

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	34
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2.15V ~ 3.6V
Data Converters	A/D 13x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f46j13-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

9.1 INTCON Registers

The INTCON registers are readable and writable registers, which contain various enable, priority and flag bits.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global interrupt enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

REGISTER 9-1: INTCON: INTERRUPT CONTROL REGISTER (ACCESS FF2h)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	GIE/GIEH: Global Interrupt Enable bit
	When IPEN = 0:
	1 = Enables all unmasked interrupts
	0 = Disables all interrupts
	When IPEN = 1:
	1 = Enables all high-priority interrupts
h:+ 0	0 = Disables all interrupts
bit 6	PEIE/GIEL: Peripheral Interrupt Enable bit
	<u>When IPEN = 0:</u> 1 = Enables all unmasked peripheral interrupts
	0 = Disables all peripheral interrupts
	When IPEN = 1:
	1 = Enables all low-priority peripheral interrupts
	0 = Disables all low-priority peripheral interrupts
bit 5	TMR0IE: TMR0 Overflow Interrupt Enable bit
	1 = Enables the TMR0 overflow interrupt
	0 = Disables the TMR0 overflow interrupt
bit 4	INTOIE: INTO External Interrupt Enable bit
	1 = Enables the INTO external interrupt
	0 = Disables the INT0 external interrupt
bit 3	RBIE: RB Port Change Interrupt Enable bit
	1 = Enables the RB port change interrupt
	0 = Disables the RB port change interrupt
bit 2	TMR0IF: TMR0 Overflow Interrupt Flag bit
	 1 = The TMR0 register has overflowed (must be cleared in software) 0 = The TMR0 register did not overflow
bit 1	
DILI	INTOIF: INTO External Interrupt Flag bit
	 1 = The INT0 external interrupt occurred (must be cleared in software) 0 = The INT0 external interrupt did not occur
bit 0	RBIF: RB Port Change Interrupt Flag bit ⁽¹⁾
DIL U	1 = At least one of the RB<7:4> pins changed state (must be cleared in software)
	0 = None of the RB<7:4> pins have changed state (must be cleared in software)
Note 1	

Note 1: A mismatch condition will continue to set this bit. Reading PORTB and waiting 1 TCY will end the mismatch condition and allow the bit to be cleared.

REGISTER 10-1: ODCON1: PERIPHERAL OPEN-DRAIN CONTROL REGISTER 1 (BANKED F42h)										
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CCP8OD	CCP7OD	CCP6OD	CCP5OD	CCP4OD	ECCP3OD	ECCP2OD	ECCP10D			
bit 7		•					bit 0			
Legend:										
R = Readable		W = Writable		•	nented bit, read					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
hit 7		CD9 Onen Drei	- Output Ench	a hit						
bit 7		CP8 Open-Drai ain capability is		e bit						
		ain capability is								
bit 6		CP7 Open-Drai		e bit						
		ain capability is	•							
		ain capability is								
bit 5	CCP6OD: CO	CP6 Open-Drai	n Output Enabl	e bit						
	1 = Open-drain capability is enabled									
	•	ain capability is								
bit 4		CP5 Open-Drai	•	e bit						
		ain capability is ain capability is								
bit 3	•	CP4 Open-Drai		a bit						
DIL 3		ain capability is		e bit						
		ain capability is								
bit 2	•	ECCP3 Open-D		able bit						
		ain capability is	•							
	0 = Open-dra	ain capability is	disabled							
bit 1	ECCP2OD: E	ECCP2 Open-D	rain Output En	able bit						
		ain capability is								
		ain capability is								
bit 0		ECCP1 Open-D		able bit						
		ain capability is ain capability is								
		an capability is	นเรสมเย่น							

REGISTER 10-2: ODCON2: PERIPHERAL OPEN-DRAIN CONTROL REGISTER 2 (BANKED F41h)										
U-0	U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0									
_	—	—	—	CCP10OD	CCP90D	U2OD	U10D			
bit 7 bit 0										
Legend:										
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'										
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 3	 it 7-4 Unimplemented: Read as '0' it 3 CCP10OD: CCP10 Open-Drain Output Enable bit 1 = Open-drain capability is enabled 0 = Open-drain capability is disabled 									
bit 2	CCP9OD: CCP9 Open-Drain Output Enable bit 1 = Open-drain capability is enabled 0 = Open-drain capability is disabled									
bit 1	U2OD: USART2 Open-Drain Output Enable bit 1 = Open-drain capability is enabled 0 = Open-drain capability is disabled									
bit 0		T1 Open-Drain in capability is	n Output Enable enabled	e bit						

0 = Open-drain capability is disabled

REGISTER 10-3: ODCON3: PERIPHERAL OPEN-DRAIN CONTROL REGISTER 3 (BANKED F40h)

