

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2000	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2.15V ~ 3.6V
Data Converters	A/D 10x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f27j13-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	9
2.0	Guidelines for Getting Started with PIC18FJ Microcontrollers	28
3.0	Oscillator Configurations	32
4.0	Low-Power Modes	43
5.0	Reset	60
6.0	Memory Organization	75
7.0	Flash Program Memory	. 101
8.0	8 x 8 Hardware Multiplier	. 111
9.0	Interrupts	. 113
10.0	I/O Ports	. 133
11.0	Parallel Master Port (PMP)	. 173
12.0	Timer0 Module	. 198
13.0	Timer1 Module	. 202
14.0	Timer2 Module	. 212
15.0	Timer3/5 Module	. 214
16.0	Timer4/6/8 Module	. 226
17.0	Real-Time Clock and Calendar (RTCC)	. 229
18.0	Capture/Compare/PWM (CCP) Modules	. 248
19.0	Enhanced Capture/Compare/PWM (ECCP) Module	. 260
20.0	Master Synchronous Serial Port (MSSP) Module	
21.0	Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART)	. 336
22.0	10/12-Bit Analog-to-Digital Converter (A/D) Module	. 358
23.0	Comparator Module	
24.0	Comparator Voltage Reference Module	
25.0	High/Low Voltage Detect (HLVD)	. 380
26.0	Charge Time Measurement Unit (CTMU)	
27.0	Special Features of the CPU	. 403
28.0	Instruction Set Summary	. 420
29.0	Development Support	. 470
30.0	Electrical Characteristics	
31.0	Packaging Information	. 516
	ndix A: Revision History	
Appe	ndix B: Migration From PIC18F46J11 to PIC18F47J13	. 534
	/icrochip Website	
	mer Change Notification Service	
	mer Support	
Produ	uct Identification System	. 536

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

Microchip's Worldwide Website; http://www.microchip.com

Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our website at www.microchip.com to receive the most current information on all of our products.

The use of the flag and control bits in the OSCCON register is discussed in more detail in **Section 4.0** "Low-Power Modes".

- Note 1: The Timer1 crystal driver is enabled by setting the T1OSCEN bit in the Timer1 Control register (T1CON<3>). If the Timer1 oscillator is not enabled, then any attempt to select the Timer1 clock source will be ignored, unless the CONFIG2L register's SOSCSEL<1:0> bits are set to Digital mode.
 - 2: If Timer1 is driving a crystal, it is recommended that the Timer1 oscillator be operating and stable prior to switching to it as the clock source; otherwise, a very long delay may occur while the Timer1 oscillator starts.

3.3.2 OSCILLATOR TRANSITIONS

PIC18F47J13 Family devices contain circuitry to prevent clock "glitches" when switching between clock sources. A short pause in the device clock occurs during the clock switch. The length of this pause is the sum of two cycles of the old clock source and three to four cycles of the new clock source. This formula assumes that the new clock source is stable.

Clock transitions are discussed in more detail in **Section 4.1.2 "Entering Power-Managed Modes**".

REGISTER 3-2: OSCCON: OSCILLATOR CONTROL REGISTER (ACCESS FD3h)

R/W-0	R/W-1	R/W-1	R/W-0	R-1 ⁽¹⁾	U-1	R/W-0	R/W-0
IDLEN	IRCF2	IRCF1	IRCF0	OSTS	—	SCS1	SCS0
bit 7							bit 0

Legend:R = Readable bitW = Writable bitU = Unimplemented bit-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 7	IDLEN: Idle Enable bit 1 = Device enters Idle mode on SLEEP instruction 0 = Device enters Sleep mode on SLEEP instruction
bit 6-4	<pre>IRCF<2:0>: Internal Oscillator Frequency Select bits When using INTOSC to drive the 4x PLL, select 8 MHz or 4 MHz only to avoid operating the 4x PLL outside of specification. 111 = 8 MHz (INTOSC drives clock directly) 110 = 4 MHz⁽²⁾ 101 = 2 MHz 100 = 1 MHz 011 = 500 kHz 010 = 250 kHz 001 = 125 kHz 000 = 31 kHz (from either INTOSC/256 or INTRC directly)⁽³⁾</pre>
bit 3	OSTS: Oscillator Start-up Time-out Status bit ⁽¹⁾ 1 = Oscillator Start-up Timer time-out has expired; primary oscillator is running 0 = Oscillator Start-up Timer time-out is running; primary oscillator is not ready
bit 2	Unimplemented: Read as '1'
bit 1-0	SCS<1:0>: System Clock Select bits 11 = Postscaled internal clock (INTRC/INTOSC derived) 10 = Reserved 01 = Timer1 oscillator 00 = Primary clock source (INTOSC postscaler output when FOSC<2:0> = 001 or 000) 00 = Primary clock source (CPU divider output for other values of FOSC<2:0>)
Note 1:	Reset value is '0' when Two-Speed Start-up is enabled and '1' if disabled.

- **2:** Default output frequency of INTOSC on Reset (4 MHz).
- **3:** Source selected by the INTSRC bit (OSCTUNE<7>).

Addr.	File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR
F07h	CCPR8L	Capture/Com	pare/PWM Re	gister 8 Low E	Byte					XXXX XXXX
F06h	CCP8CON	_	_	DC8B1	DC8B0	CCP8M3	CCP8M2	CCP8M1	CCP8M0	00 0000
F05h	CCPR9H	Capture/Com	pare/PWM Re	gister 9 High I	Byte					XXXX XXXX
F04h	CCPR9L	Capture/Com	pare/PWM Re	gister 9 Low E	Byte		_			XXXX XXXX
F03h	CCP9CON	—	—	DC9B1	DC9B0	CCP9M3	CCP9M2	CCP9M1	CCP9M0	00 0000
F02h	CCPR10H	Capture/Com	pare/PWM Re	gister 10 High	Byte		<u>.</u>			XXXX XXXX
F01h	CCPR10L	Capture/Com	pare/PWM Re	gister 10 Low	Byte					XXXX XXXX
F00h	CCP10CON	—	_	DC10B1	DC10B0	CCP10M3	CCP10M2	CCP10M1	CCP10M0	00 0000
EFFh	RPINR24	—	_	_	PWM Fault Ir	nput (FLT0) to	Input Pin Mapp	bing bits		1 1111
EFEh	RPINR23	_	_	_	SPI2 Slave S	elect Input (S	S2) to Input Pin	Mapping bits		1 1111
EFDh	RPINR22	—	_	_	SPI2 Clock Ir	nput (SCK2) to	o Input Pin Map	ping bits		1 1111
EFCh	RPINR21	—	_	_	SPI2 Data In	put (SDI2) to I	nput Pin Mappi	ng bits		1 1111
EFBh	_	_	_	_	_	_	<u> </u>	_	_	(3)
EFAh	_	_	_	_	_	_	_	_	_	(3)
EF9h	_	_	_	_	_	_	_	_	_	(3)
EF8h	RPINR17	_	_	_	EUSART2 C	lock Input (CK	2) to Input Pin I	Mapping bits		1 1111
EF7h	RPINR16	_	_	_	EUSART2 R	X2/DT2 to Inp	ut Pin Mapping	bits		1 1111
EF6h	_	_	_	_		_	_	_	_	(3)
EF5h	_	_	_	_	_	_	_	_	_	(3)
EF4h	RPINR14	_	_	_	Timer5 Gate	I Input (T5G) to	I Input Pin Map	ning bits		1 1111
EF3h	RPINR13	_	_			1 ()	o Input Pin Map			1 1111
EF2h	RPINR12		_	_	-		o Input Pin Map			1 1111
EF1h									_	(3)
EF0h										(3)
EEFh										(3)
EEEh										(3)
EEDh		<u> </u>								(3)
EECh										(3)
EEBh										
EEAh	RPINR9				ECCP3 Input) to Input Pin M	apping bits	_	(3)
EE9h	RPINR9				· · ·	1 \	/ 1	11 0		
	RPINR0					· · ·) to Input Pin M			1 1111
EE8h) to Input Pin M		a hita	1 1111
EE7h	RPINR15						ut (T5CKI) to Inp		0	1 1111
EE6h	RPINR6						ut (T3CKI) to Inp			1 1111
EE5h		_	_	_					a hita	(3)
EE4h	RPINR4	_	_	_	-		ut (TOCKI) to Inp		y bits	1 1111
EE3h	RPINR3	_	_	_		1 ()	Input Pin Map	0		1 1111
EE2h	RPINR2	_	—	_	-		Input Pin Map			1 1111
EE1h	RPINR1	_	—	_		παρτ (IN I 1) to	Input Pin Map			1 1111
EE0h	_	_	_	_	_	—	_	_	_	(3)
EDFh	-	_	_			—	-		-	(3)
EDEh	_	_	_			_				(3)
EDDh	_	_	_	_		_			-	(3)
EDCh	_	_	—		-	—	_			(3)
EDBh		—	—		—	—				(3)
EDAh		_	—	—	_	—	-	—	-	(3)
ED9h		_	—	—	—	—	-	—	-	(3)
ED8h	RPOR24 ⁽²⁾	—	—	-	Remappable	Pin RP24 Ou	tput Signal Sele	ect bits		0 0000
ED7h	RPOR23 ⁽²⁾	—	—	—	Remappable	Pin RP23 Ou	tput Signal Sele	ect bits		0 0000

