

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	34
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2.15V ~ 3.6V
Data Converters	A/D 13x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f47j13-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1	DEVICE FEATURES FOR THE PIC18F2X.113 (28-PIN	DEVICES)

Features	PIC18F26J13	PIC18F27J13	
Operating Frequency	DC – 48 MHz	DC – 48 MHz	
Program Memory (Kbytes)	64	128	
Program Memory (Instructions)	32,768	65,536	
Data Memory (Kbytes)	3.8	3.8	
Interrupt Sources	3	0	
I/O Ports	Ports A, B, C		
Timers	8		
Enhanced Capture/Compare/PWM Modules	3 ECCP and 7 CCP		
Serial Communications	MSSP (2), Enha	nced USART (2)	
Parallel Communications (PMP/PSP)	No		
10/12-Bit Analog-to-Digital Module	10 Input Channels		
Resets (and Delays)	POR, BOR, RESET Instruction, Stack Full, Stack Underflow, MCLR, WDT (PWRT, OST)		
Instruction Set	75 Instructions, 83 with Exter	nded Instruction Set Enabled	
Packages	28-Pin QFN, SOIC, SSOP and SPDIP (300 mil)		

TABLE 1-2: DEVICE FEATURES FOR THE PIC18F4XJ13 (44-PIN DEVICES)

Features	PIC18F46J13	PIC18F47J13	
Operating Frequency	DC – 48 MHz	DC – 48 MHz	
Program Memory (Kbytes)	64	128	
Program Memory (Instructions)	32,768	65,536	
Data Memory (Kbytes)	3.8	3.8	
Interrupt Sources	3	0	
I/O Ports	Ports A, B, C, D, E		
Timers	8	3	
Enhanced Capture/Compare/PWM Modules	3 ECCP and 7 CCP		
Serial Communications	MSSP (2), Enhanced USART (2)		
Parallel Communications (PMP/PSP)	Ye	es	
10/12-Bit Analog-to-Digital Module	13 Input	Channels	
Resets (and Delays)	POR, BOR, RESET Instruction, Stack Full, Stack Underflow, MCLR, WD (PWRT, OST)		
Instruction Set	75 Instructions, 83 with Exter	nded Instruction Set Enabled	
Packages	44-Pin QFN	I and TQFP	

	Pin Nu	umber			
Pin Name	28-SPDIP/ SSOP/ SOIC	28-QFN	Pin Type	Buffer Type	Description
MCLR	1 ⁽²⁾	26 ⁽²⁾	I	ST	Master Clear (Reset) input. This pin is an active-low Reset to the device.
OSC1/CLKI/RA7 OSC1	9	6	I	ST	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. ST buffer when configured in RC mode; CMOS otherwise. Main oscillator input
			I	CMOS	External clock source input; always associated with pin function, OSC1 (see related OSC1/CLKI pins).
RAA			1/0	TIL/DIG	
OSC2/CLKO/RA6 OSC2	10	7	ο	_	Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode
CLKO			0	DIG	Main oscillator feedback output connection. In RC mode, OSC2 pin outputs CLKO, which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate
RA6 ⁽¹⁾			I/O	TTL/DIG	Digital I/O.
Legend: TTL = TTL compati ST = Schmitt Trigg I = Input P = Power DIG = Digital output	ble input ger input wi	th CMOS	levels	CI Ar O OI I ² (MOS = CMOS compatible input or output nalog = Analog input = Output D = Open-Drain (no P diode to VDD) C = Open-Drain, I ² C specific

TABLE 1-3:	PIC18F2XJ13 PINOUT I/O DESCRIPTIONS

Note 1: RA7 and RA6 will be disabled if OSC1 and OSC2 are used for the clock function.

2: 5.5V tolerant.

2.0 GUIDELINES FOR GETTING STARTED WITH PIC18FJ MICROCONTROLLERS

2.1 Basic Connection Requirements

Getting started with the PIC18F47J13 Family of 8-bit microcontrollers requires attention to a minimal set of device pin connections before proceeding with development.

The following pins must always be connected:

- All VDD and Vss pins (see Section 2.2 "Power Supply Pins")
- All AVDD and AVss pins, regardless of whether or not the analog device features are used (see Section 2.2 "Power Supply Pins")
- MCLR pin
 (see Section 2.3 "Master Clear (MCLR) Pin")
- VCAP/VDDCORE pins (see Section 2.4 "Voltage Regulator Pins (VCAP/VDDCORE)")

These pins must also be connected if they are being used in the end application:

- PGC/PGD pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see Section 2.5 "ICSP Pins")
- OSCI and OSCO pins when an external oscillator source is used

(see Section 2.6 "External Oscillator Pins")

Additionally, the following pins may be required:

- VREF+/VREF- pins are used when external voltage reference for analog modules is implemented
- Note: On 44-pin QFN packages, the AVDD and AVss pins must always be connected, regardless of whether any of the analog modules are being used. On other package types, the AVDD and AVss pins are internally connected to the VDD/Vss pins.

The minimum mandatory connections are shown in Figure 2-1.