R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
CTMUDS	—	—	—	—	—	SPI2OD	SPI10D
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7	CTMUDS: CTMU Pulse Delay Enable bit
	1 = Pulse delay input for CTMU enabled on pin, RA1
bit 6-2	Unimplemented: Read as '0'
bit 1	SPI2OD: SPI2 Open-Drain Output Enable bit
	1 = Open-drain capability is enabled0 = Open-drain capability is disabled
bit 0	SPI10D: SPI1 Open-Drain Output Enable bit
	1 = Open-drain capability is enabled0 = Open-drain capability is disabled

IABLE 10-7:	ABLE 10-7: PORTC I/O SUMMARY (CONTINUED)					
Pin	Function	TRIS Setting	I/O	I/O Type	Description	
RC5/SDO1/	RC5	0	0	DIG	PORTC<5> data output.	
RP16	SDO1	X	0	DIG	SPI data output (MSSP1 module).	
	RP16	1	I	ST	Remappable Peripheral Pin 16 input.	
		0	0	DIG	Remappable Peripheral Pin 16 output.	
RC6/CCP9/	RC6	1	I	ST	PORTC<6> data input.	
PMA5/TX1/		0	0	DIG	LATC<6> data output.	
CK1/RP17	CCP9	1	I	ST	Capture input.	
		0	0	DIG	Compare/PWM output.	
	PMA5 ⁽¹⁾	1	Ι	ST/TTL	Parallel Master Port io_addr_in<5>.	
		0	0	DIG	Parallel Master Port address.	
	TX1	0	0	DIG	Asynchronous serial transmit data output (EUSART module); takes priority over port data. User must configure as an output.	
	CK1	1	Ι	ST	Synchronous serial clock input (EUSART module).	
		0	0	DIG	Synchronous serial clock output (EUSART module); takes priority over port data.	
	RP17	1	Ι	ST	Remappable Peripheral Pin 17 input.	
		0	0	DIG	Remappable Peripheral Pin 17 output.	
RC7/CCP10/	RC7	1	Ι	ST	PORTC<7> data input.	
PMA4/RX1/		0	0	DIG	LATC<7> data output.	
DT1/RP18	CCP10	1	Ι	ST	Capture input.	
		0	0	DIG	Compare/PWM output.	
	PMA4 ⁽¹⁾	х	I/O	ST/TTL/ DIG	Parallel Master Port address.	
	RX1	1	I	ST	Asynchronous serial receive data input (EUSART module).	
	DT1	1	1	ST	Synchronous serial data input (EUSART module). User must configure as an input.	
		0	0	DIG	Synchronous serial data output (EUSART module); takes priority over port data.	
	RP18	1	I	ST	Remappable Peripheral Pin 18 input.	
		0	0	DIG	Remappable Peripheral Pin 18 output.	

	TABLE 10-7:	PORTC I/O SUM	MARY (CONTINUED)
--	--------------------	---------------	------------------

Legend: DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; ANA = Analog level input/output; I²C/SMB = I²C/SMBus input buffer; x = Don't care (TRISx bit does not affect port direction or is overridden for this option)

Note 1: This bit is only available on 44-pin devices (PIC18F46J13, PIC18F47J13, PIC18LF46J13 and PIC18LF47J13).

TABLE 10-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0
LATC	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0
ANCON1	VBGEN	—	—	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8
CM2CON	CON	COE	CPOL	EVPOL1	EVPOL0	CREF	CCH1	CCH0
RTCCFG	RTCEN		RTCWREN	RTCSYNC	HALFSEC	RTCOE	RTCPTR1	RTCPTR0

 $\ensuremath{\textcircled{}^\circ}$ 2010-2017 Microchip Technology Inc.

Pin	Function	TRIS Setting	I/O	I/O Type	Description
RD6/PMD6/ RD6 RP23		1	Ι	ST	PORTD<6> data input.
		0	0	DIG	LATD<6> data output.
	PMD6 ⁽¹⁾	1	Ι	ST/TTL	Parallel Master Port data in.
RP23		0	0	DIG	Parallel Master Port data out.
		1	Ι	ST	Remappable Peripheral Pin 23 input.
		0	0	DIG	Remappable Peripheral Pin 23 output.
RD7/PMD7/	RD7	1	Ι	ST	PORTD<7> data input.
RP24		0	0	DIG	LATD<7> data output.
	PMD7 ⁽¹⁾	1	Ι	ST/TTL	Parallel Master Port data in.
		0	0	DIG	Parallel Master Port data out.
	RP24	1	Ι	ST	Remappable Peripheral Pin 24 input.
		0	0	DIG	Remappable Peripheral Pin 24 output.

TABLE 10-9: PORTD I/O SUMMARY (CONTINUED)

Legend: DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; $I^2C/SMB = I^2C/SMB$ us input buffer; x = Don't care (TRISx bit does not affect port direction or is overridden for this option).

Note 1: Only on 44-pin devices (PIC18F46J13, PIC18F47J13, PIC18LF46J13 and PIC18LF47J13).