Note 1: Applicable for 28-pin devices (PIC18F26J13, PIC18F27J13, PIC18LF26J13 and PIC18LF27J13).

2: Applicable for 44-pin devices (PIC18F46J13, PIC18F47J13, PIC18LF46J13 and PIC18LF47J13).

3: Value on POR, BOR.

REGISTER 9)-7: PIR4:	PERIPHERA	L INTERRUP	T REQUEST	(FLAG) REG	ISTER 4 (AC	CESS F8Fh)	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
CCP10IF	CCP9IF	CCP8IF	CCP7IF	CCP6IF	CCP5IF	CCP4IF	CCP3IF	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable I	oit	U = Unimplem	nented bit, read	d as '0'		
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown				
bit 7-1 CCP10IF:CCP4IF: CCP<10:4> Interrupt Flag bits Capture Mode 1 = A TMR register capture occurred (must be cleared in software) 0 = No TMR register capture occurred								

Compare Mode

1 = A TMR register compare match occurred (must be cleared in software)

0 = No TMR register compare match occurred

PWM Mode

Unused in this mode.

CCP3IF: ECCP3 Interrupt Flag bit

Capture Mode

bit 0

1 = A TMR register capture occurred (must be cleared in software)

0 = No TMR register capture occurred

Compare Mode

1 = A TMR register compare match occurred (must be cleared in software)

0 = No TMR register compare match occurred

PWM Mode

Unused in this mode.

TABLE 10-5:	PORTB I		IARY	(CONTINUED)				
Pin	Function	TRIS Setting	I/O	l/O Type	Description			
RB4/CCP4/	RB4	0	0	DIG	LATB<4> data output; not affected by an analog input.			
PMA1/KBI0/ SCL2 ⁽⁴⁾ /RP7		1	I	TTL	PORTB<4> data input; weak pull-up when the RBPU bit is cleared. Disabled when an analog input is enabled. ⁽¹⁾			
	CCP4 ⁽³⁾	1	Ι	ST	Capture input.			
		0	0	DIG	Compare/PWM output.			
	PMA1	х	I/O	ST/TTL/ DIG	i			
	KBI0	1		TTL	Interrupt-on-change pin.			
	SCL2 ⁽⁴⁾	1	I	l ² C/ SMBus	I ² C clock input (MSSP2 module).			
	RP7	1		ST	Remappable Peripheral Pin 7 input.			
		0	0	DIG	Remappable Peripheral Pin 7 output.			
RB5/CCP5/	RB5	0	0	DIG	LATB<5> data output.			
PMA0/KBI1/ SDA2 ⁽⁴⁾ /RP8		1	Ι	TTL	PORTB<5> data input; weak pull-up when the $\overline{\text{RBPU}}$ bit is cleared.			
	CCP5 ⁽³⁾	1	I	ST	Capture input.			
		0	0	DIG	Compare/PWM output.			
	PMA0 ⁽³⁾	х	I/O	ST/TTL/ DIG	Parallel Master Port address.			
	KBI1	1	Ι	TTL	Interrupt-on-change pin.			
	SDA2 ⁽⁴⁾	1	I	l ² C/ SMBus	I ² C data input (MSSP2 module).			
	RP8	1		ST	Remappable Peripheral Pin 8 input.			
		0	0	DIG	Remappable Peripheral Pin 8 output.			
RB6/CCP6/	RB6	0	0	DIG	LATB<6> data output.			
KBI2/PGC/RP9		1	I	TTL	PORTB<6> data input; weak pull-up when the RBPU bit is cleared.			
	CCP6 ⁽³⁾	1	I	ST	Capture input.			
		0	0	DIG	Compare/PWM output.			
	KBI2	1	Ι	TTL	Interrupt-on-change pin.			
	PGC	х	I	ST	Serial execution (ICSP™) clock input for ICSP and ICD operation. ⁽²⁾			
	RP9	1	Ι	ST	Remappable Peripheral Pin 9 input.			
		0	0	DIG	Remappable Peripheral Pin 9 output.			

DODTO UO CUMMA DV (CONTINUED) DI E 40 E.

Legend: DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; ANA = Analog level input/output; x = Don't care (TRISx bit does not affect port direction or is overridden for this option)

Note 1: Pins are configured as analog inputs by default on POR. Using these pins for digital inputs requires setting the appropriate bits in the ANCON1 register.

- 2: All other pin functions are disabled when ICSP[™] or ICD is enabled.
- 3: Only on 44-pin devices (PIC18F46J13, PIC18F47J13, PIC18LF46J13 and PIC18LF47J13).
- 4: Only on 28-pin devices (PIC18F26J13, PIC18F27J13, PIC18LF26J13 and PIC18LF27J13).

