68h RXADDRH — — — SPI DMA Receive Data Pointer High Byte 0000 F68h RXADDRH — — — SPI DMA Receive Data Pointer High Byte	F6Ch	PMDIN1L ⁽²⁾	Parallel Port Ir	n Data Low By	rte (Buffer 1)						0000 0000
F6Ah TXADDRH — — — SPI DMA Transmit Data Pointer High Byte 0000 F69h RXADDRL SPI DMA Receive Data Pointer Low Byte 0000 <t< td=""><td>F6Bh</td><td>TXADDRL</td><td>SPI DMA Trar</td><td>nsmit Data Poi</td><td>nter Low Byte</td><td></td><td></td><td></td><td></td><td></td><td>0000 0000</td></t<>	F6Bh	TXADDRL	SPI DMA Trar	nsmit Data Poi	nter Low Byte						0000 0000
F69h RXADDRL SPI DMA Receive Data Pointer Low Byte 0000 0000 F68h RXADDRH — — — SPI DMA Receive Data Pointer High Byte 0000 F67h DMABCL SPI DMA Byte Count Low Byte 0000 0000 0000 0000 F66h DMABCH — — — — — SPI DMA Receive Data Pointer High Byte 0000 F66h DMABCH — — — — — SPI DMA Receive Data Pointer High Byte 0000 F66h DMABCH — — — — ADRMUX1 ADRMUX0 PTBEEN PTWREN PTRDEN 00 0000 F56h PMCONL ⁽²⁾ CSF1 CSF0 ALP — CS1P BEP WRSP RDSP 0000 <t< td=""><td>F6Ah</td><td>TXADDRH</td><td>_</td><td>—</td><td>—</td><td>_</td><td>SPI DMA Tra</td><td>nsmit Data Poi</td><td>nter High Byte</td><td></td><td> 0000</td></t<>	F6Ah	TXADDRH	_	—	—	_	SPI DMA Tra	nsmit Data Poi	nter High Byte		0000
F68h RXADDRH — — — SPI DMA Receive Data Pointer High Byte 0000 F67h DMABCL SPI DMA Byte Count Low Byte 0000	F69h	RXADDRL	SPI DMA Rec	eive Data Poir	nter Low Byte						0000 0000
F67h DMABCL SPI DMA Byte Count Low Byte 0000 0000 F66h DMABCH — — — — SPI DMA Byte Count High Byte	F68h	RXADDRH	_	_	_	—	SPI DMA Re	ceive Data Poir	nter High Byte		0000
F66h DMABCH — — — — — — SPI DMA Byte Count High Byte	F67h	DMABCL	SPI DMA Byte	Count Low B	yte						0000 0000
F5Fh PMCONH ⁽²⁾ PMPEN — ADRMUX1 ADRMUX0 PTBEEN PTWREN PTRDEN 0~0000 F5Eh PMCONL ⁽²⁾ CSF1 CSF0 ALP — CS1P BEP WRSP RDSP 0000 0000 F5Dh PMMODEH ⁽²⁾ BUSY IRQM1 IRQM0 INCM1 INCM0 MODE16 MODE1 MODE0 0000 0000 F5Ch PMMODEL ⁽²⁾ WAITB1 WAITB0 WAITM3 WAITM2 WAITM1 WAITM0 WAITE1 WAITE0 0000 0000 F5Sh PMDOUT2H ⁽²⁾ Parallel Port Out Data High Byte (Buffer 2) 0000 0000 0000 0000 F58h PMDIN2L ⁽²⁾ Parallel Port In Data Low Byte (Buffer 2) 0000	F66h	DMABCH	—	—	—	_	_	—	SPI DMA Byte Byte	e Count High	00
F5Eh PMCONL ⁽²⁾ CSF1 CSF0 ALP — CS1P BEP WRSP RDSP 000-0000 F5Dh PMMODEH ⁽²⁾ BUSY IRQM1 IRQM0 INCM1 INCM0 MODE16 MODE1 MODE0 0000 0000 F5Ch PMMODEL ⁽²⁾ WAITB1 WAITB0 WAITM3 WAITM2 WAITM1 WAITM0 WAITE1 WAITE0 0000 0000 F5Bh PMDOUT2L ⁽²⁾ Parallel Port Out Data High Byte (Buffer 2) 0000 00	F5Fh	PMCONH ⁽²⁾	PMPEN	_	_	ADRMUX1	ADRMUX0	PTBEEN	PTWREN	PTRDEN	00 0000
F5Dh PMMODEH ⁽²⁾ BUSY IRQM1 IRQM0 INCM1 INCM0 MODE16 MODE1 MODE0 0000 0000 F5Ch PMMODEL ⁽²⁾ WAITB1 WAITB0 WAITM3 WAITM2 WAITM0 WAITM0 WAITE1 WAITE0 0000 0000 F5Bh PMDOUT2H ⁽²⁾ Parallel Port Out Data High Byte (Buffer 2) 0000<	F5Eh	PMCONL ⁽²⁾	CSF1	CSF0	ALP	_	CS1P	BEP	WRSP	RDSP	000- 0000
F5Ch PMMODEL ⁽²⁾ WAITB1 WAITB0 WAITM3 WAITM2 WAITM1 WAITM0 WAITE1 WAITE0 0000 0000 F5Bh PMDOUT2H ⁽²⁾ Parallel Port Out Data High Byte (Buffer 2) 0000	F5Dh	PMMODEH ⁽²⁾	BUSY	IRQM1	IRQM0	INCM1	INCM0	MODE16	MODE1	MODE0	0000 0000