FIGURE 2-1:

RECOMMENDED MINIMUM CONNECTIONS

Key (all values are recommendations):

C1 through C6: 0.1 µF, 20V ceramic

C7: 10 µF, 6.3V or greater, tantalum or ceramic

R1: 10 kΩ

R2: 100Ω to 470Ω

- Note 1: See Section 2.4 "Voltage Regulator Pins (VCAP/VDDCORE)" for explanation of VCAP/VDDCORE connections.
 - 2: The example shown is for a PIC18F device with five VDD/VSS and AVDD/AVSS pairs. Other devices may have more or less pairs; adjust the number of decoupling capacitors appropriately.

PIC18F47J13 FAMILY

Pin	Function	TRIS Setting	I/O	l/O Type	Description		
RA0/AN0/C1INA/	RA0	1	I	TTL	PORTA<0> data input; disabled when analog input is enabled.		
ULPWU/PMA6/		0	0	DIG	LATA<0> data output; not affected by analog input.		
RPU	AN0	1	I	ANA	A/D Input Channel 0 and Comparator C1- input. Default input configuration on POR; does not affect digital output.		
	C1INA	1	Ι	ANA	Comparator 1 Input A.		
	ULPWU	1	Ι	ANA	Ultra low-power wake-up input.		
	PMA6 ⁽¹⁾	х	I/O	ST/TTL/ DIG	Parallel Master Port digital I/O.		
	RP0	1	Ι	ST	Remappable Peripheral Pin 0 input.		
		0	0	DIG	Remappable Peripheral Pin 0 output.		
RA1/AN1/C2INA/	RA1	1	Ι	TTL	PORTA<1> data input; disabled when analog input is enabled.		
VBG/CTDIN/		0	0	DIG	LATA<1> data output; not affected by analog input.		
	AN1	1	Ι	ANA	A/D Input Channel 1 and Comparator C2- input. Default input configuration on POR; does not affect digital output.		
	C2INA	1	Ι	ANA	Comparator 1 Input A.		
	Vbg	х	0	ANA	Band Gap Voltage Reference output. (Enabled by setting the VBGOE bit (WDTCON<4>.)		
	CTDIN	1	Ι	ST	CTMU pulse delay input.		
	PMA7 ⁽¹⁾	1	Ι	ST/TTL	Parallel Master Port (io_addr_in[7]).		
		0	0	DIG	Parallel Master Port address.		
	RP1	1	Ι	ST	Remappable Peripheral Pin 1 input.		
		0	0	DIG	Remappable Peripheral Pin 1 output		
RA2/AN2/C2INB/ C1IND/C3INB/	RA2	0	0	DIG	LATA<2> data output; not affected by analog input. Disabled when CVREF output is enabled.		
VREF-/CVREF		1	I	TTL	PORTA<2> data input. Disabled when analog functions are enabled; disabled when CVREF output is enabled.		
	AN2	1	Ι	ANA	A/D Input Channel 2 and Comparator C2+ input. Default input configuration on POR; not affected by analog output.		
	C2INB	1	I	ANA	Comparator 2 Input B.		
		0	0	ANA	CTMU pulse generator charger for the C2INB comparator input.		
	C1IND	1	I	ANA	Comparator 1 Input D.		
	C3INB	1	Ι	ANA	Comparator 3 Input B.		
	VREF-	1	I	ANA	A/D and comparator voltage reference low input.		
	CVREF	х	0	ANA	Comparator voltage reference output. Enabling this feature disables digital I/O.		
RA3/AN3/C1INB/	RA3	0	0	DIG	LATA<3> data output; not affected by analog input.		
VREF+		1	Ι	TTL	PORTA<3> data input; disabled when analog input is enabled.		
	AN3	1	Ι	ANA	A/D Input Channel 3 and Comparator C1+ input. Default input configuration on POR.		
	C1INB	1	Ι	ANA	Comparator 1 Input B		
	VREF+	1	Ι	ANA	A/D and comparator voltage reference high input.		

TABLE 10-3: PORTA I/O SUMMARY

Legend: DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; ANA = Analog level input/output; x = Don't care (TRISx bit does not affect port direction or is overridden for this option)

Note 1: This bit is only available on 44-pin devices (PIC18F46J13, PIC18F47J13, PIC18LF46J13 and PIC18LF47J13).