TABLE 10-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PORTD ⁽¹⁾	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0
LATD ⁽¹⁾	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0
TRISD ⁽¹⁾	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PORTD.

Note 1: These registers are not available in 28-pin devices (PIC18F26J13, PIC18F27J13, PIC18LF26J13 and PIC18LF26J13).

REGISTER 10-14: RPINR12: PERIPHERAL PIN SELECT INPUT REGISTER 12 (BANKED EF2h)

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	T1GR4	T1GR3	T1GR2	T1GR1	T1GR0
bit 7							bit 0

Legend:	R/\overline{W} = Readable bit, Writable bit if IOLOCK = 0					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **T1GR<4:0>:** Timer1 Gate Input (T1G) to the Corresponding RPn Pin bits

REGISTER 10-15: RPINR13: PERIPHERAL PIN SELECT INPUT REGISTER 13 (BANKED EF3h)

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	T3GR4	T3GR3	T3GR2	T3GR1	T3GR0
bit 7							bit 0

Legend:	R/W = Readable bit,	R/\overline{W} = Readable bit, Writable bit if IOLOCK = 0					
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 4-0 T3GR<4:0>: Timer3 Gate Input (T3G) to the Corresponding RPn Pin bits

REGISTER 10-16: RPINR14: PERIPHERAL PIN SELECT INPUT REGISTER 14 (BANKED EF4h)

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	T5GR4	T5GR3	T5GR2	T5GR1	T5GR0
bit 7							bit 0

Legend:	R/W = Readable bit, Writa	R/\overline{W} = Readable bit, Writable bit if IOLOCK = 0					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **T5GR<4:0>:** Timer5 Gate Input (T5G) to the Corresponding RPn Pin bits

REGISTER 10-39: RPOR15: PERIPHERAL PIN SELECT OUTPUT REGISTER 15 (BANKED ECFh)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP15R4	RP15R3	RP15R2	RP15R1	RP15R0
bit 7							bit 0

Legend:	R/\overline{W} = Readable bit, Writable bit if IOLOCK = 0					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP15R<4:0>:** Peripheral Output Function is Assigned to RP15 Output Pin bits (see Table 10-14 for peripheral function numbers)

REGISTER 10-40: RPOR16: PERIPHERAL PIN SELECT OUTPUT REGISTER 16 (BANKED ED0h)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP16R4	RP16R3	RP16R2	RP16R1	RP16R0
bit 7							bit 0

Legend:	R/W = Readable bit, \	R/\overline{W} = Readable bit, Writable bit if IOLOCK = 0				
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP16R<4:0>:** Peripheral Output Function is Assigned to RP16 Output Pin bits (see Table 10-14 for peripheral function numbers)

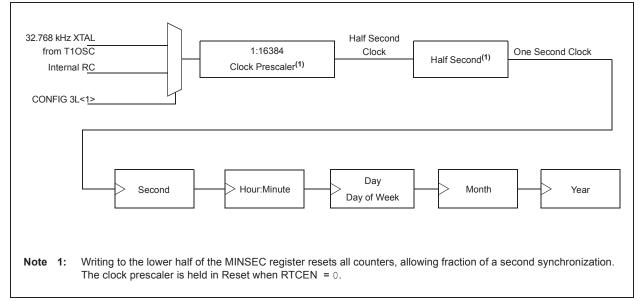
REGISTER 10-41: RPOR17: PERIPHERAL PIN SELECT OUTPUT REGISTER 17 (BANKED ED1h)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP17R4	RP17R3	RP17R2	RP17R1	RP17R0
bit 7							bit 0

Legend:	R/\overline{W} = Readable bit, Writable bit if IOLOCK = 0				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP17R<4:0>:** Peripheral Output Function is Assigned to RP17 Output Pin bits (see Table 10-14 for peripheral function numbers)


Calibration of the crystal can be done through this module to yield an error of 3 seconds or less per month.

(For further details, see Section 17.2.9 "Calibration".)

17.2.2 CLOCK SOURCE

As mentioned earlier, the RTCC module is intended to be clocked by an external Real-Time Clock (RTC) crystal oscillating at 32.768 kHz, but can also be clocked by the INTRC. The RTCC clock selection is decided by the RTCOSC bit (CONFIG3L<1>).

FIGURE 17-4: CLOCK SOURCE MULTIPLEXING

17.2.2.1 Real-Time Clock Enable

The RTCC module can be clocked by an external, 32.768 kHz crystal (Timer1 oscillator or T1CKI input) or the INTRC oscillator, which can be selected in CON-FIG3L<1>.

If the Timer1 oscillator will be used as the clock source for the RTCC, make sure to enable it by setting T1CON<3> (T1OSCEN). The selected RTC clock can be brought out to the RTCC pin by the RTSECSEL<1:0> bits in the PADCFG1 register.

17.2.3 DIGIT CARRY RULES

This section explains which timer values are affected when there is a rollover.