F5Bh PMDOUT2H ⁽²⁾ Parallel Port Out Data High Byte (Buffer 2) 0000 0000 F5Ah PMDOUT2L ⁽²⁾ Parallel Port Out Data Low Byte (Buffer 2) 0000 0000 F59h PMDIN2H ⁽²⁾ Parallel Port In Data High Byte (Buffer 2) 0000 0000 F58h PMDIN2L ⁽²⁾ Parallel Port In Data Low Byte (Buffer 2) 0000 0000 F58h PMDIN2L ⁽²⁾ Parallel Port In Data Low Byte (Buffer 2) 0000 0000 F58h PMEH ⁽²⁾ PTEN15 PTEN14 PTEN12 PTEN11 PTEN10 PTEN9 PTEN8 0000 0000 F56h PMEL ⁽²⁾ PTEN7 PTEN6 PTEN5 PTEN4 PTEN3 PTEN2 PTEN1 PTEN0 0000 0000 F56h PMSTATH ⁽²⁾ IBF IBOV - IB3F IB2F IB1F IB0F 00 0000 F53h CVRCON CVREN CVROE CVRR CVRSS CVR3 CVR2 CVR1 CVR0 0000 0000 F52h CCPTMRS0 C3TSEL1 C3TSEL0 C2TSEL2 C3TSEL0	F5Ch	PMMODEL ⁽²⁾	WAITB1	WAITB0	WAITM3	WAITM2	WAITM1	WAITM0	WAITE1	WAITE0	0000 0000
F5Ah PMDOUT2L ⁽²⁾ Parallel Port Out Data Low Byte (Buffer 2) 0000 0000 F59h PMDIN2H ⁽²⁾ Parallel Port In Data High Byte (Buffer 2) 0000 <	F5Bh	PMDOUT2H ⁽²⁾	Parallel Port C	Dut Data High	Byte (Buffer 2))					0000 0000
F59h PMDIN2H ⁽²⁾ Parallel Port In Data High Byte (Buffer 2) 0000 0000 F58h PMDIN2L ⁽²⁾ Parallel Port In Data Low Byte (Buffer 2) 0000 0000 F57h PMEH ⁽²⁾ PTEN15 PTEN14 PTEN13 PTEN12 PTEN11 PTEN10 PTEN9 PTEN8 0000 0000 F56h PMEL ⁽²⁾ PTEN7 PTEN6 PTEN5 PTEN4 PTEN3 PTEN2 PTEN1 PTEN1 PTEN0 0000 0000 F55h PMSTATH ⁽²⁾ IBF IBOV — — IB3F IB2F IB1F IB0F 0000 0000 F54h PMSTATH ⁽²⁾ OBE OBUF — — OB3E OB2E OB1E OB0E 10 1111 F53h CVRCON CVREN CVROE CVR CVRSS CVR3 CVR2 CVR1 CVR0 0000 0000 F52h CCPTMRS0 C3TSEL1 C3TSEL0 C2TSEL2 C2TSEL0 C1TSEL2 C1TSEL1 C4TSEL0 00 000 F51h CCPTMRS1 C7TSEL1 C7TSEL0 — C6TSEL0 — C4TSEL1 C4TSEL0	F5Ah	PMDOUT2L ⁽²⁾	Parallel Port C	Out Data Low B	Byte (Buffer 2)						0000 0000
F58h PMDIN2L ⁽²⁾ Parallel Port In Data Low Byte (Buffer 2) 0000 <t< td=""><td>F59h</td><td>PMDIN2H⁽²⁾</td><td>Parallel Port Ir</td><td>n Data High B</td><td>yte (Buffer 2)</td><td></td><td></td><td></td><td></td><td></td><td>0000 0000</td></t<>	F59h	PMDIN2H ⁽²⁾	Parallel Port Ir	n Data High B	yte (Buffer 2)						0000 0000
F57h PMEH ⁽²⁾ PTEN15 PTEN14 PTEN13 PTEN12 PTEN11 PTEN10 PTEN9 PTEN8 0000 0000 F56h PMEL ⁽²⁾ PTEN7 PTEN6 PTEN5 PTEN4 PTEN3 PTEN2 PTEN1 PTEN0 0000 0000 F55h PMSTATH ⁽²⁾ IBF IBOV — — IB3F IB2F IB1F IB0F 00 0000 0000 F54h PMSTATL ⁽²⁾ OBE OBUF — — OB3E OB2E OB1E OB0E 10 1111 F53h CVRCON CVREN CVROE CVRR CVRSS CVR3 CVR2 CVR1 CVR0 0000 0000 F52h CCPTMRS0 C3TSEL1 C3TSEL0 C2TSEL2 C2TSEL0 C1TSEL2 C1TSEL1 C1TSEL0 00 0000 0000 F50h CCPTMRS2 — — C10TSEL0 — C9TSEL0 C4TSEL1 C4TSEL0 0 -000	F58h	PMDIN2L ⁽²⁾	Parallel Port Ir	n Data Low By	rte (Buffer 2)						0000 0000
F56h PMEL ⁽²⁾ PTEN7 PTEN6 PTEN5 PTEN4 PTEN3 PTEN2 PTEN1 PTEN0 0000 0000 F55h PMSTATH ⁽²⁾ IBF IBOV — — IB3F IB2F IB1F IB0F 00 0000 F54h PMSTATL ⁽²⁾ OBE OBUF — — OB3E OB2E OB1E OB0E 10 1111 F53h CVRCON CVREN CVROE CVRR CVRSS CVR3 CVR2 CVR1 CVR0 0000	F57h	PMEH ⁽²⁾	PTEN15	PTEN14	PTEN13	PTEN12	PTEN11	PTEN10	PTEN9	PTEN8	0000 0000
F55h PMSTATH ⁽²⁾ IBF IBOV — — IB3F IB2F IB1F IB0F 000000 F54h PMSTATL ⁽²⁾ OBE OBUF — — OB3E OB2E OB1E OB0E 101111 F53h CVRCON CVREN CVROE CVR CVRSS CVR3 CVR2 CVR1 CVR0 0000 0000 F52h CCPTMRS0 C3TSEL1 C3TSEL0 C2TSEL2 C2TSEL1 C2TSEL0 C1TSEL2 C1TSEL1 C1TSEL0 00-0 0000 <td>F56h</td> <td>PMEL⁽²⁾</td> <td>PTEN7</td> <td>PTEN6</td> <td>PTEN5</td> <td>PTEN4</td> <td>PTEN3</td> <td>PTEN2</td> <td>PTEN1</td> <td>PTEN0</td> <td>0000 0000</td>	F56h	PMEL ⁽²⁾	PTEN7	PTEN6	PTEN5	PTEN4	PTEN3	PTEN2	PTEN1	PTEN0	0000 0000