TABLE 10-7: PORTC I/O SUMMARY (CONTINUED)					
Pin	Function	TRIS Setting	I/O	I/O Type	Description
RC5/SDO1/	RC5	0	0	DIG	PORTC<5> data output.
RP16	SDO1	х	0	DIG	SPI data output (MSSP1 module).
	RP16	1	I	ST	Remappable Peripheral Pin 16 input.
		0	0	DIG	Remappable Peripheral Pin 16 output.
RC6/CCP9/	RC6	1	I	ST	PORTC<6> data input.
PMA5/TX1/		0	0	DIG	LATC<6> data output.
CK1/RP17	CCP9	1	I	ST	Capture input.
		0	0	DIG	Compare/PWM output.
	PMA5 ⁽¹⁾	1	Ι	ST/TTL	Parallel Master Port io_addr_in<5>.
		0	0	DIG	Parallel Master Port address.
	TX1	0	0	DIG	Asynchronous serial transmit data output (EUSART module); takes priority over port data. User must configure as an output.
	CK1	1	Ι	ST	Synchronous serial clock input (EUSART module).
		0	0	DIG	Synchronous serial clock output (EUSART module); takes priority over port data.
	RP17	1	Ι	ST	Remappable Peripheral Pin 17 input.
		0	0	DIG	Remappable Peripheral Pin 17 output.
RC7/CCP10/	RC7	1	Ι	ST	PORTC<7> data input.
PMA4/RX1/		0	0	DIG	LATC<7> data output.
DT1/RP18	CCP10	1	Ι	ST	Capture input.
		0	0	DIG	Compare/PWM output.
	PMA4 ⁽¹⁾	х	I/O	ST/TTL/ DIG	Parallel Master Port address.
	RX1	1	I	ST	Asynchronous serial receive data input (EUSART module).
	DT1	1	1	ST	Synchronous serial data input (EUSART module). User must configure as an input.
		0	0	DIG	Synchronous serial data output (EUSART module); takes priority over port data.
	RP18	1	I	ST	Remappable Peripheral Pin 18 input.
		0	0	DIG	Remappable Peripheral Pin 18 output.

	TABLE 10-7:	PORTC I/O SUM	MARY (CONTINUED)
--	--------------------	---------------	------------------

Legend: DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; ANA = Analog level input/output; I²C/SMB = I²C/SMBus input buffer; x = Don't care (TRISx bit does not affect port direction or is overridden for this option)

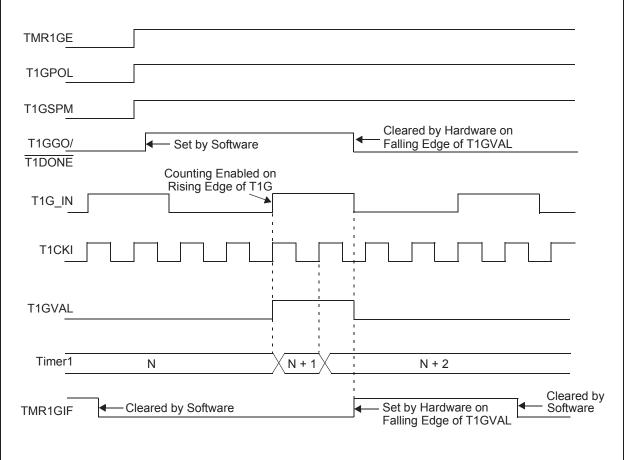
Note 1: This bit is only available on 44-pin devices (PIC18F46J13, PIC18F47J13, PIC18LF46J13 and PIC18LF47J13).

TABLE 10-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0
LATC	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0
ANCON1	VBGEN	—	—	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8
CM2CON	CON	COE	CPOL	EVPOL1	EVPOL0	CREF	CCH1	CCH0
RTCCFG	RTCEN		RTCWREN	RTCSYNC	HALFSEC	RTCOE	RTCPTR1	RTCPTR0

 $\ensuremath{\textcircled{}^\circ}$ 2010-2017 Microchip Technology Inc.

13.8.4 TIMER1 GATE SINGLE PULSE MODE


When Timer1 Gate Single Pulse mode is enabled, it is possible to capture a single pulse gate event. Timer1 Gate Single Pulse mode is first enabled by setting the T1GSPM bit in the T1GCON register. Next, the T1GGO/T1DONE bit in the T1GCON register must be set. The Timer1 will be fully enabled on the next incrementing edge. On the next trailing edge of the pulse, the T1GGO/T1DONE bit will automatically be cleared. No other gate events will be allowed to increment Timer1 until the T1GGO/T1DONE bit is once again set in software.

Clearing the T1GSPM <u>bit of the T1GCON</u> register will also clear the T1GGO/T1DONE bit. See Figure 13-6 for timing details.

Enabling the Toggle mode and the Single Pulse mode, simultaneously, will permit both sections to work together. This allows the cycle times on the Timer1 gate source to be measured. See Figure 13-7 for timing details.

13.8.5 TIMER1 GATE VALUE STATUS

When the Timer1 gate value status is utilized, it is possible to read the most current level of the gate control value. The value is stored in the T1GVAL bit in the T1GCON register. The T1GVAL bit is valid even when the Timer1 gate is not enabled (TMR1GE bit is cleared).

FIGURE 13-6: TIMER1 GATE SINGLE PULSE MODE

16.0 TIMER4/6/8 MODULE

The Timer4/6/8 timer modules have the following features:

- Eight-bit Timer register (TMRx)
- Eight-bit Period register (PRx)
- Readable and writable (all registers)
- Software programmable prescaler (1:1, 1:4, 1:16)
- Software programmable postscaler (1:1 to 1:16)
- Interrupt on TMRx match of PRx

Note:	Throughout this section, generic references
	are used for register and bit names that are the
	same - except for an 'x' variable that indicates
	the item's association with the Timer4, Timer6
	or Timer8 module. For example, the control
	register is named TxCON and refers to
	T4CON, T6CON and T8CON.

The Timer4/6/8 modules have a control register shown in Register 16-1. Timer4/6/8 can be shut off by clearing control bit, TMRxON (TxCON<2>), to minimize power consumption. The prescaler and postscaler selection of Timer4/6/8 is also controlled by this register. Figure 16-1 is a simplified block diagram of the Timer4/6/8 modules.

16.1 Timer4/6/8 Operation

Timer4/6/8 can be used as the PWM time base for the PWM mode of the ECCP modules. The TMRx registers are readable and writable, and are cleared on any device Reset. The input clock (Fosc/4) has a prescale option of 1:1, 1:4 or 1:16, selected by control bits, TxCKPS<1:0> (TxCON<1:0>). The match output of TMRx goes through a four-bit postscaler (that gives a

1:1 to 1:16 inclusive scaling) to generate a TMRx interrupt, latched in the flag bit, TMRxIF. Table 16-1 gives each module's flag bit.

TABLE 16-1: TIMER4/6/8 FLAG BITS

Timer Module	Flag Bit
4	PIR3<3>
6	PIR5<3>
8	PIR5<4>

The interrupt can be enabled or disabled by setting or clearing the Timerx Interrupt Enable bit (TMRxIE), shown in Table 16-2.

TABLE 16-2: TIMER4/6/8 INTERRUPT ENABLE BITS

Timer Module	Flag Bit
4	PIE3<3>
6	PIE5<3>
8	PIE5<4>

The prescaler and postscaler counters are cleared when any of the following occurs:

- A write to the TMRx register
- A write to the TxCON register
- Any device Reset (Power-on Reset (POR), MCLR Reset, Watchdog Timer Reset (WDTR) or Brown-out Reset (BOR))

A TMRx is not cleared when a TxCON is written.

Note: The CCP and ECCP modules use Timers, 1 through 8, for some modes. The assignment of a particular timer to a CCP/ECCP module is determined by the Timer to CCP enable bits in the CCPTMRSx registers. For more details, see Register 18-2, Register 18-3 and Register 19-2.

TABLE 17-3:RTCVALH AND RTCVALLREGISTER MAPPING

RTCPTR<1:0>	RTCC Value Register Windo			
RICPIRSI.02	RTCVAL<15:8>	RTCVAL<7:0>		
00	MINUTES	SECONDS		
01	WEEKDAY	HOURS		
10	MONTH	DAY		
11	—	YEAR		

The Alarm Value register window (ALRMVALH and ALRMVALL) uses the ALRMPTR bits (ALRMCFG<1:0>) to select the desired Alarm register pair.