- Time of Day: From 23:59:59 to 00:00:00 with a carry to the Day field
- Month: From 12/31 to 01/01 with a carry to the Year field
- Day of Week: From 6 to 0 with no carry (see Table 17-1)
- Year Carry: From 99 to 00; this also surpasses the use of the RTCC

For the day to month rollover schedule, see Table 17-2.

Considering that the following values are in BCD format, the carry to the upper BCD digit will occur at a count of 10 and not at 16 (SECONDS, MINUTES, HOURS, WEEKDAY, DAYS and MONTHS).

TABLE 17-1:	DAY OF WEEK SCHEDULE
-------------	----------------------

Day of Week					
Sunday	0				
Monday	1				
Tuesday	2				
Wednesday	3				
Thursday	4				
Friday	5				
Saturday	6				

18.1 CCP Module Configuration

Each Capture/Compare/PWM module is associated with a control register (generically, CCPxCON) and a data register (CCPRx). The data register, in turn, is comprised of two 8-bit registers: CCPRxL (low byte) and CCPRxH (high byte). All registers are both readable and writable.

18.1.1 CCP MODULES AND TIMER RESOURCES

The CCP modules utilize Timers, 1 through 8, varying with the selected mode. Various timers are available to the CCP modules in Capture, Compare or PWM modes, as shown in Table 18-1.

TABLE 18-1: CCP MODE – TIMER RESOURCE

CCP Mode	Timer Resource			
Capture	Timert, Timer2 or Timer5			
Compare	Timer1, Timer3 or Timer5			
PWM	Timer2, Timer4, Timer6 or Timer8			

The assignment of a particular timer to a module is determined by the Timer to CCP enable bits in the CCPTMRSx registers. (See Register 18-2 and Register 18-3.) All of the modules may be active at once and may share the same timer resource if they are configured to operate in the same mode (Capture/Compare or PWM), at the same time.

The CCPTMRS1 register selects the timers for CCP modules, 7, 6, 5 and 4, and the CCPTMRS2 register selects the timers for CCP modules, 10, 9 and 8. The possible configurations are shown in Table 18-2 and Table 18-3.

TABLE 18-2: TIMER ASSIGNMENTS FOR CCP MODULES 4, 5, 6 AND 7

	CCPTMRS1 Register											
	CCP4			CCP5			CCP6			CCP7		
C4TSEL <1:0>	Capture/ Compare Mode	PWM Mode	C5TSEL0	Capture/ Compare Mode	PWM Mode	C6TSEL0	Capture/ Compare Mode	PWM Mode	C7TSEL <1:0>	Capture/ Compare Mode	PWM Mode	
0 0	TMR1	TMR2	0	TMR1	TMR2	0	TMR1	TMR2	0 0	TMR1	TMR2	
0 1	TMR3	TMR4	1	TMR5	TMR4	1	TMR5	TMR2	0 1	TMR5	TMR4	
1 0	TMR3	TMR6							1 0	TMR5	TMR6	
1 1	Reserv	ed ⁽¹⁾							1 1	TMR5	TMR8	

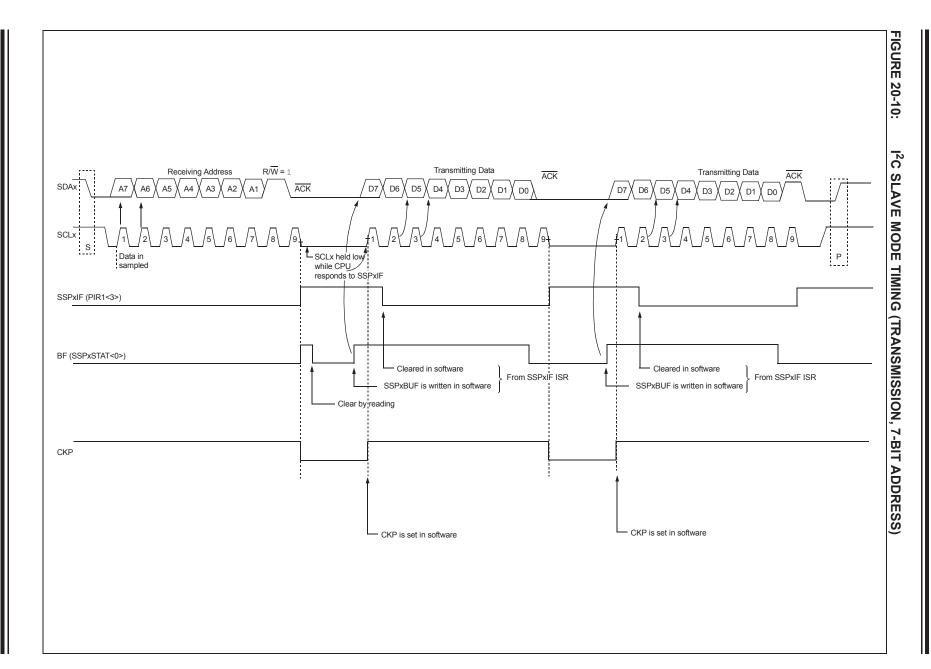
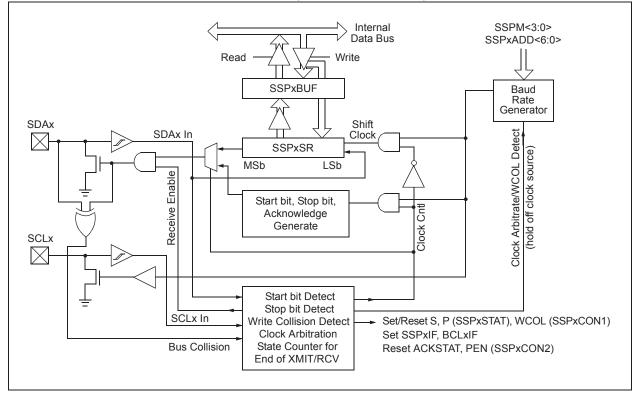