F54h PMSTATL ⁽²⁾ OBE OBUF — — OB3E OB2E OB1E OB0E 10 1111 F53h CVRCON CVREN CVROE CVR CVRSS CVR3 CVR2 CVR1 CVR0 0000 0000 F52h CCPTMRS0 C3TSEL1 C3TSEL0 C2TSEL2 C2TSEL1 C2TSEL0 C1TSEL2 C1TSEL1 C1TSEL0 0000	F55h	PMSTATH ⁽²⁾	IBF	IBOV	_	_	IB3F	IB2F	IB1F	IB0F	00 0000
F53h CVRCON CVREN CVROE CVR CVRSS CVR3 CVR2 CVR1 CVR0 0000 0000 F52h CCPTMRS0 C3TSEL1 C3TSEL0 C2TSEL2 C2TSEL1 C2TSEL0 C1TSEL2 C1TSEL1 C1TSEL0 0000 0000 F51h CCPTMRS1 C7TSEL1 C7TSEL0 — C6TSEL0 — C5TSEL0 C4TSEL1 C4TSEL0 0000 0000 0000 F50h CCPTMRS2 — — C10TSEL0 — C9TSEL0 C8TSEL1 C8TSEL0 0 -000 F4Fh DSGPR1 Deep Sleep Persistent General Purpose Register (contents retained even in Deep Sleep) xxxx	F54h	PMSTATL ⁽²⁾	OBE	OBUF	_	_	OB3E	OB2E	OB1E	OB0E	10 1111
F52h CCPTMRS0 C3TSEL1 C3TSEL0 C2TSEL2 C2TSEL1 C2TSEL0 C1TSEL2 C1TSEL1 C1TSEL0 0000 0000 F51h CCPTMRS1 C7TSEL1 C7TSEL0 — C6TSEL0 — C5TSEL0 C4TSEL1 C4TSEL0 00-0 -000 F50h CCPTMRS2 — — C1TSEL0 — C9TSEL0 C8TSEL1 C4TSEL0 00-0 -000 F4Fh DSGPR1 Deep Sleep Persistent General Purpose Register (contents retained even in Deep Sleep) xxxx	F53h	CVRCON	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	0000 0000
F51h CCPTMRS1 C7TSEL1 C7TSEL0 — C6TSEL0 — C5TSEL0 C4TSEL1 C4TSEL0 00-0 -000 F50h CCPTMRS2 — — — C10TSEL0 — C9TSEL0 C8TSEL1 C4TSEL0 00-0 -000 F4Fh DSGPR1 Deep Sleep Persistent General Purpose Register (contents retained even in Deep Sleep) xxxx xxx	F52h	CCPTMRS0	C3TSEL1	C3TSEL0	C2TSEL2	C2TSEL1	C2TSEL0	C1TSEL2	C1TSEL1	C1TSEL0	0000 0000
F50h CCPTMRS2 — — C10TSEL0 — C9TSEL0 C8TSEL1 C8TSEL0 0 -000 F4Fh DSGPR1 Deep Sleep Persistent General Purpose Register (contents retained even in Deep Sleep) xxxx xxx xxx xxxx xxxx xxxx xxxx xxxx <td>F51h</td> <td>CCPTMRS1</td> <td>C7TSEL1</td> <td>C7TSEL0</td> <td>_</td> <td>C6TSEL0</td> <td>_</td> <td>C5TSEL0</td> <td>C4TSEL1</td> <td>C4TSEL0</td> <td>00-0 -000</td>	F51h	CCPTMRS1	C7TSEL1	C7TSEL0	_	C6TSEL0	_	C5TSEL0	C4TSEL1	C4TSEL0	00-0 -000
F4Fh DSGPR1 Deep Sleep Persistent General Purpose Register (contents retained even in Deep Sleep) xxxx xxxx F4Eh DSGPR0 Deep Sleep Persistent General Purpose Register (contents retained even in Deep Sleep) xxxx xxxx F4Dh DSCONH DSEN — — — CFGPER2 DSULPEN RTCWDIS 0000 F4Ch DSCONL — — — — ULPWDIS DSBOR RELEASE 000	F50h	CCPTMRS2	_	—	_	C10TSEL0	_	C9TSEL0	C8TSEL1	C8TSEL0	0 -000
F4Eh DSGPR0 Deep Sleep Persistent General Purpose Register (contents retained even in Deep Sleep) xxxx xxxx F4Dh DSCONH DSEN — — — CFGPER2 DSULPEN RTCWDIS 0000 F4Ch DSCONL — — — — ULPWDIS DSBOR RELEASE 000	F4Fh	DSGPR1	Deep Sleep P	ersistent Gene	eral Purpose F	Register (conte	ents retained e	ven in Deep Sl	eep)	1	XXXX XXXX
F4Dh DSCONH DSEN — — — CFGPER2 DSULPEN RTCWDIS 0 -000 F4Ch DSCONL — — — — — 0	F4Eh	DSGPR0	Deep Sleep P	ersistent Gene	eral Purpose F	Register (conte	ents retained e	ven in Deep Sl	eep)		XXXX XXXX
F4Ch DSCONL ULPWDIS DSBOR RELEASE000	F4Dh	DSCONH	DSEN	_		_	_	CFGPER2	DSULPEN	RTCWDIS	0000
	F4Ch	DSCONL	_	_	_	_	_	ULPWDIS	DSBOR	RELEASE	000