By reading or writing to the ALRMVALH register, the Alarm Pointer value, ALRMPTR<1:0>, decrements by 1 until it reaches '00'. Once it reaches '00', the ALRMMIN and ALRMSEC value will be accessible through ALRMVALH and ALRMVALL until the pointer value is manually changed.

TABLE 17-4: ALRMVAL REGISTER

MAPPING				
ALRMPTR<1:0>	Alarm Value Re	gister Window		
ALRIVIPTRS1.02	ALRMVAL<15:8>	ALRMVAL<7:0>		
00	ALRMMIN	ALRMSEC		
01	ALRMWD	ALRMHR		
10	ALRMMNTH	ALRMDAY		
11				

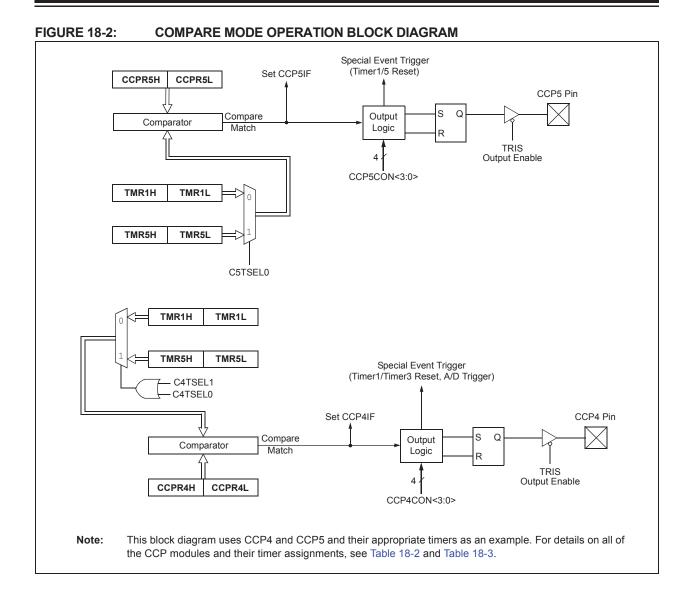
17.2.9 CALIBRATION

The real-time crystal input can be calibrated using the periodic auto-adjust feature. When properly calibrated, the RTCC can provide an error of less than three seconds per month.

To perform this calibration, find the number of error clock pulses and store the value in the lower half of the RTCCAL register. The 8-bit, signed value, loaded into RTCCAL, is multiplied by four and will either be added or subtracted from the RTCC timer, once every minute.

To calibrate the RTCC module:

- 1. Use another timer resource on the device to find the error of the 32.768 kHz crystal.
- 2. Convert the number of error clock pulses per minute (see Equation 17-1).


EQUATION 17-1: CONVERTING ERROR CLOCK PULSES

(Ideal Frequency (32,768) – Measured Frequency) * 60 = Error Clocks per Minute

- If the oscillator is *faster* than ideal (negative result from Step 2), the RTCCFG register value needs to be negative. This causes the specified number of clock pulses to be subtracted from the timer counter, once every minute.
- If the oscillator is *slower* than ideal (positive result from Step 2), the RTCCFG register value needs to be positive. This causes the specified number of clock pulses to be added to the timer counter, once every minute.
- 3. Load the RTCCAL register with the correct value.

Writes to the RTCCAL register should occur only when the timer is turned off, or immediately after the rising edge of the seconds pulse.

Note: In determining the crystal's error value, it is the user's responsibility to include the crystal's initial error from drift due to temperature or crystal aging.

20.3.1 REGISTERS

Each MSSP module has four registers for SPI mode operation. These are:

- MSSPx Control Register 1 (SSPxCON1)
- MSSPx Status Register (SSPxSTAT)
- Serial Receive/Transmit Buffer Register (SSPxBUF)
- MSSPx Shift Register (SSPxSR) Not directly accessible

SSPxCON1 and SSPxSTAT are the control and status registers in SPI mode operation. The SSPxCON1 register is readable and writable. The lower six bits of the SSPxSTAT are read-only. The upper two bits of the SSPxSTAT are read/write.

SSPxSR is the shift register used for shifting data in or out. SSPxBUF is the buffer register to which data bytes are written to or read from. In receive operations, SSPxSR and SSPxBUF together, create a double-buffered receiver. When SSPxSR receives a complete byte, it is transferred to SSPxBUF and the SSPxIF interrupt is set.

During transmission, the SSPxBUF is not double-buffered. A write to SSPxBUF will write to both SSPxBUF and SSPxSR.

Note: Because the SSPxBUF register is double-buffered, using read-modify-write instructions such as BCF, COMF, etc., will not work.
 Similarly, when debugging under an in-circuit debugger, performing actions that cause reads of SSPxBUF (mouse hovering, watch, etc.) can consume data that the application code was expecting to receive.

REGISTER 20-1: SSPxSTAT: MSSPx STATUS REGISTER (SPI MODE) (ACCESS 1, FC7h; 2, F73h)

R/W-1	R/W-1	R-1	R-1	R-1	R-1	R-1	R-1
SMP	CKE ⁽¹⁾	D/Ā	Р	S	R/W	UA	BF
bit 7							bit 0

Legend:

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	SMP: Sample bit
	SPI Master mode:
	1 = Input data sampled at the end of data output time
	0 = Input data sampled at the middle of data output time
	SPI Slave mode:
	SMP must be cleared when SPI is used in Slave mode.
bit 6	CKE: SPI Clock Select bit ⁽¹⁾
	1 = Transmit occurs on transition from active to Idle clock state
	0 = Transmit occurs on transition from Idle to active clock state
bit 5	D/A: Data/Address bit
	Used in I ² C mode only.
bit 4	P: Stop bit
	Used in I ² C mode only; this bit is cleared when the MSSP module is disabled, SSPEN is cleared.
bit 3	S: Start bit
	Used in I ² C mode only.
bit 2	R/W: Read/Write Information bit
	Used in I ² C mode only.
bit 1	UA: Update Address bit
	Used in I ² C mode only.
bit 0	BF: Buffer Full Status bit
	1 = Receive complete, SSPxBUF is full
	0 = Receive not complete, SSPxBUF is empty

Note 1: Polarity of the clock state is set by the CKP bit (SSPxCON1<4>).

23.5 Comparator Control and Configuration

Each comparator has up to eight possible combinations of inputs: up to four external analog inputs and one of two internal voltage references.

Both comparators allow a selection of the signal from pin, CxINA, or the voltage from the comparator reference (CVREF) on the non-inverting channel. This is compared to either CxINB, CxINC, CxIND, CTMU or the microcontroller's fixed internal reference voltage (VIRV, 0.6V nominal) on the inverting channel.

Table 23-1 provides the comparator inputs and outputs tied to fixed I/O pins.

Comparator	Input or Output	I/O Pin
	C1INA (VIN+)	RA0
	C1INB (VIN-)	RA3
1	C1INC (VIN-)	RA5
	C1IND (VIN-)	RA2
	C1OUT	Remapped RPn
	C2INA(VIN+)	RA1
	C2INB(VIN-)	RA2
2	C2INC (VIN-)	RB2
2	C2IND (VIN-)	RC2
	C2OUT	Remapped RPn
	C3INA(VIN+)	RB3
	C3INB(VIN-)	RA2
3	C3INC (VIN-)	RB1
5	C3IND (VIN-)	RB0
	C3OUT	Remapped RPn

TABLE 23-1: COMPARATOR INPUTS AND OUTPUTS

23.5.1 COMPARATOR ENABLE AND INPUT SELECTION

Setting the CON bit of the CMxCON register (CMxCON<7>) enables the comparator for operation. Clearing the CON bit disables the comparator, minimizing current consumption.