PIC18F47J13 FAMILY

Pin	Function	TRIS Setting	I/O	l/O Type	Description		
RC0/T1OSO/	RC0	1	I	ST	PORTC<0> data input.		
T1CKI/RP11		0	0	DIG	LATC<0> data output.		
	T1OSO	Х	0	ANA	Timer1 oscillator output; enabled when Timer1 oscillator is enabled. Disables digital I/O.		
	T1CKI	1	I	ST	Timer1 digital clock input.		
	RP11	1	Ι	ST	Remappable Peripheral Pin 11 input.		
		0	0	DIG	Remappable Peripheral Pin 11 output.		
RC1/CCP8/	RC1	1	PORTC<1> data input.				
T1OSI/RP12	0	0	DIG	LATC<1> data output.			
	CCP8	1	I	ST	Capture input.		
	0	0	DIG	Compare/PWM output.			
	T1OSI	Х	I	ANA	Timer1 oscillator input; enabled when Timer1 oscillator is enabled. Disables digital I/O.		
	1	Ι	ST	Remappable Peripheral Pin 12 input.			
			0	DIG	Remappable Peripheral Pin 12 output.		
RC2/AN11/ RC2 1 I ST PORTC<2> da				PORTC<2> data input.			
C2IND/CTPLS/		0	0	DIG	PORTC<2> data output.		
RP13	AN11	1	I	ANA	A/D Input Channel 11.		
	C2IND	1	Ι	ANA	Comparator 2 Input D.		
	0	0	DIG	CTMU pulse generator output.			
RP13 1		1	I	ST	Remappable Peripheral Pin 13 input.		
0		0	DIG	Remappable Peripheral Pin 13 output.			
RC3/SCK1/ RC3 1 I		ST	PORTC<3> data input.				
SCL1/RP14 0		0	0	DIG	PORTC<3> data output.		
SCK1		1	I	ST	SPI clock input (MSSP1 module).		
		0	0	DIG	SPI clock output (MSSP1 module).		
	SCL1	1	I	I ² C/ SMBus	I ² C clock input (MSSP1 module).		
		0	0	DIG	I ² C clock output (MSSP1 module).		
	RP14	1	Ι	ST	Remappable Peripheral Pin 14 input.		
		0	0	DIG	Remappable Peripheral Pin 14 output.		
RC4/SDI1/	RC4	0	0	DIG	PORTC<4> data output.		
SDA1/RP15	SDI1	1	I	ST	SPI data input (MSSP1 module).		
	SDA1	1	I	I ² C/ SMBus	I ² C data input (MSSP1 module).		
		0	0	DIG	I ² C data output (MSSP1 module).		
	RP15	1	I	ST	Remappable Peripheral Pin 15 input.		
		0	0	DIG	Remappable Peripheral Pin 15 output.		

TABLE 10-7: PORTC I/O SUMMARY

Legend: DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; ANA = Analog level input/output; I²C/SMB = I²C/SMBus input buffer; x = Don't care (TRISx bit does not affect port direction or is overridden for this option)

Note 1: This bit is only available on 44-pin devices (PIC18F46J13, PIC18F47J13, PIC18LF46J13 and PIC18LF47J13).

Pin	Function	TRIS Setting	I/O	I/O Type	Description		
RC5/SDO1/	RC5	0	0	DIG	PORTC<5> data output.		
RP16	SDO1	X	0	DIG	SPI data output (MSSP1 module).		
	RP16	1	Ι	ST	Remappable Peripheral Pin 16 input.		
		0	0	DIG	Remappable Peripheral Pin 16 output.		
RC6/CCP9/	RC6	1	I	ST	PORTC<6> data input.		
PMA5/TX1/		0	0	DIG	LATC<6> data output.		
CK1/RP17	CCP9	1	Ι	ST	Capture input.		
		0	0	DIG	Compare/PWM output.		
	PMA5 ⁽¹⁾	1	I	ST/TTL	Parallel Master Port io_addr_in<5>.		
		0	0	DIG	Parallel Master Port address.		
	TX1	0	0	DIG	Asynchronous serial transmit data output (EUSART module); takes priority over port data. User must configure as an output.		
CK1		1	Ι	ST	Synchronous serial clock input (EUSART module).		
		0	0	DIG	Synchronous serial clock output (EUSART module); takes priority over port data.		
	RP17	1	Ι	ST	Remappable Peripheral Pin 17 input.		
		0	0	DIG	Remappable Peripheral Pin 17 output.		
RC7/CCP10/	RC7	1	Ι	ST	PORTC<7> data input.		
PMA4/RX1/		0	0	DIG	LATC<7> data output.		
DTI/RP18	CCP10	1	I	ST	Capture input.		
		0	0	DIG	Compare/PWM output.		
	PMA4 ⁽¹⁾	X	I/O	ST/TTL/ DIG	Parallel Master Port address.		
	RX1	1	Ι	ST	Asynchronous serial receive data input (EUSART module).		
	DT1	1	1	ST	Synchronous serial data input (EUSART module). User must configure as an input.		
		0	0	DIG	Synchronous serial data output (EUSART module); takes priority over port data.		
	RP18	1	Ι	ST	Remappable Peripheral Pin 18 input.		
		0	0	DIG	Remappable Peripheral Pin 18 output.		

Legend: DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; ANA = Analog level input/output; I²C/SMB = I²C/SMBus input buffer; x = Don't care (TRISx bit does not affect port direction or is overridden for this option)

Note 1: This bit is only available on 44-pin devices (PIC18F46J13, PIC18F47J13, PIC18LF46J13 and PIC18LF47J13).