Note 1: Applicable for 28-pin devices (PIC18F26J13, PIC18F27J13, PIC18LF26J13 and PIC18LF27J13).

2: Applicable for 44-pin devices (PIC18F46J13, PIC18F47J13, PIC18LF46J13 and PIC18LF47J13).

3: Value on POR, BOR.

9.2 PIR Registers

The PIR registers contain the individual flag bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are three Peripheral Interrupt Request (Flag) registers (PIR1, PIR2, PIR3).

- Note 1: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Interrupt Enable bit, GIE (INT-CON<7>).
 - 2: User software should ensure the appropriate interrupt flag bits are cleared prior to enabling an interrupt and after servicing that interrupt.

REGISTER 9-4: PIR1: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 1 (ACCESS F9Eh)

R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
PMPIF ⁽¹⁾	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF
bit 7							bit 0

Legend:				
R = Read	able bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value	e at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 7	PMPIF: F	Parallel Master Port Read/Wri	te Interrupt Flag bit ⁽¹⁾	
	1 = A rea	d or a write operation has tak	en place (must be cleared in	software)
	0 = No re	ead or write has occurred		
bit 6	ADIF: A/	D Converter Interrupt Flag bit		
	1 = An A	VD conversion completed (mu	ust be cleared in software)	
bit 5			lag hit	
DIUD	1 = The	FUSART1 receive huffer RC	REG1 is full (cleared when R	CREG1 is read)
	0 = The	EUSART1 receive buffer is er	mpty	
bit 4	TX1IF: E	USART1 Transmit Interrupt F	lag bit	
	1 = The	EUSART1 transmit buffer, TX	REG1, is empty (cleared whe	en TXREG1 is written)
	0 = The	EUSART1 transmit buffer is f	ull	
bit 3	SSP1IF:	Master Synchronous Serial P	Port 1 Interrupt Flag bit	
	1 = The 0 = Wait	transmission/reception is con ing to transmit/receive	nplete (must be cleared in sof	tware)
bit 2	CCP1IF:	ECCP1 Interrupt Flag bit		
	Capture	mode:		
	1 = A T N	IR1/TMR3 register capture of	ccurred (must be cleared in so	oftware)
	0 = 100 I	mode:	occuned	
	1 = A TN	IR1/TMR3 register compare r	match occurred (must be clea	red in software)
	0 = No T	MR1/TMR3 register compare	e match occurred	,
	PWM mc	de:		
	Unused i	n this mode.		
bit 1	TMR2IF:	TMR2 to PR2 Match Interrup	ot Flag bit	
	1 = IMH	2 to PR2 match occurred (mu	ust be cleared in software)	
hit 0		TMR1 Overflow Interrunt Ele	a hit	
		1 register overflowed (must b	y un	
	0 = TMF	1 register did not overflow	e dealed in Soliwale)	
Note 1:	These bits ar	e unimplemented on 28-pin d	levices.	

REGISTER 9-17: IPR4: PERIPHERAL INTERRUPT PRIORITY REGISTER 4 (ACCESS F90h)

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
CCP10IP	CCP9IP	CCP8IP	CCP7IP	CCP6IP	CCP5IP	CCP4IP	CCP3IP
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-1	CCP10IP:CCP4IP: CCP<10:4>	Interrupt Priority	y bits

1 = High priority0 = Low priority

bit 0 **CCP3IP:** ECCP3 Interrupt Priority bit 1 = High priority

0 = Low priority

REGISTER 9-18: IPR5: PERIPHERAL INTERRUPT PRIORITY REGISTER 5 (ACCESS F99h)

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	CM3IP	TMR8IP	TMR6IP	TMR5IP	TMR5GIP	TMR1GIP
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	Unimplemented: Read as '0'
bit 5	CM3IP: Comparator 3 Interrupt Priority bit
	1 = High priority
	0 = Low priority
bit 4	TMR8IP: TMR8 to PR8 Match Interrupt Priority bit
	1 = High priority
	0 = Low priority
bit 3	TMR6IP: TMR6 to PR6 Match Interrupt Priority bit
	1 = High priority
	0 = Low priority
bit 2	TMR5IP: TMR5 Overflow Interrupt Priority bit
	1 = High priority
	0 = Low priority
bit 1	TMR5GIP: TMR5 Gate Interrupt Priority bit
	1 = High priority
	0 = Low priority
bit 0	TMR1GIP: TMR1 Gate Interrupt Priority bit
	1 = High priority
	0 = Low priority

REGISTER 10-4: PADCFG1: PAD CONFIGURATION CONTROL REGISTER 1 (BANKED F3Ch)

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	—	—	RTSECSEL1 ⁽¹⁾	RTSECSEL0 ⁽¹⁾	PMPTTL
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-3	Unimplemented: Read as '0'
bit 2-1	RTSECSEL<1:0>: RTCC Seconds Clock Output Select bits ⁽¹⁾
	11 = Reserved; do not use
	10 = RTCC source clock is selected for the RTCC pin (can be INTRC, T1OSC or T1CKI depending upon the RTCOSC (CONFIG3L<1>) and T1OSCEN (T1CON<3>) bit settings)
	01 = RTCC seconds clock is selected for the RTCC pin
	00 = RTCC alarm pulse is selected for the RTCC pin
bit 0	PMPTTL: PMP Module TTL Input Buffer Select bit
	1 = PMP module uses TTL input buffers
	0 = PMP module uses Schmitt Trigger input buffers
Note 1:	To enable the actual RTCC output, the RTCOE (RTCCFG<2>) bit needs to be set.

10.2 PORTA, TRISA and LATA Registers

PORTA is a 7-bit wide, bidirectional port. It may function as a 5-bit port, depending on the oscillator mode selected. Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin).

Reading the PORTA register reads the status of the pins, whereas writing to it, will write to the port latch.

The Data Latch (LATA) register is also memory mapped. Read-modify-write operations on the LATA register read and write the latched output value for PORTA.

The other PORTA pins are multiplexed with analog inputs, the analog VREF+ and VREF- inputs and the comparator voltage reference output. The operation of pins, RA<3:0> and RA5, as A/D Converter inputs is selected by clearing or setting the control bits in the ANCON0 register (A/D Port Configuration Register 0).

The RAx pins may also be used as comparator inputs by setting the appropriate bits in the CMxCON registers. To use RAx as digital inputs, it is necessary to turn off the comparators.

Note: On a Power-on Reset (POR), RA5 and RA<3:0> are configured as analog inputs and read as '0'.

All PORTA pins have TTL input levels and full CMOS output drivers.

The TRISA register controls the direction of the PORTA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

EXAMPL	_E 10-2:		INITIALIZING PORTA
CLRF	PORTA	;	Initialize PORTA by
		;	clearing output
		;	data latches
CLRF	LATA	;	Alternate method
		;	to clear output
		;	data latches
MOVLB	0x0F	;	ANCONx register not in
		;	Access Bank
MOVLW	0x0F	;	Configure A/D
MOVWF	ANCON0	;	for digital inputs
MOVLW	OxCF	;	Value used to
		;	initialize data
		;	direction
MOVWF	TRISA	;	Set RA<3:0> as inputs
		;	RA<5:4> as outputs

10.7.6 PERIPHERAL PIN SELECT REGISTERS

The PIC18F47J13 Family of devices implements a total of 37 registers for remappable peripheral configuration of 44-pin devices. The 28-pin devices have 31 registers for remappable peripheral configuration.

Note: Input and output register values can only be changed if IOLOCK (PPSCON<0>) = 0. See Example 10-7 for a specific command sequence.

REGISTER 10-5: PPSCON: PERIPHERAL PIN SELECT INPUT REGISTER 0 (BANKED EBFh)⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	
—	—		—	—	—	—	IOLOCK	
bit 7 bit 0								

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-1 Unimplemented: Read as '0'

bit 0

IOLOCK: I/O Lock Enable bit

1 = I/O lock is active, RPORx and RPINRx registers are write-protected
 0 = I/O lock is not active, pin configurations can be changed

Note 1: Register values can only be changed if IOLOCK (PPSCON<0>) = 0.