Note 1: Do not use the reserved bit configuration.

TABLE 18-3: TIMER ASSIGNMENTS FOR CCP MODULES 8, 9 AND 10

	CCPTMRS2 Register										
	CCP8			CCP8 CCP9 CCP9					CCP10		
C8TSEL <1:0>	Capture/ Compare Mode	PWM Mode	C8TSEL <1:0>	Capture/ Compare Mode	PWM Mode	C9TSEL0	Capture/ Compare Mode	PWM Mode	C10TSEL0	Capture/ Compare Mode	PWM Mode
0 0	TMR1	TMR2	0 0	TMR1	TMR2	0	TMR1	TMR2	0	TMR1	TMR2
0 1	TMR1	TMR4	0 1	TMR1	TMR4	1	TMR1	TMR4	1	Reserve	ed ⁽¹⁾
1 0	TMR1	TMR6	1 0	TMR1	TMR6						
1 1	Reserv	ed ⁽¹⁾	1 1	Reserv	ed ⁽¹⁾						

Note 1: Do not use the reserved bit configuration.



Note: The MSSP module, when configured in I²C Master mode, does not allow queueing of events. For instance, the user is not allowed to initiate a Start condition and immediately write the SSPxBUF register to initiate transmission before the Start condition is complete. In this case, the SSPxBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPxBUF did not occur. The following events will cause the MSSP Interrupt Flag bit, SSPxIF, to be set (and MSSP interrupt, if enabled):

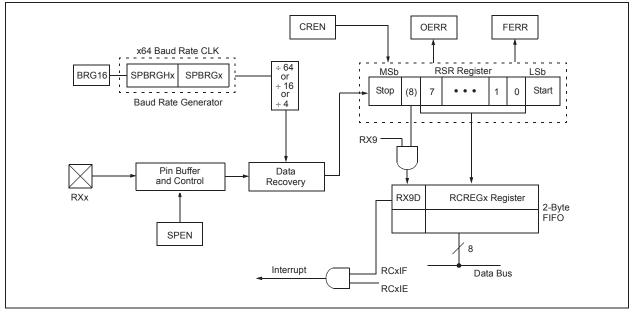
- · Start condition
- Stop condition
- · Data transfer byte transmitted/received
- · Acknowledge transmitted
- Repeated Start

FIGURE 20-18: MSSPx BLOCK DIAGRAM (I²C MASTER MODE)

21.2.2 EUSART ASYNCHRONOUS RECEIVER

The receiver block diagram is displayed in Figure 21-6. The data is received on the RXx pin and drives the data recovery block. The data recovery block is actually a high-speed shifter, operating at x16 times the baud rate, whereas the main receive serial shifter operates at the bit rate or at Fosc. This mode would typically be used in RS-232 systems.

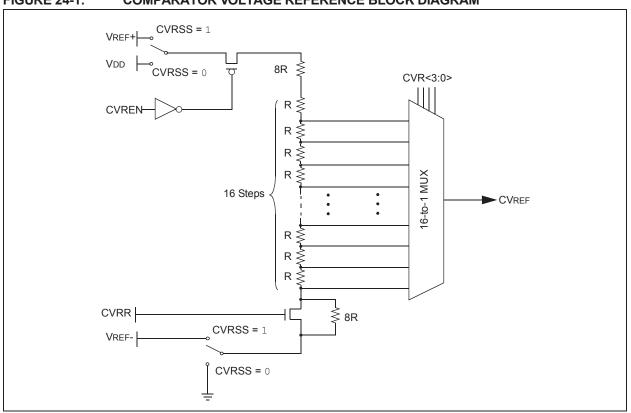
To set up an Asynchronous Reception:


- 1. Initialize the SPBRGHx:SPBRGx registers for the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Enable the asynchronous serial port by clearing bit, SYNC, and setting bit, SPEN.
- 3. If interrupts are desired, set enable bit, RCxIE.
- 4. If 9-bit reception is desired, set bit, RX9.
- 5. Enable the reception by setting bit, CREN.
- Flag bit, RCxIF, will be set when reception is complete and an interrupt will be generated if enable bit, RCxIE, was set.
- Read the RCSTAx register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading the RCREGx register.
- 9. If any error occurred, clear the error by clearing enable bit, CREN.
- 10. If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

21.2.3 SETTING UP 9-BIT MODE WITH ADDRESS DETECT

This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address Detect Enable:

- Initialize the SPBRGHx:SPBRGx registers for the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- 3. If interrupts are required, set the RCEN bit and select the desired priority level with the RCxIP bit.
- 4. Set the RX9 bit to enable 9-bit reception.
- 5. Set the ADDEN bit to enable address detect.
- 6. Enable reception by setting the CREN bit.
- 7. The RCxIF bit will be set when reception is complete. The interrupt will be Acknowledged if the RCxIE and GIE bits are set.
- 8. Read the RCSTAx register to determine if any error occurred during reception, as well as read bit 9 of data (if applicable).
- 9. Read RCREGx to determine if the device is being addressed.
- 10. If any error occurred, clear the CREN bit.
- 11. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and interrupt the CPU.


FIGURE 21-6: EUSARTX RECEIVE BLOCK DIAGRAM

COMPARATOR VOLTAGE 24.0 **REFERENCE MODULE**

The comparator voltage reference is a 16-tap resistor ladder network that provides a selectable reference voltage. Although its primary purpose is to provide a reference for the analog comparators, it may also be used independently of them.

Figure 24-1 provides a block diagram of the module. The resistor ladder is segmented to provide two ranges of CVREF values and has a power-down function to conserve power when the reference is not being used. The module's supply reference can be provided from either device VDD/VSS or an external voltage reference.

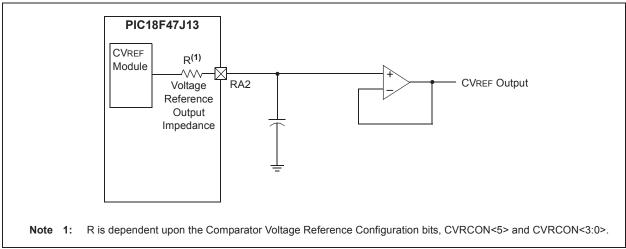
FIGURE 24-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

24.2 Voltage Reference Accuracy/Error

The full range of voltage reference cannot be realized due to the construction of the module. The transistors on the top and bottom of the resistor ladder network (see Figure 24-1) keep CVREF from approaching the reference source rails. The voltage reference is derived from the reference source; therefore, the CVREF output changes with fluctuations in that source. The tested absolute accuracy of the voltage reference can be found in Section 30.0 "Electrical Characteristics".

24.3 Connection Considerations

The voltage reference module operates independently of the comparator module. The output of the reference generator may be connected to the RA2 pin if the CVROE bit is set. Enabling the voltage reference output onto RA2 when it is configured as a digital input will increase current consumption. Connecting RA2 as a digital output with CVRSS enabled will also increase current consumption. The RA2 pin can be used as a simple D/A output with limited drive capability. Due to the limited current drive capability, a buffer must be used on the voltage reference output for external connections to VREF. See Figure 24-2 for an example buffering technique.


24.4 Operation During Sleep

When the device wakes up from Sleep through an interrupt or a Watchdog Timer time-out, the contents of the CVRCON register are not affected. To minimize current consumption in Sleep mode, the voltage reference should be disabled.

24.5 Effects of a Reset

A device Reset disables the voltage reference by clearing bit, CVREN (CVRCON<7>). This Reset also disconnects the reference from the RA2 pin by clearing bit, CVROE (CVRCON<6>) and selects the high-voltage range by clearing bit, CVRR (CVRCON<5>). The CVR value select bits are also cleared.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CVRCON	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0
CM1CON	CON	COE	CPOL	EVPOL1	EVPOL0	CREF	CCH1	CCH0
CM2CON	CON	COE	CPOL	EVPOL1	EVPOL0	CREF	CCH1	CCH0
CM3CON	CON	COE	CPOL	EVPOL1	EVPOL0	CREF	CCH1	CCH0
TRISA	TRISA7	TRISA6	TRISA5	—	TRISA3	TRISA2	TRISA1	TRISA0
ANCON0	PCFG7 ⁽¹⁾	PCFG6 ⁽¹⁾	PCFG5 ⁽¹⁾	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0

Legend: — = unimplemented, read as '0', r = reserved. Shaded cells are not used with the comparator voltage reference.

Note 1: These bits are only available on 44-pin devices.