The CCH<1:0> bits in the CMxCON register (CMxCON<1:0>) direct either one of three analog input pins, or the Internal Reference Voltage (VIRV), to the comparator, VIN-. Depending on the comparator operating mode, either an external or internal voltage reference may be used. The analog signal present at VIN- is compared to the signal at VIN+ and the digital output of the comparator is adjusted accordingly.

The external reference is used when CREF = 0 (CMxCON<2>) and VIN+ is connected to the CxINA pin. When external voltage references are used, the comparator module can be configured to have the reference sources externally. The reference signal must be between VSS and VDD, and can be applied to either pin of the comparator.

The comparator module also allows the selection of an internally generated voltage reference (CVREF) from the comparator voltage reference module. This module is described in more detail in Section 23.0 "Comparator Module". The reference from the comparator voltage reference module is only available when CREF = 1. In this mode, the internal voltage reference is applied to the comparator's VIN+ pin.

Note:	The comparator input pin selected by
	CCH<1:0> must be configured as an input
	by setting both the corresponding TRIS bits
	and PCFG bits in the ANCON1 register.

23.5.2 COMPARATOR ENABLE AND OUTPUT SELECTION

The comparator outputs are read through the CMSTAT register. The CMSTAT<0> reads the Comparator 1 output, CMSTAT<1> reads the Comparator 2 output and CMSTAT<2> reads the Comparator 3 output. These bits are read-only.

The comparator outputs may also be directly output to the RPn I/O pins by setting the COE bit (CMxCON<6>). When enabled, multiplexers in the output path of the pins switch to the output of the comparator.

By default, the comparator's output is at logic high whenever the voltage on VIN+ is greater than on VIN-. The polarity of the comparator outputs can be inverted using the CPOL bit (CMxCON<5>).

The uncertainty of each of the comparators is related to the input offset voltage and the response time given in the specifications, as discussed in **Section 23.2 "Comparator Operation"**.

REGISTER 26-2: CTMUCONL: CTMU CONTROL REGISTER LOW (ACCESS FB2h)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x	R/W-x
EDG2POL	EDG2SEL1	EDG2SEL0	EDG1POL	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT
bit 7	-	•		•		•	bit 0
Legend:							
R = Readable	e bit	W = Writable I	oit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 7	EDG2POL: E	dge 2 Polarity	Select bit				
		s programmed f					
	-	s programmed f	-	-			
bit 6-5		:0>: Edge 2 So	urce Select bit	S			
	11 = CTED1 10 = CTED2	•					
		output compare	e module				
	00 = Timer1 r						
bit 4	EDG1POL: E	dge 1 Polarity	Select bit				
	•	s programmed f		•			
	0 = Edge 1 is	s programmed f	or a negative e	edge response			
bit 3-2	EDG1SEL<1:	:0>: Edge 1 So	urce Select bit	S			
	11 = CTED1						
	10 = CTED2	pın output compare	module				
	01 = ECCF1		module				
bit 1	EDG2STAT:	Edge 2 Status b	it				
		vent has occur					
		vent has not oc					
bit 0	EDG1STAT: E	Edge 1 Status b	it				
		vent has occurr					
	0 = Edge 1 e	vent has not oc	curred				

27.5.2 EXITING FAIL-SAFE OPERATION

The Fail-Safe Clock Monitor condition is terminated by either a device Reset or by entering a power-managed mode. On Reset, the controller starts the primary clock source specified in Configuration Register 2H (with any required start-up delays that are required for the oscillator mode, such as the OST or PLL timer). The INTRC oscillator provides the device clock until the primary clock source becomes ready (similar to a Two-Speed Start-up). The clock source is then switched to the primary clock (indicated by the OSTS bit in the OSCCON register becoming set). The FSCM then resumes monitoring the peripheral clock.

The primary clock source may never become ready during start-up. In this case, operation is clocked by the INTRC oscillator. The OSCCON register will remain in its Reset state until a power-managed mode is entered.

27.5.3 FSCM INTERRUPTS IN POWER-MANAGED MODES

By entering a power-managed mode, the clock multiplexer selects the clock source selected by the OSCCON register. FSCM of the power-managed clock source resumes in the power-managed mode.

If an oscillator failure occurs during power-managed operation, the subsequent events depend on whether or not the oscillator failure interrupt is enabled. If enabled (OSCFIF = 1), code execution will be clocked by the INTRC multiplexer. An automatic transition back to the failed clock source will not occur.

If the interrupt is disabled, subsequent interrupts while in Idle mode will cause the CPU to begin executing instructions while being clocked by the INTRC source.

27.5.4 POR OR WAKE-UP FROM SLEEP

The FSCM is designed to detect oscillator failure at any point after the device has exited Power-on Reset (POR) or low-power Sleep mode. When the primary device clock is either the EC or INTRC modes, monitoring can begin immediately following these events.

For HS or HSPLL modes, the situation is somewhat different. Since the oscillator may require a start-up time considerably longer than the FSCM sample clock time, a false clock failure may be detected. To prevent this, the internal oscillator block is automatically configured as the device clock and functions until the primary clock is stable (the OST and PLL timers have timed out). This is identical to Two-Speed Start-up mode. Once the primary clock is stable, the INTRC returns to its role as the FSCM source.

Note: The same logic that prevents false oscillator failure interrupts on POR, or wake-up from Sleep, will also prevent the detection of the oscillator's failure to start at all following these events. This can be avoided by monitoring the OSTS bit and using a timing routine to determine if the oscillator is taking too long to start. Even so, no oscillator failure interrupt will be flagged.

As noted in Section 27.4.1 "Special Considerations For Using Two-speed Start-up", it is also possible to select another clock configuration and enter an alternate power-managed mode while waiting for the primary clock to become stable. When the new power-managed mode is selected, the primary clock is disabled.

27.6 Program Verification and Code Protection

For all devices in the PIC18F47J13 Family of devices, the on-chip program memory space is treated as a single block. Code protection for this block is controlled by one Configuration bit, CP0. This bit inhibits external reads and writes to the program memory space. It has no direct effect in normal execution mode.

27.6.1 CONFIGURATION REGISTER PROTECTION

The Configuration registers are protected against untoward changes or reads in two ways. The primary protection is the write-once feature of the Configuration bits, which prevents reconfiguration once the bit has been programmed during a power cycle. To safeguard against unpredictable events, Configuration bit changes resulting from individual cell level disruptions (such as ESD events) will cause a parity error and trigger a device Reset. This is seen by the user as a Configuration Mismatch (CM) Reset.

The data for the Configuration registers is derived from the FCW in program memory. When the CP0 bit is set, the source data for device configuration is also protected as a consequence.