TABLE 10-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0
LATC	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0
ANCON1	VBGEN	—	—	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8
CM2CON	CON	COE	CPOL	EVPOL1	EVPOL0	CREF	CCH1	CCH0
RTCCFG	RTCEN	—	RTCWREN	RTCSYNC	HALFSEC	RTCOE	RTCPTR1	RTCPTR0

REGISTER 10-8: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3 (BANKED EE3h)

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	INTR3R4	INTR3R3	INTR3R2	INTR3R1	INTR3R0
bit 7							bit 0

Legend:	R/\overline{W} = Readable bit, Writable bit if IOLOCK = 0					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 7-5 Unimplemented: Read as '0'

bit 4-0 INTR3R<4:0>: Assign External Interrupt 3 (INT3) to the Corresponding RPn Pin bits

REGISTER 10-9: RPINR4: PERIPHERAL PIN SELECT INPUT REGISTER 4 (BANKED EE4h)

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	T0CKR4	T0CKR3	T0CKR2	T0CKR1	T0CKR0
bit 7							bit 0

Legend:	R/\overline{W} = Readable bit, Writable bit if IOLOCK = 0				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-5	Unimplemented: Read as '0'
bit 4-0	TOCKR<4:0>: Timer0 External Clock Input (T0CKI) to the Corresponding RPn Pin bits

REGISTER 10-10: RPINR6: PERIPHERAL PIN SELECT INPUT REGISTER 6 (BANKED EE6h)

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	T3CKR4	T3CKR3	T3CKR2	T3CKR1	T3CKR0
bit 7							bit 0

Legend:	R/\overline{W} = Readable bit, Writable bit if IOLOCK = 0				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown			

bit 7-5 Unimplemented: Read as '0'

bit 4-0 T3CKR<4:0>: Timer3 External Clock Input (T3CKI) to the Corresponding RPn Pin bits

REGISTER 10-39: RPOR15: PERIPHERAL PIN SELECT OUTPUT REGISTER 15 (BANKED ECFh)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP15R4	RP15R3	RP15R2	RP15R1	RP15R0
bit 7							bit 0

Legend:	R/\overline{W} = Readable bit, Writable bit if IOLOCK = 0				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP15R<4:0>:** Peripheral Output Function is Assigned to RP15 Output Pin bits (see Table 10-14 for peripheral function numbers)

REGISTER 10-40: RPOR16: PERIPHERAL PIN SELECT OUTPUT REGISTER 16 (BANKED ED0h)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP16R4	RP16R3	RP16R2	RP16R1	RP16R0
bit 7							bit 0

Legend:	R/\overline{W} = Readable bit, Writable bit if IOLOCK = 0				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP16R<4:0>:** Peripheral Output Function is Assigned to RP16 Output Pin bits (see Table 10-14 for peripheral function numbers)

REGISTER 10-41: RPOR17: PERIPHERAL PIN SELECT OUTPUT REGISTER 17 (BANKED ED1h)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP17R4	RP17R3	RP17R2	RP17R1	RP17R0
bit 7							bit 0

Legend:	R/W = Readable bit, Writable bit if IOLOCK = 0				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP17R<4:0>:** Peripheral Output Function is Assigned to RP17 Output Pin bits (see Table 10-14 for peripheral function numbers)

14.2 Timer2 Interrupt

Timer2 can also generate an optional device interrupt. The Timer2 output signal (TMR2 to PR2 match) provides the input for the 4-bit output counter/postscaler. This counter generates the TMR2 Match Interrupt Flag, which is latched in TMR2IF (PIR1<1>). The interrupt is enabled by setting the TMR2 Match Interrupt Enable bit, TMR2IE (PIE1<1>).

A range of 16 postscaler options (from 1:1 through 1:16 inclusive) can be selected with the postscaler control bits, T2OUTPS<3:0> (T2CON<6:3>).

14.3 Timer2 Output

The unscaled output of TMR2 is available primarily to the ECCP modules, where it is used as a time base for operations in PWM mode.

Timer2 can be optionally used as the shift clock source for the MSSP modules operating in SPI mode. Additional information is provided in Section 20.0 "Master Synchronous Serial Port (MSSP) Module".

TABLE 14-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	
PIR1	PMPIF ⁽¹⁾	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	
PIE1	PMPIE ⁽¹⁾	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	
IPR1	PMPIP ⁽¹⁾	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	
TMR2	Timer2 Register								
T2CON	—	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0	
PR2	Timer2 Period Register								

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Timer2 module.

Note 1: These bits are only available in 44-pin devices.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF
PIR5	—	—	CM3IF	TMR8IF	TMR6IF	TMR5IF	TMR5GIF	TMR1GIF
PIE5	—	—	CM3IE	TMR8IE	TMR6IE	TMR5IE	TMR5GIE	TMR1GIE
PIR2	OSCFIF	CM2IF	CM1IF	—	BCL1IF	HLVDIF	TMR3IF	CCP2IF
PIE2	OSCFIE	CM2IE	CM1IE	—	BCL1IE	HLVDIE	TMR3IE	CCP2IE
TMR3H	Timer3 Regi	ster High Byte	е					
TMR3L	Timer3 Regi	ster Low Byte	9					
T3GCON	TMR3GE	T3GPOL	T3GTM	T3GSPM	T3GGO/ T3DONE	T3GVAL	T3GSS1	T3GSS0
T3CON	TMR3CS1	TMR3CS0	T3CKPS1	T3CKPS0	T3OSCEN	T3SYNC	RD16	TMR3ON
TMR5H	Timer5 Regi	ster High Byte	e					
TMR5L	Timer5 Regi	ster Low Byte	9					
T5GCON	TMR5GE	T5GPOL	T5GTM	T5GSPM	T5GGO/ T5DONE	T5GVAL	T5GSS1	T5GSS0
T5CON	TMR5CS1	TMR5CS0	T5CKPS1	T5CKPS0	T5OSCEN	T5SYNC	RD16	TMR5ON
OSCCON2	—	SOSCRUN	—	SOSCDRV	SOSCGO	_	—	—
CCPTMRS0	C3TSEL1	C3TSEL0	C2TSEL2	C2TSEL1	C2TSEL0	C1TSEL2	C1TSEL1	C1TSEL0
CCPTMRS1	C7TSEL1	C7TSEL0	—	C6TSEL0	_	C5TSEL0	C4TSEL1	C4TSEL0
CCPTMRS1	—	_	_	C10TSEL0		C9TSEL0	C8TSEL1	C8TSEL0
CCPTMRS2	_			C10TSEL0		C9TSEL0	C8TSEL1	C8TSEL0