REGISTER 10-6: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1 (BANKED EE1h)

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	INTR1R4	INTR1R3	INTR1R2	INTR1R1	INTR1R0
bit 7							bit 0

Legend:	R/\overline{W} = Readable bit, Writable bit if IOLOCK = 0					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 7-5Unimplemented: Read as '0'bit 4-0INTR1R<4:0>: Assign External Interrupt 1 (INT1) to the Corresponding RPn Pin bits

REGISTER 10-7: RPINR2: PERIPHERAL PIN SELECT INPUT REGISTER 2 (BANKED EE2h)

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	INTR2R4	INTR2R3	INTR2R2	INTR2R1	INTR2R0
bit 7							bit 0

Legend:	R/\overline{W} = Readable bit, Writable bit if IOLOCK = 0				
R = Readable bit	W = Writable bit	bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-5 **Unimplemented:** Read as '0'

bit 4-0 INTR2R<4:0>: Assign External Interrupt 2 (INT2) to the Corresponding RPn Pin bits

REGISTER 10-24: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0 (BANKED EC1h)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP0R4	RP0R3	RP0R2	RP0R1	RP0R0
bit 7							bit 0

Legend:	R/\overline{W} = Readable bit, Writable bit if IOLOCK = 0			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP0R<4:0>:** Peripheral Output Function is Assigned to RP0 Output Pin bits (see Table 10-14 for peripheral function numbers)

REGISTER 10-25: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1 (BANKED EC7h)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP1R4	RP1R3	RP1R2	RP1R1	RP1R0
bit 7							bit 0

Legend:	R/\overline{W} = Readable bit, Writable bit if IOLOCK = 0			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP1R<4:0>:** Peripheral Output Function is Assigned to RP1 Output Pin bits (see Table 10-14 for peripheral function numbers)

REGISTER 10-26: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2 (BANKED EC3h)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP2R4	RP2R3	RP2R2	RP2R1	RP2R0
bit 7							bit 0

Legend:	R/\overline{W} = Readable bit, Writable bit if IOLOCK = 0			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP2R<4:0>:** Peripheral Output Function is Assigned to RP2 Output Pin bits (see Table 10-14 for peripheral function numbers)

11.3 MASTER PORT MODES

In its Master modes, the PMP module provides an 8-bit data bus, up to 16 bits of address, and all the necessary control signals to operate a variety of external parallel devices, such as memory devices, peripherals and slave microcontrollers. To use the PMP as a master, the module must be enabled (PMPEN = 1) and the mode must be set to one of the two possible Master modes (PMMODEH<1:0> = 10 or 11).

Because there are a number of parallel devices with a variety of control methods, the PMP module is designed to be extremely flexible to accommodate a range of configurations. Some of these features include:

- · 8-Bit and 16-Bit Data modes on an 8-bit data bus
- · Configurable address/data multiplexing
- · Up to two chip select lines
- Up to 16 selectable address lines
- · Address auto-increment and auto-decrement
- · Selectable polarity on all control lines
- Configurable Wait states at different stages of the read/write cycle

11.3.1 PMP AND I/O PIN CONTROL

Multiple control bits are used to configure the presence or absence of control and address signals in the module. These bits are PTBEEN, PTWREN, PTRDEN and PTEN<15:0>. They give the user the ability to conserve pins for other functions and allow flexibility to control the external address. When any one of these bits is set, the associated function is present on its associated pin; when clear, the associated pin reverts to its defined I/O port function.

Setting a PTENx bit will enable the associated pin as an address pin and drive the corresponding data contained in the PMADDR register. Clearing a PTENx bit will force the pin to revert to its original I/O function.

For the pins configured as chip select (PMCS) with the corresponding PTENx bit set, the PTEN0 and PTEN1 bits will also control the PMALL and PMALH signals. When multiplexing is used, the associated address latch signals should be enabled.

11.3.2 READ/WRITE-CONTROL

The PMP module supports two distinct read/write signaling methods. In Master Mode 1, read and write strobes are combined into a single control line, PMRD/PMWR. A second control line, PMENB, determines when a read or write action is to be taken. In Master Mode 2, separate read and write strobes (PMRD and PMWR) are supplied on separate pins.

All control signals (PMRD, PMWR, PMBE, PMENB, PMAL and PMCS) can be individually configured as either positive or negative polarity. Configuration is controlled by separate bits in the PMCONL register. Note that the polarity of control signals that share the same output pin (for example, PMWR and PMENB) are controlled by the same bit; the configuration depends on which Master Port mode is being used.

11.3.3 DATA WIDTH

The PMP supports data widths of both 8 bits and 16 bits. The data width is selected by the MODE16 bit (PMMODEH<2>). Because the data path into and out of the module is only 8 bits wide, 16-bit operations are always handled in a multiplexed fashion, with the Least Significant Byte (LSB) of data being presented first. To differentiate data bytes, the byte enable control strobe, PMBE, is used to signal when the Most Significant Byte (MSB) of data is being presented on the data lines.

11.3.4 ADDRESS MULTIPLEXING

In either of the Master modes (PMMODEH<1:0> = 1x), the user can configure the address bus to be multiplexed together with the data bus. This is accomplished by using the ADRMUX<1:0> bits (PMCONH<4:3>). There are three address multiplexing modes available. Typical pinout configurations for these modes are displayed in Figure 11-9, Figure 11-10 and Figure 11-11.

In Demultiplexed mode (PMCONH<4:3> = 00), data and address information are completely separated. Data bits are presented on PMD<7:0>, and address bits are presented on PMADDRH<6:0> and PMADDRL<7:0>.

In Partially Multiplexed mode (PMCONH<4:3> = 01), the lower eight bits of the address are multiplexed with the data pins on PMD<7:0>. The upper eight bits of the address are unaffected and are presented on PMADDRH<6:0>. The PMA0 pin is used as an address latch and presents the Address Latch Low (PMALL) enable strobe. The read and write sequences are extended by a complete CPU cycle during which the address is presented on the PMD<7:0> pins.