PIC18F47J13 FAMILY

1	Multiply I	Multiply Literal with W						
	MULLW	k						
ds:	$0 \le k \le 25$	$0 \le k \le 255$						
on:	(W) x k \rightarrow	PRODH:	PRODL					
ffected:	None							
g:	0000	1101	kkkk	kkkk				
tion:	out betwe 8-bit litera placed in	An unsigned multiplication is carried out between the contents of W and the 8-bit literal 'k'. The 16-bit result is placed in the PRODH:PRODL register pair. PRODH contains the high byte.						
	W is unch	anged.						
	None of the	ne Status f	flags are	affected.				
	possible ir	n this oper	ation. A	Zero result				
	1							
	1							
e Activity:								
Q1	Q2			Q4				
Decode	Read literal 'k'		a I	Write registers PRODH: PRODL				
W PRODH PRODL	= E = ? = ? on = E = A	2h Dh						
	e Activity: Q1 Decode e fore Instructor W PRODH PRODH PRODH	$MULLW$ ds: $0 \le k \le 25$ on: (W) x k \rightarrow Affected: None ag: 0000 tion: An unsign out betwe 8-bit litera placed in t pair. PRO W is unch None of th Note that possible 1 1 te Activity: Q1 Q2 Decode Read literal 'k' fore Instruction W PRODH = ? PRODL = ? PRODL = ? PRODH = ACH	$\begin{array}{ccccccc} & \text{MULLW} & \text{k} \\ \text{ds:} & 0 \leq \text{k} \leq 255 \\ \text{on:} & (\text{W}) \text{ x } \text{k} \rightarrow \text{PRODH:} \\ \text{sffected:} & \text{None} \\ \text{rg:} & \hline 0000 & 1101 \\ out between the constraint of the properties of the status of the properties pair. PRODH contained W is unchanged. None of the Status of Note that neither Ownossible in this oper is possible but not of the status $	$\begin{array}{ccccc} MULLW & k \\ ds: & 0 \leq k \leq 255 \\ \text{on:} & (W) \ x \ k \rightarrow \text{PRODH:PRODL} \\ \text{Affected:} & \text{None} \\ \text{rg:} & 0000 & 1101 & kkkk \\ \text{ion:} & \text{An unsigned multiplication is} \\ & \text{out between the contents of} \\ & \text{8-bit literal 'k'. The 16-bit rec} \\ & \text{placed in the PRODH:PROI pair. PRODH contains the h} \\ & \text{W is unchanged.} \\ & \text{None of the Status flags are} \\ & \text{Note that neither Overflow r} \\ & \text{possible in this operation. A} \\ & \text{is possible but not detected.} \\ & 1 \\ & 1 \\ \end{array}$				

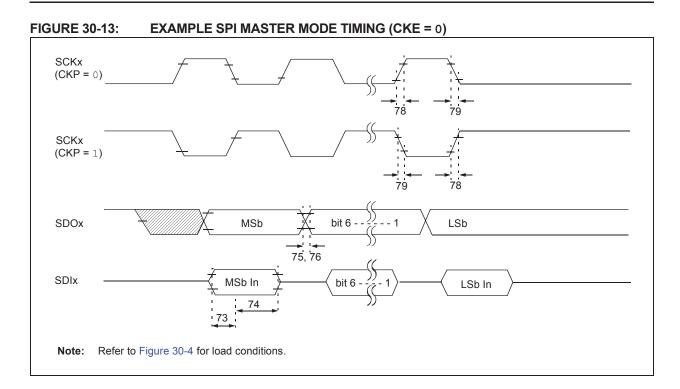
MULWF Multiply W with f Syntax: MULWF f {,a} Operands: $0 \leq f \leq 255$ $a \in \llbracket 0,1 \rrbracket$ (W) x (f) \rightarrow PRODH:PRODL Operation: Status Affected: None Encoding: 0000 001a ffff ffff Description: An unsigned multiplication is carried out between the contents of W and the register file location 'f'. The 16-bit result is stored in the PRODH:PRODL register pair. PRODH contains the high byte. Both W and 'f' are unchanged. None of the Status flags are affected. Note that neither Overflow nor Carry is possible in this operation. A Zero result is possible but not detected. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 28.2.3 "Byte-Oriented and **Bit-Oriented Instructions in Indexed** Literal Offset Mode" for details. Words: 1 Cycles: 1 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read Process Write register 'f' Data registers PRODH: PRODL Example: MULWF REG, 1 **Before Instruction** W C4h = REG B5h = ?? PRODH = PRODL = After Instruction W = C4h