TABLE 15-5: REGISTERS ASSOCIATED WITH TIMER3/5 AS A TIMER/COUNTER

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Timer3 module.

			'		
00	(Single Output)	PxA Modulated	[J	1
		PxA Modulated			
10	(Half-Bridge)	PxB Modulated			
		PxA Active			
01	(Full-Bridge,	PxB Inactive			
	Forward)	PxC Inactive		I	 ! !
		PxD Modulated			
		PxA Inactive	_ :	1 1	1 1 1
11	(Full-Bridge, Reverse)	PxB Modulated	=		1
		PxC Active			
		PxD Inactive		 	 I I
Relati	onships: • Period = 4 * Tosc • Pulse Width = Tosc	* (PR2 + 1) * (TMR2 Pre sc * (CCPRxL<7:0>:CCP;	scale Value) xCON<5:4>) * (TMR2 Presc	ale Value)	

FIGURE 19-5: ENHANCED PWM OUTPUT RELATIONSHIPS (ACTIVE-LOW STATE) EXAMPLE

19.4.6 PROGRAMMABLE DEAD-BAND DELAY MODE

In half-bridge applications, where all power switches are modulated at the PWM frequency, the power switches normally require more time to turn off than to turn on. If both the upper and lower power switches are switched at the same time (one turned on and the other turned off), both switches may be on for a short period until one switch completely turns off. During this brief interval, a very high current (shoot-through current) will flow through both power switches, shorting the bridge supply. To avoid this potentially destructive shoot-through current from flowing during switching, turning on either of the power switches is normally delayed to allow the other switch to completely turn off.

In Half-Bridge mode, a digitally programmable, dead-band delay is available to avoid shoot-through current from destroying the bridge power switches. The delay occurs at the signal transition from the non-active state to the active state. For an illustration, see Figure 19-14. The lower seven bits of the associated ECCPxDEL register (Register 19-5) set the delay period in terms of microcontroller instruction cycles (TcY or 4 Tosc).

FIGURE 19-14: EXAMPLE OF HALF-BRIDGE PWM OUTPUT Period Period Pulse Width PxA⁽²⁾ td td I PxB⁽²⁾ (1) · (1) . . . (1) td = Dead-Band Delay Note 1: At this time, the TMR2 register is equal to the PR2 register. 2: Output signals are shown as active-high.

FIGURE 19-15: EXAMPLE OF HALF-BRIDGE APPLICATIONS

20.5.4 CLOCK STRETCHING

Both 7-Bit and 10-Bit Slave modes implement automatic clock stretching during a transmit sequence.

The SEN bit (SSPxCON2<0>) allows clock stretching to be enabled during receives. Setting SEN will cause the SCLx pin to be held low at the end of each data receive sequence.

20.5.4.1 Clock Stretching for 7-Bit Slave Receive Mode (SEN = 1)

In 7-Bit Slave Receive mode, <u>on the falling edge of the</u> ninth clock at the end of the ACK sequence, if the BF bit is set, the CKP bit in the SSPxCON1 register is automatically cleared, forcing the SCLx output to be held low. The CKP bit being cleared to '0' will assert the SCLx line low. The CKP bit must be set in the user's ISR before reception is allowed to continue. By holding the SCLx line low, the user has time to service the ISR and read the contents of the SSPxBUF before the master device can initiate another receive sequence. This will prevent buffer overruns from occurring (see Figure 20-15).

- Note 1: If the user reads the contents of the SSPxBUF before the falling edge of the ninth clock, thus clearing the BF bit, the CKP bit will not be cleared and clock stretching will not occur.
 - 2: The CKP bit can be set in software regardless of the state of the BF bit. The user should be careful to clear the BF bit in the ISR before the next receive sequence in order to prevent an overflow condition.

20.5.4.2 Clock Stretching for 10-Bit Slave Receive Mode (SEN = 1)

In 10-Bit Slave Receive mode, during the address sequence, clock stretching automatically takes place but CKP is not cleared. During this time, if the UA bit is set after the ninth clock, clock stretching is initiated. The UA bit is set after receiving the upper byte of the 10-bit address and following the receive of the second byte of the 10-bit address with the R/W bit cleared to '0'. The release of the clock line occurs upon updating SSPxADD. Clock stretching will occur on each data receive sequence, as described in 7-bit mode.