In Fully Multiplexed mode (PMCONH<4:3> = 10), the entire 16 bits of the address are multiplexed with the data pins on PMD<7:0>. The PMA0 and PMA1 pins are used to present Address Latch Low (PMALL) enable and Address Latch High (PMALH) enable strobes, respectively. The read and write sequences are extended by two complete CPU cycles. During the first cycle, the lower eight bits of the address are presented on the PMD<7:0> pins with the PMALL strobe active. During the second cycle, the upper eight bits of the address are presented on the PMD<7:0> pins with the PMALH strobe active. In the event the upper address bits are configured as chip select pins, the corresponding address bits are automatically forced to '0'.

FIGURE 11-18: WRITE TIMING, 8-BIT DATA, PARTIALLY MULTIPLEXED ADDRESS, ENABLE STROBE

Q1 Q2	Q3 Q4 Q1 Q2 Q3 Q4 0	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
PMCS			Ţ
PMD<7:0>	Address<7:0>	Data	<u>, </u>
PMRD/PMWR			
PMENB			
PMALL			
PMPIF			
BUSY			

FIGURE 11-19: READ TIMING, 8-BIT DATA, FULLY MULTIPLEXED 16-BIT ADDRESS

Q1 Q2	Q3 Q4 Q1 Q2 Q3 Q4	4 Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
				1
PMCS)!
PMD<7:0>	Address<7:0>	Address<13:8>	Data	<u> </u>
PMWR		1 I I I I I I I		
PMRD				\
PMALL		1 I I I I I I I		
PMALH				
PMPIF		· · · · ·		;'
BUSY				
			1 I I	i

FIGURE 11-20: WRITE TIMING, 8-BIT DATA, FULLY MULTIPLEXED 16-BIT ADDRESS

		- I - I - I	1 I		1
PMCS					
PMD<7:0>	Address<7:0>	Address<13	8> Data		1
PMWR					i i
PMRD					1 1
PMALL			1 I I I	1 I 1 I	1
PMALH					1 1
PMPIF					
BUSY			, '		I I

14.2 Timer2 Interrupt

Timer2 can also generate an optional device interrupt. The Timer2 output signal (TMR2 to PR2 match) provides the input for the 4-bit output counter/postscaler. This counter generates the TMR2 Match Interrupt Flag, which is latched in TMR2IF (PIR1<1>). The interrupt is enabled by setting the TMR2 Match Interrupt Enable bit, TMR2IE (PIE1<1>).

A range of 16 postscaler options (from 1:1 through 1:16 inclusive) can be selected with the postscaler control bits, T2OUTPS<3:0> (T2CON<6:3>).

14.3 Timer2 Output

The unscaled output of TMR2 is available primarily to the ECCP modules, where it is used as a time base for operations in PWM mode.

Timer2 can be optionally used as the shift clock source for the MSSP modules operating in SPI mode. Additional information is provided in Section 20.0 "Master Synchronous Serial Port (MSSP) Module".

TABLE 14-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF
PIR1	PMPIF ⁽¹⁾	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF
PIE1	PMPIE ⁽¹⁾	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE
IPR1	PMPIP ⁽¹⁾	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP
TMR2	Timer2 Reg	ister						
T2CON	—	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0
PR2	Timer2 Peri	od Register						

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Timer2 module.

Note 1: These bits are only available in 44-pin devices.

When ALRMCFG = 00 and the CHIME bit = 0 (ALRMCFG<6>), the repeat function is disabled and only a single alarm will occur. The alarm can be repeated up to 255 times by loading the ALRMRPT register with FFh.

After each alarm is issued, the ALRMRPT register is decremented by one. Once the register has reached '00', the alarm will be issued one last time.

After the alarm is issued a last time, the ALRMEN bit is cleared automatically and the alarm turned off. Indefinite repetition of the alarm can occur if the CHIME bit = 1.

When CHIME = 1, the alarm is not disabled when the ALRMRPT register reaches '00', but it rolls over to FF and continues counting indefinitely.

17.3.2 ALARM INTERRUPT

At every alarm event, an interrupt is generated. Additionally, an alarm pulse output is provided that operates at half the frequency of the alarm.

The alarm pulse output is completely synchronous with the RTCC clock and can be used as a trigger clock to other peripherals. This output is available on the RTCC pin. The output pulse is a clock with a 50% duty cycle and a frequency half that of the alarm event (see Figure 17-6).

The RTCC pin can also output the seconds clock. The user can select between the alarm pulse, generated by the RTCC module, or the seconds clock output.

The RTSECSEL (PADCFG1<2:1>) bits select between these two outputs:

- Alarm pulse RTSECSEL<2:1> = 00
- Seconds clock RTSECSEL<2:1> = 01

FIGURE 17-6: TIMER PULSE GENERATION

17.4 Low-Power Modes

The timer and alarm can optionally continue to operate while in Sleep, Idle and even Deep Sleep mode. An alarm event can be used to wake-up the microcontroller from any of these Low-Power modes.

17.5 Reset

17.5.1 DEVICE RESET

When a device Reset occurs, the ALCFGRPT register is forced to its Reset state, causing the alarm to be disabled (if enabled prior to the Reset). If the RTCC was enabled, it will continue to operate when a basic device Reset occurs.

17.5.2 POWER-ON RESET (POR)

The RTCCFG and ALRMRPT registers are reset only on a POR. Once the device exits the POR state, the clock registers should be reloaded with the desired values.

The timer prescaler values can be reset only by writing to the SECONDS register. No device Reset can affect the prescalers.

20.5.4 CLOCK STRETCHING

Both 7-Bit and 10-Bit Slave modes implement automatic clock stretching during a transmit sequence.

The SEN bit (SSPxCON2<0>) allows clock stretching to be enabled during receives. Setting SEN will cause the SCLx pin to be held low at the end of each data receive sequence.

20.5.4.1 Clock Stretching for 7-Bit Slave Receive Mode (SEN = 1)

In 7-Bit Slave Receive mode, <u>on the falling edge of the</u> ninth clock at the end of the ACK sequence, if the BF bit is set, the CKP bit in the SSPxCON1 register is automatically cleared, forcing the SCLx output to be held low. The CKP bit being cleared to '0' will assert the SCLx line low. The CKP bit must be set in the user's ISR before reception is allowed to continue. By holding the SCLx line low, the user has time to service the ISR and read the contents of the SSPxBUF before the master device can initiate another receive sequence. This will prevent buffer overruns from occurring (see Figure 20-15).

- Note 1: If the user reads the contents of the SSPxBUF before the falling edge of the ninth clock, thus clearing the BF bit, the CKP bit will not be cleared and clock stretching will not occur.
 - 2: The CKP bit can be set in software regardless of the state of the BF bit. The user should be careful to clear the BF bit in the ISR before the next receive sequence in order to prevent an overflow condition.