PIC18F47J13 FAMILY

MOVFF	Move f to f	:		MOVLB	Move Liter	al to Low Ni	bble in BSR
Syntax:	MOVFF f _s	,f _d		Syntax:	MOVLW k	,	
Operands:	$0 \le f_s \le 409$			Operands:	$0 \le k \le 255$		
	$0 \le f_d \le 409$	95		Operation:	$k \to BSR$		
Operation:	$(f_s) \to f_d$			Status Affected:	None		
Status Affected:	None			Encoding:	0000	0000 0001 kkkk kk	
Encoding: 1st word (source) 2nd word (destin.)	1100 1111	ffff ff: ffff ff:	5	Description:	Bank Selec	eral 'k' is load t Register (B > always rem	SR). The value
Description:		ts of source re				of the value of	
		estination regi	ster 'f _d '. i be anywhere	Words:	1		
		-byte data spa		Cycles:	1		
		location of des		Q Cycle Activity	:		
	can also be FFFh.	anywhere fro	m uuun to	Q1	Q2	Q3	Q4
	Either sour	ce or destinati	on can be W	Decode	Read literal 'k'	Process Data	Write literal 'k' to BSR
		ecial situation			interar k	Data	K to DOIN
	peripheral r buffer or an The MOVFF	egister (such a I/O port). instruction ca J, TOSH or TC		After Instruc	egister = 02		
Words:	2						
Cycles:	2						
Q Cycle Activity:							
Q1	Q2	Q3	Q4				
Decode	Read register 'f' (src)	Process Data	No operation				
Decode	No operation No dummy read	No operation	Write register 'f' (dest)				
Example: Before Instru REG1 REG2 After Instruct REG1 REG2	ction = 33 = 11	h					