B5h

8Ah

94h

=


=

=

REG

PRODH

PRODL

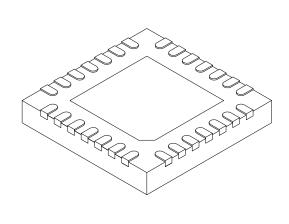


TABLE 30-21:	EXAMPLE SPI MODE REQUIREMENTS	(MASTER MODE, CKE = 0)
		(

Param No.	Symbol	Characteristic	Min	Max	Units	Conditions
73	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge	35	_	ns	VDD = 3.3V, VDDCORE = 2.5V
			100	_	ns	VDD = 2.15V, VDDCORE = 2.15V
74	TscH2DIL, TscL2DIL	Hold Time of SDIx Data Input to SCKx Edge	30	_	ns	VDD = 3.3V, VDDCORE = 2.5V
			83	_	ns	VDD = 2.15V
75	TDOR	SDOx Data Output Rise Time	_	25	ns	PORTB or PORTC
76	TdoF	SDOx Data Output Fall Time	—	25	ns	PORTB or PORTC
78	TscR	SCKx Output Rise Time (Master mode)	_	25	ns	PORTB or PORTC
79	TscF	SCKx Output Fall Time (Master mode)		25	ns	PORTB or PORTC

28-Lead Plastic Quad Flat, No Lead Package (ML) - 6x6 mm Body [QFN] With 0.55 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

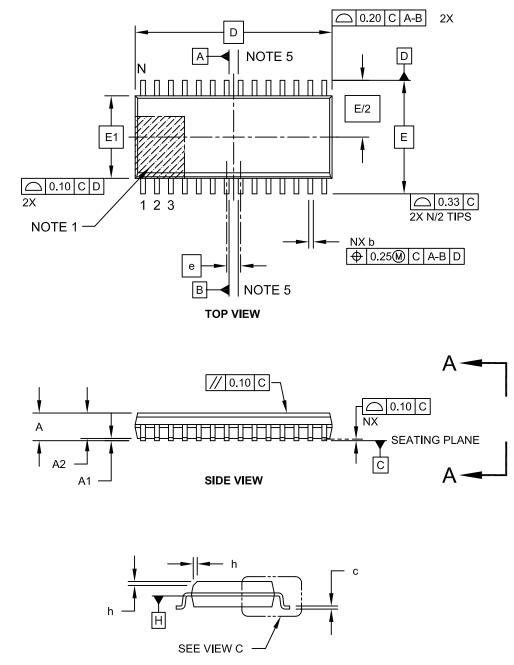
	Units	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	
Number of Pins	N	28			
Pitch	е	0.65 BSC			
Overall Height	A	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Terminal Thickness	A3	0.20 REF			
Overall Width	E	6.00 BSC			
Exposed Pad Width	E2	3.65	3.70	4.20	
Overall Length	D	6.00 BSC			
Exposed Pad Length	D2	3.65	3.70	4.20	
Terminal Width	b	0.23	0.30	0.35	
Terminal Length	L	0.50	0.55	0.70	
Terminal-to-Exposed Pad	K	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M.

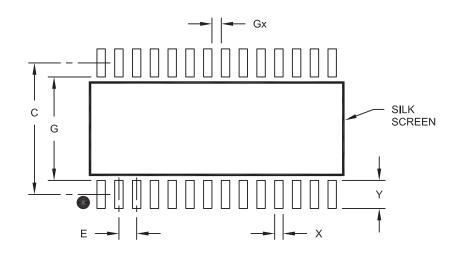

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105C Sheet 2 of 2

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



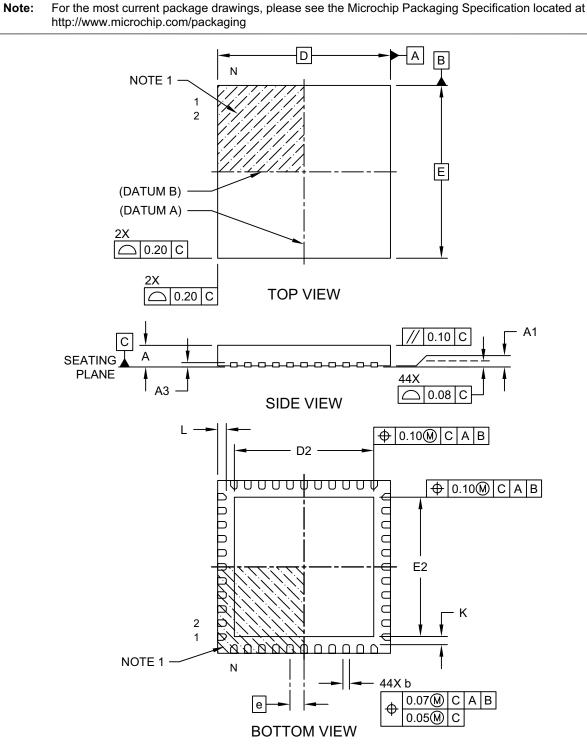
Microchip Technology Drawing C04-052C Sheet 1 of 2

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	1.27 BSC		
Contact Pad Spacing	С		9.40	
Contact Pad Width (X28)	Х			0.60
Contact Pad Length (X28)	Y			2.00
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	7.40		


Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2052A

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

Microchip Technology Drawing C04-103D Sheet 1 of 2