20.5.4.2 Clock Stretching for 10-Bit Slave Receive Mode (SEN = 1)

In 10-Bit Slave Receive mode, during the address sequence, clock stretching automatically takes place but CKP is not cleared. During this time, if the UA bit is set after the ninth clock, clock stretching is initiated. The UA bit is set after receiving the upper byte of the 10-bit address and following the receive of the second byte of the 10-bit address with the R/W bit cleared to '0'. The release of the clock line occurs upon updating SSPxADD. Clock stretching will occur on each data receive sequence, as described in 7-bit mode.

Note: If the user polls the UA bit and clears it by updating the SSPxADD register before the falling edge of the ninth clock occurs, and if the user has not cleared the BF bit by reading the SSPxBUF register before that time, then the CKP bit will still NOT be asserted low. Clock stretching on the basis of the state of the BF bit only occurs during a data sequence, not an address sequence.

20.5.4.3 Clock Stretching for 7-Bit Slave Transmit Mode

The 7-Bit Slave Transmit mode implements clock stretching by clearing the CKP bit, after the falling edge of the ninth clock, if the BF bit is clear. This occurs regardless of the state of the SEN bit.

The user's Interrupt Service Routine (ISR) must set the CKP bit before transmission is allowed to continue. By holding the SCLx line low, the user has time to service the ISR and load the contents of the SSPxBUF before the master device can initiate another transmit sequence (see Figure 20-10).

- Note 1: If the user loads the contents of SSPxBUF, setting the BF bit before the falling edge of the ninth clock, the CKP bit will not be cleared and clock stretching will not occur.
 - **2:** The CKP bit can be set in software regardless of the state of the BF bit.

20.5.4.4 Clock Stretching for 10-Bit Slave Transmit Mode

In 10-Bit Slave Transmit mode, clock stretching is controlled during the first two address sequences by the state of the UA bit, just as it is in 10-Bit Slave Receive mode. The first two addresses are followed by a third address sequence, which contains the high-order bits of the 10-bit address and the R/W bit set to '1'. After the third address sequence is performed, the UA bit is not set, the module is now configured in Transmit mode and clock stretching is controlled by the BF flag as in 7-Bit Slave Transmit mode (see Figure 20-13).

21.0 ENHANCED UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (EUSART)

The Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) module is one of two serial I/O modules. (Generically, the EUSART is also known as a Serial Communications Interface or SCI.) The EUSART can be configured as a full-duplex asynchronous system that can communicate with peripheral devices, such as CRT terminals and personal computers. It can also be configured as a half-duplex synchronous system that can communicate with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs and so on.

The Enhanced USART module implements additional features, including Automatic Baud Rate Detection and calibration, automatic wake-up on Sync Break reception, and 12-bit Break character transmit. These make it ideally suited for use in Local Interconnect Network bus (LIN/J2602 bus) systems.

All members of the PIC18F47J13 Family are equipped with two independent EUSART modules, referred to as EUSART1 and EUSART2. They can be configured in the following modes:

- Asynchronous (full-duplex) with:
 - Auto-wake-up on character reception
 - Auto-baud calibration
 - 12-bit Break character transmission
- Synchronous Master (half-duplex) with selectable clock polarity
- Synchronous Slave (half-duplex) with selectable clock polarity

The pins of EUSART1 and EUSART2 are multiplexed with the functions of PORTC (RC6/CCP9/PMA5/TX1/CK1/RP17 and RC7/CCP10/PMA4/RX1/DT1/RP18), and remapped (RPn1/TX2/CK2 and RPn2/RX2/DT2), respectively. In order to configure these pins as an EUSART:

- For EUSART1:
 - SPEN bit (RCSTA1<7>) must be set (= 1)
 - TRISC<7> bit must be set (= 1)
 - TRISC<6> bit must be cleared (= 0) for Asynchronous and Synchronous Master modes
 - TRISC<6> bit must be set (= 1) for Synchronous Slave mode
- For EUSART2:
 - SPEN bit (RCSTA2<7>) must be set (= 1)
 - TRIS bit for RPn2/RX2/DT2 = 1
 - TRIS bit for RPn1/TX2/CK2 = 0 for Asynchronous and Synchronous Master modes
 - TRISC<6> bit must be set (= 1) for Synchronous Slave mode

Note:	The EUSART control will automatically
	reconfigure the pin from input to output as
	needed.

The TXx/CKx I/O pins have an optional open-drain output capability. By default, when this pin is used by the EUSART as an output, it will function as a standard push-pull CMOS output. The TXx/CKx I/O pins' open-drain, output feature can be enabled by setting the corresponding UxOD bit in the ODCON2 register. For more details, see **Section 20.3.3 "Open-Drain Output Option**".

The operation of each Enhanced USART module is controlled through three registers:

- Transmit Status and Control (TXSTAx)
- Receive Status and Control (RCSTAx)
- Baud Rate Control (BAUDCONx)

These are covered in detail in Register 21-1, Register 21-2 and Register 21-3, respectively.

Note: Throughout this section, references to register and bit names that may be associated with a specific EUSART module are referred to generically by the use of 'x' in place of the specific module number. Thus, "RCSTAx" might refer to the Receive Status register for either EUSART1 or EUSART2.

27.2 Watchdog Timer (WDT)

PIC18F47J13 Family devices have both a conventional WDT circuit and a dedicated, Deep Sleep capable Watchdog Timer. When enabled, the conventional WDT operates in normal Run, Idle and Sleep modes. This data sheet section describes the conventional WDT circuit.

The dedicated, Deep Sleep capable WDT can only be enabled in Deep Sleep mode. This timer is described in Section 4.6.4 "Deep Sleep Watchdog Timer (DSWDT)".

The conventional WDT is driven by the INTRC oscillator. When the WDT is enabled, the clock source is also enabled. The nominal WDT period is 4 ms and has the same stability as the INTRC oscillator.

The 4 ms period of the WDT is multiplied by a 16-bit postscaler. Any output of the WDT postscaler is selected by a multiplexer, controlled by the WDTPS bits in Configuration Register 2H. Available periods range from about 4 ms to 135 seconds (2.25 minutes depending on voltage, temperature and WDT postscaler). The WDT and postscaler are cleared

FIGURE 27-1: WDT BLOCK DIAGRAM

whenever a SLEEP or CLRWDT instruction is executed, or a clock failure (primary or Timer1 oscillator) has occurred.