PIC18F47J13 FAMILY

SUBWFB	Subtract V	N from f with B	orrow
Syntax:	SUBWFB	f {,d {,a}}	
Operands:	$0 \le f \le 255$		
	d ∈ [0,1]		
	a ∈ [0,1]	-	
Operation:	., . ,	$(\overline{C}) \rightarrow dest$	
Status Affected:	N, OV, C, I		
Encoding:	0101	10da fff	
Description:	from regist method). If in W. If 'd' i	/ and the Carry er 'f' (2's comple 'd' is '0', the res s '1', the result is 'f' (default).	ement sult is stored
	lf 'a' is '1', GPR bank	· · · ·	I to select the
	set is enabling in Indexed mode whe Section 28 Bit-Orient	and the extende led, this instruct Literal Offset A never f ≤ 95 (5F 3.2.3 "Byte-Orio ed Instructions (set Mode" for o	tion operates ddressing h). See ented and s in Indexed
Words [.]	1	set mode for t	
Cycles:	1		
Q Cycle Activity:	I		
Q1	Q2	Q3	Q4
Decode	Read	Process	Write to
		1100000	white to
	register 'f'	Data	destination
Example 1:	SUBWFB		
Before Instruc REG	SUBWFB tion = 19h	Data REG, 1, 0 (0001 100	destination
Before Instruc REG W C	SUBWFB tion = 19h = 0Dh = 1	Data REG, 1, 0	destination
Before Instruc REG ^W C After Instructio	SUBWFB stion = 19h = 0Dh = 1 on	Data REG, 1, 0 (0001 100 (0000 110	destination
Before Instruc REG W C	SUBWFB tion = 19h = 0Dh = 1	Data REG, 1, 0 (0001 100	destination
Before Instruc REG W C After Instructio REG	SUBWFB stion = 19h = 0Dh = 1 on = 0Ch	Data REG, 1, 0 (0001 100 (0000 110 (0000 101	destination
Refore Instruct REG W C After Instruction REG W	SUBWFB = 19h = 0Dh = 1 on = 0Ch = 0Dh = 1	Data REG, 1, 0 (0001 100 (0000 110 (0000 101	destination
Before Instruct REG W C After Instructio REG W C Z N N Example 2:	SUBWFB stion = 19h = 0Dh = 1 on = 0Ch = 0Ch = 0 SUBWFB	Data REG, 1, 0 (0001 100 (0000 110 (0000 101 (0000 110 ; result is po	destination
Before Instruct REG W C After Instruction REG W C Z N Example 2: Before Instruct	SUBWFB stion = 19h = 0Dh = 1 on = 0Ch = 0Ch = 0 SUBWFB stion	Data REG, 1, 0 (0001 100 (0000 110 (0000 101 (0000 110 ; result is po REG, 0, 0	destination (1) (1) (1) (1) (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2
Before Instruct REG W C After Instructio REG W C Z N <u>Example 2:</u> Before Instruct REG W	SUBWFB stion = 19h = 0Dh = 1 = 0Ch = 0Dh = 1 = 0 SUBWFB stion = 1Bh = 1Ah	Data REG, 1, 0 (0001 100 (0000 110 (0000 101 (0000 110 ; result is po	destination
Before Instruct REG W C After Instruction REG W C Z N Example 2: Before Instruct REG W C After Instruction REG	SUBWFB stion = 19h = 0Dh = 1 on = 0 = 0 SUBWFB subwFB subwFB tion = 1Bh = 1Ah = 0 SUBWFB	Data REG, 1, 0 (0001 100 (0000 101 (0000 101 (0000 110 ; result is pc REG, 0, 0 (0001 101	destination
Before Instruct REG W C After Instructio REG W C Z N Example 2: Before Instruct REG W C After Instructio REG W C Z	SUBWFB stion = 19h = 0Dh = 1 on = 0Ch = 0 SUBWFB stion = 1Bh = 0 SUBWFB tion = 1Bh = 0 = 0 SUBWFB = 1 = 0 SUBWFB = 1 SUBWFB = 1 SUBWFB SUBWF	Data REG, 1, 0 (0001 100 (0000 110 (0000 101 (0000 110 ; result is po REG, 0, 0 (0001 101 (0001 101 (0001 101	destination (destination)1) 1) 1) 2) sitive 1) 0) 1)
Before Instruct REG W C After Instructio REG W C Z N Example 2: Before Instruct REG W C After Instructio REG W C After Instructio REG W C N	SUBWFB stion = 19h = 0Dh = 1 on = 0 = 0Ch = 0Dh = 1 = 0 SUBWFB stion = 1Bh = 0 = 1Ah = 0 = 0 = 0 SUBWFB = 1 = 0 SUBWFB = 1 = 0 SUBWFB = 1 = 0 SUBWFB = 1 = 0 SUBWFB = 1 = 0 SUBWFB = 1 = 0 = 0 = 0 SUBWFB = 1 = 0 = 0 SUBWFB = 1 = 0 = 0 SUBWFB = 1 = 0 = 0 SUBWFB = 1 = 0 SUBWFB	Data REG, 1, 0 (0001 100 (0000 101 (0000 101 (0000 101 (0000 101 (0001 101 (0001 101 (0001 101 (0001 101 (0001 101 (0001 101 (0001 101 (0001 101	destination (destination)1) 1) 1) 2) sitive 1) 0) 1)
Before Instruct REG W C After Instructio REG W C Z N Example 2: Before Instruct REG W C After Instructio REG W C After Instructio REG W C S After Instructio	SUBWFB stion = 19h = 0Dh = 1 on = 0 = 0Ch = 0Ch = 0Dh = 1 0 SUBWFB stion = 1Bh = 0Ah = 1Ah = 0 = 0 SUBWFB stion = 1 = 0 = 0 SUBWFB stion = 1 = 0 SUBWFB	Data REG, 1, 0 (0001 100 (0000 101 (0000 101 (0000 110 ; result is po REG, 0, 0 (0001 101 (0001 101 (0001 101	destination (destination)1) 1) 1) 2) sitive 1) 0) 1)
Before Instruct REG W C After Instructio REG W C Z N Example 2: Before Instructio REG W C After Instructio REG W C Z N Example 3: Before Instructio REG W	SUBWFB stion = 19h = 0Dh = 1 on = 0Ch = 0Dh = 1 = 0 SUBWFB stion = 1Bh = 1Ah = 0 SUBWFB stion = 1 = 0 SUBWFB stion = 1Bh = 1 = 0 SUBWFB stion = 1 = 0 SUBWFB =	Data REG, 1, 0 (0001 100 (0000 101 (0000 101 (0000 101 (0000 101 (0001 101 (0001 101 (0001 101 (0001 101 (0001 101 (0001 101 (0001 101 (0001 101	(destination (destination) (1) (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2
Before Instruct REG W C After Instructio REG W C Z N Example 2: Before Instructio REG W C After Instructio REG W C Z N Example 3: Before Instruct REG W C Z N	SUBWFB stion = 19h = 0Dh = 1 on = 0Ch = 0Dh = 1 0 SUBWFB stion = 1Bh = 1Ah = 0 SUBWFB stion = 1Bh = 1 = 0 SUBWFB tion = 1Bh = 1 = 0 SUBWFB = 1 SUBWFB = 1 = 0 SUBWFB = 1 = 0 SUBWFB = 1 SUBWFB = 1 S SUBWFB = 1 S SUBWFB = 1 S SUBWFB = 1 SUBWFB = 1	Data REG, 1, 0 (0001 100 (0000 101 (0000 101 (0000 101 (0001 101 (0001 101 (0001 101 (0001 101 (0001 101 (0001 101 (0001 101 (0001 101 (0001 101 (0001 101 (0000 101	(destination (destination) (1) (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2
Before Instruct REG W C After Instructio REG W C Z N Example 2: Before Instructio REG W C After Instructio REG W C Z N Example 3: Before Instructio REG W	SUBWFB stion = 19h = 0Dh = 1 on = 0Ch = 0Dh = 1 0 SUBWFB stion = 1Bh = 1Ah = 0 SUBWFB stion = 1Bh = 1 = 0 SUBWFB tion = 1Bh = 1 = 0 SUBWFB = 1 SUBWFB = 1 = 0 SUBWFB = 1 = 0 SUBWFB = 1 SUBWFB = 1 S SUBWFB = 1 S SUBWFB = 1 S SUBWFB = 1 SUBWFB = 1	Data REG, 1, 0 (0001 100 (0000 101 (0000 110) (0001 101 (0001 101 (0001 101) ; result is por REG, 0, 0 (0001 101 (0001 101) (0001 101 (0001 101) ; result is zet REG, 1, 0 (0000 001 (0000 110) (1111 010)	(destination (destination) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1
Before Instruct REG W C After Instruction REG W C Z N Example 2: Before Instruction REG W C After Instruction REG W C Z N Example 3: Before Instruction REG W C After Instruction REG W C After Instruction REG M C After Instruction REG	SUBWFB tion = 19h = 0Dh = 1 ODh = 0 ODh = 0 SUBWFB tion = 1Bh = 0 SUBWFB tion = 1Bh = 0 SUBWFB tion = 1 = 0 SUBWFB tion = 1Bh = 1 SUBWFB tion = 1 = 0 SUBWFB tion = 1 = 0 SUBWFB	Data REG, 1, 0 (0001 100 (0000 101 (0000 101 (0000 101 (0001 101 (0001 101 (0001 101 (0001 101 (0001 101 (0001 101 (0001 101 (0001 101 (0000 101 (0000 001 (0000 001 (1111 010 (1111 010	destination 11 11 11 11 11 11 11 11 12 13 14 15 16 17 18 19 10 11 <tr< td=""></tr<>
Before Instruct REG W C After Instructio REG W C Z N Example 2: Before Instruct REG W C After Instructio REG W C Z N Example 3: Before Instruct REG W C After Instructio REG W C After Instructio REG W C Z N	SUBWFB stion = 19h = 0Dh = 1 on = 0Ch = 0Dh = 1 0 SUBWFB stion = 1Bh = 1Ah = 0 SUBWFB stion = 1Bh = 1 = 0 SUBWFB stion = 1Bh = 1 = 0 SUBWFB stion = 1Bh = 1 = 0 SUBWFB = 1 = 0 SUBWFB = 1 SUBWFB = 0 SUBWFB = 1 SUBWFB = 1 SUBWFB = 1 SUBWFB = 1 SUBWFB = 1 SUBWFB = 1 = 0 SUBWFB = 1 = 0 SUBWFB = 1 = 0 SUBWFB = 1 = 0 SUBWFB = 1 = 0 SUBWFB = 0 SUBWFB	Data REG, 1, 0 (0001 100 (0000 101 (0000 110) (0001 101 (0001 101 (0001 101) ; result is por REG, 0, 0 (0001 101 (0001 101) (0001 101 (0001 101) ; result is zet REG, 1, 0 (0000 001 (0000 110) (1111 010)	destination 11 11 11 11 11 11 11 12 13 14 15 16 17 18 19 10 11 10 11 12
Before Instruct REG W C After Instructio REG W C Z N Example 2: Before Instructo REG W C After Instructio REG W C Z N Example 3: Before Instructo REG W C After Instructo REG W C After Instructo REG W C	SUBWFB stion = 19h = 0Dh = 1 on = 0Ch = 0Dh = 1 = 0 SUBWFB stion = 1Bh = 0 SUBWFB stion = 1Bh = 0 SUBWFB tion = 1 = 0 SUBWFB stion = 1 = 0 SUBWFB tion = 1 = 0 SUBWFB tion = 1 = 0 SUBWFB = 1 = 0 SUBWFB = 1 SUBWFB = 0 SUBWFB = 1 SUBWFB = 1 SUBWFB = 0 SUBWFB = 1 SUBWFB = 1 SUBWFB = 1 SUBWFB = 1 SUBWFB = 1 SUBWFB = 1 = 0 SUBWFB = 0 SU	Data REG, 1, 0 (0001 100 (0000 101 (0000 101 (0000 101 (0001 101 (0001 101 (0001 101 (0001 101 (0001 101 (0001 101 (0001 101 (0001 101 (0000 101 (0000 001 (0000 001 (1111 010 (1111 010	destination (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)