Note: If the user polls the UA bit and clears it by updating the SSPxADD register before the falling edge of the ninth clock occurs, and if the user has not cleared the BF bit by reading the SSPxBUF register before that time, then the CKP bit will still NOT be asserted low. Clock stretching on the basis of the state of the BF bit only occurs during a data sequence, not an address sequence.

20.5.4.3 Clock Stretching for 7-Bit Slave Transmit Mode

The 7-Bit Slave Transmit mode implements clock stretching by clearing the CKP bit, after the falling edge of the ninth clock, if the BF bit is clear. This occurs regardless of the state of the SEN bit.

The user's Interrupt Service Routine (ISR) must set the CKP bit before transmission is allowed to continue. By holding the SCLx line low, the user has time to service the ISR and load the contents of the SSPxBUF before the master device can initiate another transmit sequence (see Figure 20-10).

- Note 1: If the user loads the contents of SSPxBUF, setting the BF bit before the falling edge of the ninth clock, the CKP bit will not be cleared and clock stretching will not occur.
 - **2:** The CKP bit can be set in software regardless of the state of the BF bit.

20.5.4.4 Clock Stretching for 10-Bit Slave Transmit Mode

In 10-Bit Slave Transmit mode, clock stretching is controlled during the first two address sequences by the state of the UA bit, just as it is in 10-Bit Slave Receive mode. The first two addresses are followed by a third address sequence, which contains the high-order bits of the 10-bit address and the R/W bit set to '1'. After the third address sequence is performed, the UA bit is not set, the module is now configured in Transmit mode and clock stretching is controlled by the BF flag as in 7-Bit Slave Transmit mode (see Figure 20-13).

© 2010-2017 Microchip Technology Inc

DS30009974C-page 328

20.5.17.2 Bus Collision During a Repeated Start Condition

During a Repeated Start condition, a bus collision occurs if:

- a) A low level is sampled on SDAx when SCLx goes from a low level to a high level.
- SCLx goes low before SDAx is asserted low, indicating that another master is attempting to transmit a data '1'.

When the user deasserts SDAx and the pin is allowed to float high, the BRG is loaded with SSPxADD<6:0> and counts down to 0. The SCLx pin is then deasserted and when sampled high, the SDAx pin is sampled.

If SDAx is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0'; see Figure 20-31). If SDAx is sampled high, the BRG is reloaded and begins counting. If SDAx goes from high-to-low before the BRG times out, no bus collision occurs because no two masters can assert SDAx at exactly the same time.

If SCLx goes from high-to-low before the BRG times out and SDAx has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition (see Figure 20-32).

If, at the end of the BRG time-out, both SCLx and SDAx are still high, the SDAx pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCLx pin, the SCLx pin is driven low and the Repeated Start condition is complete.

FIGURE 20-31: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)

21.0 ENHANCED UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (EUSART)

The Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) module is one of two serial I/O modules. (Generically, the EUSART is also known as a Serial Communications Interface or SCI.) The EUSART can be configured as a full-duplex asynchronous system that can communicate with peripheral devices, such as CRT terminals and personal computers. It can also be configured as a half-duplex synchronous system that can communicate with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs and so on.

The Enhanced USART module implements additional features, including Automatic Baud Rate Detection and calibration, automatic wake-up on Sync Break reception, and 12-bit Break character transmit. These make it ideally suited for use in Local Interconnect Network bus (LIN/J2602 bus) systems.

All members of the PIC18F47J13 Family are equipped with two independent EUSART modules, referred to as EUSART1 and EUSART2. They can be configured in the following modes:

- Asynchronous (full-duplex) with:
 - Auto-wake-up on character reception
 - Auto-baud calibration
 - 12-bit Break character transmission
- Synchronous Master (half-duplex) with selectable clock polarity
- Synchronous Slave (half-duplex) with selectable clock polarity

The pins of EUSART1 and EUSART2 are multiplexed with the functions of PORTC (RC6/CCP9/PMA5/TX1/CK1/RP17 and RC7/CCP10/PMA4/RX1/DT1/RP18), and remapped (RPn1/TX2/CK2 and RPn2/RX2/DT2), respectively. In order to configure these pins as an EUSART:

- For EUSART1:
 - SPEN bit (RCSTA1<7>) must be set (= 1)
 - TRISC<7> bit must be set (= 1)
 - TRISC<6> bit must be cleared (= 0) for Asynchronous and Synchronous Master modes
 - TRISC<6> bit must be set (= 1) for Synchronous Slave mode
- For EUSART2:
 - SPEN bit (RCSTA2<7>) must be set (= 1)
 - TRIS bit for RPn2/RX2/DT2 = 1
 - TRIS bit for RPn1/TX2/CK2 = 0 for Asynchronous and Synchronous Master modes
 - TRISC<6> bit must be set (= 1) for Synchronous Slave mode

Note:	The EUSART control will automatically
	reconfigure the pin from input to output as
	needed.

The TXx/CKx I/O pins have an optional open-drain output capability. By default, when this pin is used by the EUSART as an output, it will function as a standard push-pull CMOS output. The TXx/CKx I/O pins' open-drain, output feature can be enabled by setting the corresponding UxOD bit in the ODCON2 register. For more details, see Section 20.3.3 "Open-Drain Output Option".