- Note 1: The CLRWDT and SLEEP instructions clear the WDT and postscaler counts when executed.
 - 2: When a CLRWDT instruction is executed, the postscaler count will be cleared.

27.2.1 CONTROL REGISTER

The WDTCON register (Register 27-11) is a readable and writable register. The SWDTEN bit enables or disables WDT operation. This allows software to override the WDTEN Configuration bit and enable the WDT only if it has been disabled by the Configuration bit.

LVDSTAT is a read-only status bit that is continuously updated and provides information about the current level of VDDCORE. This bit is only valid when the on-chip voltage regulator is enabled.

PIC18F47J13 FAMILY

RCA	LL	all						
Synta	ax:	RCALL n	RCALL n					
Oper	ands:	-1024 ≤ n ≤	1023					
Oper	ation:	$(PC) + 2 \rightarrow (PC) + 2 + 2$	TOS, 2n \rightarrow PC					
Statu	is Affected:	None						
Enco	oding:	1101	lnnn	nnn	n	nnnn		
Desc	ription:	Subroutine from the cu address (Pe stack. Ther number '2n have increr instruction, PC + 2 + 2r 2-cycle inst	Subroutine call with a jump up to 1K from the current location. First, return address (PC + 2) is pushed onto the stack. Then, add the 2's complement number '2n' to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is a 2-cycle instruction.					
Word	ls:	1						
Cycle	es:	2						
QC	ycle Activity:							
	Q1	Q2	Q3			Q4		
	Decode	Read literal 'n' PUSH PC	Proce: Data	SS I	Write	e to PC		
	No	IO STACK	No					
	operation	operation	operati	on	ope	ration		

RES	ET	Reset						
Synta	ax:	RESET	RESET					
Oper	ands:	None	None					
Operation:		Reset all re affected by	Reset all registers and flags that are affected by a MCLR Reset.					
Statu	s Affected:	All						
Encoding:		0000	0000	1111		1111		
Description:		This instruction of the text of te	This instruction provides a way to execute a MCLR Reset in software.					
Words:		1	1					
Cycles:		1						
Q Cycle Activity:								
	Q1	Q2	Q3	}		Q4		
	Decode	Start reset	No operat	ion	ор	No eration		

Example:

Inetri	uction

After Instruction	
Registers =	Reset Value
Flags* =	Reset Value

RESET

Example: HERE RCALL Jump

Before Instruction

PC = Address (HERE) After Instruction PC = TOS = Address (Jump) Address (HERE + 2)

PIC18F47J13 FAMILY

TBL	RD	Table Read					
Synta	ax:	TBLRD (*; *+; *-; +*)					
Oper	ands:	None					
Oper	ation:	if TBLRD *, (Prog Mem (TBLPTR)) \rightarrow TABLAT; TBLPTR – No Change if TBLRD *+, (Prog Mem (TBLPTR)) \rightarrow TABLAT; (TBLPTR) + 1 \rightarrow TBLPTR if TBLRD *-, (Prog Mem (TBLPTR)) \rightarrow TABLAT; (TBLPTR) – 1 \rightarrow TBLPTR if TBLRD +*, (TBLPTR) + 1 \rightarrow TBLPTR; (Prog Mem (TBLPTR)) \rightarrow TABLAT					
Statu	is Affected:	None					
Enco	oding:	0000	0(000	000	00	10nn nn=0 * =1 *+ =2 *- =3 +*
Desc	Description: This instruction is used to read the conte of Program Memory (P.M.). To address the program memory, a pointer called Table Pointer (TBLPTR) is used. The TBLPTR (a 21-bit pointer) points to each byte in the program memory TBLP					e contents dress the d Table pints to r. TBLPTR	
		has a 2-Mby	∕te a	ddres	s rang	e.	
TBLPTR[0] = 0: Least Significant By Program Memory V					int Byte of ory Word		
		Program Memory Word The TBLRD instruction can modify the value of TBLPTR as follows: • no change • post-increment • post-decrement • pre-increment					
Words:		1					
Cycles:		2					
Q Cycle Activity:		<i>I</i> :					
	Q1	Q2		C	13		Q4
	Decode	No operation		N opera	o ation	ор	No eration

Decode	No	No	No
	operation	operation	operation
No operation	No operation (Read Program Memory)	No operation	No operation (Write TABLAT)

TBLRD **Table Read (Continued)** Example 1: TBLRD *+ ; Before Instruction TABLAT = 55h TBLPTR = 00A356h MEMORY(00A356h) = 34h After Instruction TABLAT = 34h TBLPTR 00A357h = Example 2: TBLRD +* ; Before Instruction TABLAT = AAh TBLPTR MEMORY(01A357h) MEMORY(01A358h) 01A357h = 12h = 34h = After Instruction TABLAT TBLPTR = 34h = 01A358h

30.3	DC Characteristics:	PIC18F47J13 Family	(Industrial)	(Continued)
------	---------------------	--------------------	--------------	-------------

DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial			
Param No. Symbol Characteristic		Min	Мах	Units	Conditions	
	Vol	Output Low Voltage				
D080		I/O Ports:				
		PORTA (except RA6), PORTD ⁽³⁾ , PORTE ⁽³⁾	_	0.4	V	Io∟ = 4 mA, VDD = 3.3V, -40°C to +85°C
		PORTB, PORTC, RA6	—	0.4	V	Io∟ = 8.5 mA, VDD = 3.3V, -40°C to +85°C
	Vон	Output High Voltage				
D090		I/O Ports:			V	
		PORTA (except RA6), PORTD ⁽³⁾ , PORTE ⁽³⁾	2.4	—	V	IOH = -3 mA, VDD = 3.3V, -40°С to +85°С
		PORTB, PORTC, RA6	2.4	—	V	IOH = -6 mA, VDD = 3.3V, -40°С to +85°С
		Capacitive Loading Specs on Output Pins				
D101	Сю	All I/O Pins and OSC2	_	50	pF	To meet the AC Timing Specifications
D102	Св	SCLx, SDAx	—	400	pF	I ² C Specification

Note 1: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

2: Negative current is defined as current sourced by the pin.

3: Only available in 44-pin devices.

4: Refer to Table 10-2 for pin tolerance levels.

Package Marking Information (Continued)

44-Lead QFN

Example

44-Lead TQFP

Example