'f' are exchanged. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed in register 'f' (default). If 'a' is '0', the Access Bank is selected	SWAPF	Swap f							
d ∈ [0,1] a ∈ [0,1]Operation: $(f<3:0>) \rightarrow dest<7:4>,(f<7:4>) \rightarrow dest<3:0>Status Affected:NoneEncoding:0011 10da ffff ffffDescription:The upper and lower nibbles of registr'f' are exchanged. If 'd' is '0', the result isplaced in W. If 'd' is '1', the result isplaced in register 'f' (default).If 'a' is '0', the Access Bank is selecterIf 'a' is '0', the Access Bank is selecterIf 'a' is '0' and the extended instructionset is enabled, this instruction operationIf 'a' is '0' and the extended instructionset is enabled, this instruction operationin Indexed Literal Offset Addressingmode whenever f ≤ 95 (5Fh). SeeSection 28.2.3 "Byte-Oriented andBit-Oriented Instructions in IndexedLiteral Offset Mode" for details.Words:1Q Cycle Activity:1$	Syntax:	SWAPF f {,d {,a}}							
$(f<7:4>) \rightarrow dest<3:0>$ Status Affected:NoneEncoding: 0011 $10da$ ffff ffffDescription:The upper and lower nibbles of regist 'f' are exchanged. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed in register 'f' (default).If 'a' is '0', the Access Bank is selecter If 'a' is '1', the BSR is used to select the GPR bank (default).If 'a' is '0' and the extended instruction set is enabled, this instruction operation in Indexed Literal Offset Addressing mode whenever f \leq 95 (5Fh). See Section 28.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.Words:1Q Cycle Activity:1	Operands:	d ∈ [0,1]							
Encoding: 0011 $10da$ ffffffffDescription:The upper and lower nibbles of regist 'f' are exchanged. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed in register 'f' (default).If 'a' is '0', the Access Bank is selected If 'a' is '1', the BSR is used to select the GPR bank (default).If 'a' is '0' and the extended instruction set is enabled, this instruction operation in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 28.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexee Literal Offset Mode" for details.Words:1Q Cycle Activity:	Operation:	()							
Description: The upper and lower nibbles of regist 'f' are exchanged. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed in register 'f' (default). If 'a' is '0', the Access Bank is selected if 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operated in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 28.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details. Words: 1 Q Cycle Activity:	Status Affected:	None							
'f' are exchanged. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed in register 'f' (default). If 'a' is '0', the Access Bank is selecter If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operate in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 28.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexee Literal Offset Mode" for details. Words: 1 Cycles: 1 Q Cycle Activity: 1	Encoding:	ncoding: 0011 10da ffff f							
If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operate in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 28.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details. Words: 1 Cycles: 1 Q Cycle Activity: 1	Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed in register 'f' (default).							
set is enabled, this instruction operation in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 28.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexe Literal Offset Mode" for details. Words: 1 Cycles: 1 Q Cycle Activity: 1		If 'a' is '0', the Access Bank is selecte If 'a' is '1', the BSR is used to select th GPR bank (default).							
Cycles: 1 Q Cycle Activity:	set is enabled, this instruction opera in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 28.2.3 "Byte-Oriented and Bit-Oriented Instructions in Index								
Q Cycle Activity:	Words:	1							
	Cycles:	1							
Q1 Q2 Q3 Q4	Q Cycle Activity:								
	Q1	Q2	Q3	1	Q4				
Decode Read Process Write to register 'f' Data destination	Decode								

Example:	SV	VAPF	REG,	1,	0	
Before Instruct	ion					
PEG	-	53h				

Dororo motra	0000	
REG	=	53h
After Instruct	ion	
REG	=	35h

 $\ensuremath{\textcircled{}^{\odot}}$ 2010-2017 Microchip Technology Inc.

30.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings^(†)

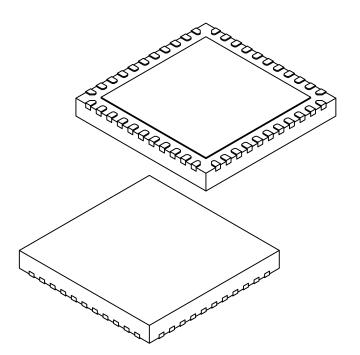
Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on any digital only I/O pin or MCLR with respect to Vss (except VDD)	
Voltage on any combined digital and analog pin with respect to Vss (except VDD)	0.3V to (VDD + 0.3V)
Voltage on VDDCORE with respect to Vss	0.3V to 2.75V
Voltage on VDD with respect to Vss	0.3V to 4.0V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	300 mA
Maximum current into VDD pin	250 mA
Maximum output current sunk by any PORTB, PORTC and RA6 I/O pin	25 mA
Maximum output current sunk by any PORTA (except RA6), PORTD and PORTE I/O pin	8 mA
Maximum output current sourced by any PORTB, PORTC and RA6 I/O pin	25 mA
Maximum output current sourced by any PORTA (except RA6), PORTD and PORTE I/O pin	8 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports	200 mA
Note 1: Power dissipation is calculated as follows: $PDIS = VDD x \{IDD - \sum IOH\} + \sum \{(VDD - VOH) x IOH\} + \sum (VOL x IOL)$	

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

30.2 DC Characteristics: Power-Down and Supply Current PIC18F47J13 Family (Industrial) (Continued)

PIC18LF	47J13 Family			perature	Conditions (unless otherwise stated) $-40^{\circ}C \le T_A \le +85^{\circ}C$ for industrial				
PIC18F4	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial								
Param No.	Device	Тур	Max	Units		Conditions			
	Supply Current (IDD) ⁽²⁾								
	PIC18LFXXJ13	0.41	0.98	mA	-40°C				
		0.44	0.98	mA	+25°C	VDD = 2.0V, VDDCORE = 2.0V			
		0.48	1.12	mA	+85°C	VDDCORE - 2.0V			
	PIC18LFXXJ13	0.48	1.14	mA	-40°C				
		0.51	1.14	mA	+25°C	VDD = 2.5V, VDDCORE = 2.5V			
		0.55	1.25	mA	+85°C	15500RE 2.0V	Fosc = 4 MHz, RC_IDLE mode,		
	PIC18FXXJ13	0.45	1.21	mA	-40°C		Internal RC Oscillator		
		0.49	1.21	mA	+25°C	VDD = $2.15V$, VDDCORE = $10 \mu F$			
		0.52	1.30	mA	+85°C				
	PIC18FXXJ13	0.52	1.20	mA	-40°C	VDD = 3.3V, VDDCORE = 10 μF			
		0.54	1.20	mA	+25°C				
		0.58	1.35	mA	+85°C				
	PIC18LFXXJ13	0.53	1.4	mA	-40°C	VDD = 2.0V,			
		0.56	1.5	mA	+25°C	VDD = 2.0V, VDDCORE = 2.0V			
		0.60	1.6	mA	+85°C				
	PIC18LFXXJ13	0.63	2.0	mA	-40°C	VDD = 2.5V, VDDCORE = 2.5V VDD = 2.15V, VDDCORE = 10 μF VDD = 3.3V, VDDCORE = 10 μF			
		0.67	2.0	mA	+25°C		Fosc = 8 MHz,		
		0.72	2.2	mA	+85°C		RC_IDLE mode,		
	PIC18FXXJ13	0.58	1.8	mA	-40°C		Internal RC Oscillator		
		0.62	1.8	mA	+25°C				
		0.66	2.0	mA	+85°C				
	PIC18FXXJ13	0.69	2.2	mA	-40°C				
		0.70	2.2	mA	+25°C				
		0.74	2.3	mA	+85°C				

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in a high-impedance state and tied to VDD or VSS, and all features that add delta current are disabled (such as WDT, Timer1 oscillator, BOR, etc.).


2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption. All features that add delta current are disabled (such as WDT). The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD/Vss; MCLR = VDD; WDT disabled unless otherwise specified.

3: Low-power Timer1 with standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimensio	MIN	NOM	MAX			
Number of Pins	N	44				
Pitch	е		0.65 BSC			
Overall Height	Α	0.80	0.90	1.00		
Standoff	A1	0.00	0.02	0.05		
Terminal Thickness	A3	0.20 REF				
Overall Width	E	8.00 BSC				
Exposed Pad Width	E2	6.25	6.45	6.60		
Overall Length	D	8.00 BSC				
Exposed Pad Length	D2	6.25	6.45	6.60		
Terminal Width	b	0.20	0.30	0.35		
Terminal Length	L	0.30	0.40	0.50		
Terminal-to-Exposed-Pad	K	0.20	-	-		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103D Sheet 2 of 2