The operation of each Enhanced USART module is controlled through three registers:

- Transmit Status and Control (TXSTAx)
- Receive Status and Control (RCSTAx)
- Baud Rate Control (BAUDCONx)

These are covered in detail in Register 21-1, Register 21-2 and Register 21-3, respectively.

Note: Throughout this section, references to register and bit names that may be associated with a specific EUSART module are referred to generically by the use of 'x' in place of the specific module number. Thus, "RCSTAx" might refer to the Receive Status register for either EUSART1 or EUSART2.

22.1 A/D Acquisition Requirements

For the A/D Converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is illustrated in Figure 22-2. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor, CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD). The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 2.5 k Ω for 10-bit conversions and 1 k Ω for 12-bit conversions. After the analog input channel is selected (changed), the channel must be sampled for at least the minimum acquisition time before starting a conversion.

Note:	When	the	conversion	is	started,	the
	holding capacitor is disconnected from					
	input p	ın.				

EQUATION 22-1: ACQUISITION TIME

TACQ	=	Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient
	=	TAMP + TC + TCOFF

EQUATION 22-2: A/D MINIMUM CHARGING TIME

VHOLD	=	$(\text{VREF} - (\text{VREF}/2048)) \cdot (1 - e^{(-\text{TC/CHOLD}(\text{RIC} + \text{RSS} + \text{RS}))})$
or		
TC	=	$-(CHOLD)(RIC + RSS + RS) \ln(1/2048)$

EQUATION 22-3: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME

TACQ	=	TAMP + TC + TCOFF
TAMP	=	0.2 μs
TCOFF	=	(Temp – 25°C)(0.02 μs/°C) (85°C – 25°C)(0.02 μs/°C) 1.2 μs
Tempera	ture co	befficient is only required for temperatures > 25°C. Below 25°C, TCOFF = 0 μ s.
ТС	=	-(Chold)(Ric + Rss + Rs) $\ln(1/2048) \ \mu s$ -(25 pF) (1 k Ω + 2 k Ω + 2.5 k Ω) $\ln(0.0004883) \ \mu s$ 1.05 μs
TACQ	=	0.2 μs + 1.05 μs + 1.2 μs 2.45 μs

To calculate the minimum acquisition time, Equation 22-1 may be used. This equation assumes that 1/2 LSb error is used (1,024 steps for the 10-bit A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

Equation 22-3 provides the calculation of the minimum required acquisition time, TACQ. This calculation is based on the following application system assumptions:

CHOLD	=	25 pF
Rs	=	2.5 kΩ
Conversion Error	\leq	1/2 LSb
Vdd	=	$3V \rightarrow Rss = 2 \ k\Omega$
Temperature	=	85°C (system max.)

TABLE 28-1: OPCODE FIELD DESCRIPTIONS

Field	Description
a	RAM Access bit:
	a = 0: RAM location in Access RAM (BSR register is ignored)
	a = 1: RAM bank is specified by BSR register
bbb	Bit address within an 8-bit file register (0 to 7).
BSR	Bank Select Register. Used to select the current RAM bank.
C, DC, Z, OV, N	ALU Status bits: Carry, Digit Carry, Zero, Overflow, Negative.
d	Destination Select bit:
	d = 0: store result in title register f
dest	Destination: either the WREG register or the specified register file location
f	8-bit Register file address (00h to FEh) or 2-bit FSR designator (0h to 3h)
f	12-bit Register file address (000h to FFFh). This is the source address
f,	12-bit Register file address (000h to FEFh). This is the destination address
GIE	Global Interrupt Enable bit
k	Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value).
label	
mm	The mode of the TBLPTR register for the table read and table write instructions.
	Only used with table read and table write instructions:
*	No change to register (such as TBLPTR with table reads and writes)
*+	Post-Increment register (such as TBLPTR with table reads and writes)
*_	Post-Decrement register (such as TBLPTR with table reads and writes)
+*	Pre-Increment register (such as TBLPTR with table reads and writes)
n	The relative address (2's complement number) for relative branch instructions or the direct address for
	Call/Branch and Return instructions.
PC	Program Counter.
PCL	Program Counter Low Byte.
PCH	Program Counter High Byte.
PCLATH	Program Counter High Byte Latch.
PCLATU	Program Counter Upper Byte Latch.
PD	Power-Down bit.
PRODH	Product of Multiply High Byte.
PRODL	Product of Multiply Low Byte.
S	Fast Call/Return Mode Select bit:
	s = 0: do not update into/from shadow registers
משת זמש	$S = \pm$. Certain registers loaded into non shadow registers (r as mode)
	8-bit Table Latch
TO	Ton-of-Stack
100	
WDT	Watchdog Timer
WREG	Working register (accumulator)
x	Don't care ('0' or '1') The assembler will generate code with $x = 0$. It is the recommended form of use for
	compatibility with all Microchip software tools.
Zs	7-bit offset value for Indirect Addressing of register files (source).
Zd	7-bit offset value for Indirect Addressing of register files (destination).
{ }	Optional argument.
[text]	Indicates an Indexed Address.
(text)	The contents of text.
[expr] <n></n>	Specifies bit n of the register indicated by the pointer expr.
\rightarrow	Assigned to.
< >	Register bit field.
E	In the set of.
italics	User-defined term (font is Courier New).

DC CHA	ARACTE	RISTICS	Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial				
Param No.	Symbol	Characteristic	Min	Мах	Units	Conditions	
	VIL	Input Low Voltage					
		All I/O Ports:					
D030		with TTL Buffer	Vss	0.15 Vdd	V	VDD < 3.3V	
D030A		with TTL Buffer	Vss	0.8	V	3.3V <u><</u> Vdd <u><</u> 3.6V	
D031		with Schmitt Trigger Buffer	Vss	0.2 Vdd	V		
D031A		SCLx/SDAx	—	0.3 Vdd	V	I ² C enabled	
D031B		SCLx/SDAx	—	0.8	V	SMBus enabled	
D032		MCLR	Vss	0.2 Vdd	V		
D033		OSC1	Vss	0.3 Vdd	V	HS, HSPLL modes	
D033A		OSC1	Vss	0.2 Vdd	V	EC, ECPLL modes	
D034		T1OSI	Vss	0.3	V	T1OSCEN = 1	
	Vih	Input High Voltage					
		I/O Ports without 5.5V Tolerance:					
D040		with TTL Buffer	0.25 VDD + 0.8V	Vdd	V	Vdd < 3.3V	
D040A		with TTL Buffer	2.0	Vdd	V	3.3V <u><</u> Vdd <u><</u> 3.6V	
D041		with Schmitt Trigger Buffer	0.8 Vdd	Vdd	V		
		I/O Ports with 5.5V Tolerance:(4)					
Dxxx		with TTL Buffer	0.25 VDD + 0.8V	5.5	V	Vdd < 3.3V	
DxxxA			2.0	5.5	V	$3.3V \leq V\text{DD} \leq 3.6V$	
Dxxx		with Schmitt Trigger Buffer	0.8 Vdd	5.5	V		
D041A		SCLx/SDAx	0.7 Vdd	—	V	I ² C enabled	
D041B		SCLx/SDAx	2.1	—	V	SMBus enabled; VDD <u>></u> 3V	
D042		MCLR	0.8 Vdd	5.5	V		
D043		OSC1	0.7 Vdd	Vdd	V	HS, HSPLL modes	
D043A		OSC1	0.8 Vdd	Vdd	V	EC, ECPLL modes	
D044		T10SI	1.6	Vdd	V	T1OSCEN = 1	
	IPU	Weak Pull-up Current					
D070	Ipurb	PORTB, PORTD ⁽³⁾ and PORTE ⁽³⁾ Weak Pull-up Current	80	400	μA	VDD = 3.3V, VPIN = VSS	

30.3 DC Characteristics: PIC18F47J13 Family (Industrial)

Note 1: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

2: Negative current is defined as current sourced by the pin.

3: Only available in 44-pin devices.

4: Refer to Table 10-2 for pin tolerance levels.

Param.	Symbol	Characteristic		Min	Max	Unite	Conditions
No.	Oymbol	Onarac			Max	Onits	Conditions
100	Thigh	Clock High Time	100 kHz mode	2(Tosc)(BRG + 1)	—	μs	
			400 kHz mode	2(Tosc)(BRG + 1)	_	μs	
101	TLOW	Clock Low Time	100 kHz mode	2(Tosc)(BRG + 1)	—	μs	
			400 kHz mode	2(Tosc)(BRG + 1)	—	μs	
102	TR	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF
103	TF	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF
90	TSU:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)	—	μs	Only relevant for
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	—	μs	Repeated Start condition
91	THD:STA	Start Condition Hold Time	100 kHz mode	2(Tosc)(BRG + 1)	—	μs	After this period, the first
			400 kHz mode	2(Tosc)(BRG + 1)	—	μs	clock pulse is generated
106	THD:DAT	Data Input Hold Time	100 kHz mode	0	—	ns	
			400 kHz mode	0	0.9	μs	Ī
107	TSU:DAT	Data Input Setup Time	100 kHz mode	250	—	ns	(Note 1)
			400 kHz mode	100	—	ns	Ī
92	Tsu:sto	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	—	μs	
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	—	μs	
109	ΤΑΑ	Output Valid	100 kHz mode	—	3450	ns	
		from Clock	400 kHz mode	—	900	ns	
110	TBUF	Bus Free Time	100 kHz mode	4.7	—	μs	Time the bus must be
			400 kHz mode	1.3	—	μs	free before a new
D 400	0-		 		400		transmission can start
D102	CB	Bus Capacitive L	bading	—	400	р⊢	

TABLE 30-28: MSSPx FC BUS DATA REQUIREMENTS

Note 1: A Fast mode I²C bus device can be used in a Standard mode I²C bus system, but parameter #107 ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCLx signal. If such a device does stretch the LOW period of the SCLx signal, it must output the next data bit to the SDAx line, parameter #102 + parameter #107 = 1000 + 250 = 1250 ns (for 100 kHz mode), before the SCLx line is released.

