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What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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FIGURE 1-2: PIC18F4XJ13 (44-PIN) BLOCK DIAGRAM 
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3.2.5.1 OSCTUNE Register
The internal oscillator’s output has been calibrated at
the factory but can be adjusted in the user’s applica-
tion. This is done by writing to the OSCTUNE register
(Register 3-1).

When the OSCTUNE register is modified, the INTOSC
frequency will begin shifting to the new frequency. The
INTOSC clock will typically stabilize within 1 s. Code
execution continues during this shift. There is no
indication that the shift has occurred.

The OSCTUNE register also contains the INTSRC bit.
The INTSRC bit allows users to select which internal
oscillator provides the clock source when the 31 kHz
frequency option is selected. This is covered in larger
detail in Section 3.3.1 “Oscillator Control Register”. 

The PLLEN bit, contained in the OSCTUNE register,
can be used to enable or disable the internal PLL
when running in one of the PLL type oscillator modes
(e.g., INTOSCPLL). Oscillator modes that do not con-
tain “PLL” in their name cannot be used with the PLL.
In these modes, the PLL is always disabled regardless
of the setting of the PLLEN bit. 
When configured for one of the PLL enabled modes, set-
ting the PLLEN bit does not immediately switch the
device clock to the PLL output. The PLL requires up to
electrical parameter, trc, to start-up and lock, during
which time, the device continues to be clocked. Once the
PLL output is ready, the microcontroller core will
automatically switch to the PLL derived frequency.

3.2.5.2 Internal Oscillator Output Frequency 
and Drift

The internal oscillator block is calibrated at the factory
to produce an INTOSC output frequency of 8.0 MHz.
However, this frequency may drift as VDD or tempera-
ture changes, which can affect the controller operation
in a variety of ways.

The low-frequency INTRC oscillator operates inde-
pendently of the INTOSC source. Any changes in
INTOSC across voltage and temperature are not nec-
essarily reflected by changes in INTRC and vice versa.

3.2.5.3 Compensating for INTOSC Drift
It is possible to adjust the INTOSC frequency by
modifying the value in the OSCTUNE register. This has
no effect on the INTRC clock source frequency.

Tuning the INTOSC source requires knowing when to
make the adjustment, in which direction it should be
made, and in some cases, how large a change is
needed. When using the EUSART, for example, an
adjustment may be required when it begins to generate
framing errors or receives data with errors while in
Asynchronous mode. Framing errors indicate that the
device clock frequency is too high; to adjust for this,
decrement the value in OSCTUNE to reduce the clock
frequency. On the other hand, errors in data may sug-
gest that the clock speed is too low; to compensate,
increment OSCTUNE to increase the clock frequency.

It is also possible to verify device clock speed against
a reference clock. Two timers may be used: one timer
is clocked by the peripheral clock, while the other is
clocked by a fixed reference source, such as the Tim-
er1 oscillator. Both timers are cleared, but the timer
clocked by the reference generates interrupts. When
an interrupt occurs, the internally clocked timer is read
and both timers are cleared. If the internally clocked
timer value is greater than expected, then the internal
oscillator block is running too fast. To adjust for this,
decrement the OSCTUNE register.

Finally, an ECCP module can use free-running Timer1
(or Timer3), clocked by the internal oscillator block and
an external event with a known period (i.e., AC power
frequency). The time of the first event is captured in the
CCPRxH:CCPRxL registers and is recorded for use
later. When the second event causes a capture, the
time of the first event is subtracted from the time of the
second event. Since the period of the external event is
known, the time difference between events can be
calculated.

If the measured time is greater than the calculated time,
the internal oscillator block is running too fast; to
compensate, decrement the OSCTUNE register. If the
measured time is less than the calculated time, the inter-
nal oscillator block is running too slow; to compensate,
increment the OSCTUNE register.
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6.4 Data Addressing Modes

While the program memory can be addressed in only
one way through the PC, information in the data mem-
ory space can be addressed in several ways. For most
instructions, the addressing mode is fixed. Other
instructions may use up to three modes, depending on
which operands are used and whether or not the
extended instruction set is enabled.

The addressing modes are:

• Inherent
• Literal
• Direct
• Indirect

An additional addressing mode, Indexed Literal Offset,
is available when the extended instruction set is
enabled (XINST Configuration bit = 1). Its operation is
discussed in more detail in Section 6.6.1 “Indexed
Addressing with Literal Offset”.

6.4.1 INHERENT AND LITERAL 
ADDRESSING

Many PIC18 control instructions do not need any
argument at all; they either perform an operation that
globally affects the device, or they operate implicitly on
one register. This addressing mode is known as
Inherent Addressing. Examples include SLEEP, RESET
and DAW.

Other instructions work in a similar way, but require an
additional explicit argument in the opcode. This is
known as Literal Addressing mode, because they
require some literal value as an argument. Examples
include ADDLW and MOVLW, which respectively, add or
move a literal value to the W register. Other examples
include CALL and GOTO, which include a 20-bit
program memory address.

6.4.2 DIRECT ADDRESSING
Direct Addressing specifies all or part of the source
and/or destination address of the operation within the
opcode itself. The options are specified by the
arguments accompanying the instruction.

In the core PIC18 instruction set, bit-oriented and
byte-oriented instructions use some version of Direct
Addressing by default. All of these instructions include
some 8-bit literal address as their LSB. This address
specifies either a register address in one of the banks
of data RAM (Section 6.3.3 “General Purpose

Register File”) or a location in the Access Bank
(Section 6.3.2 “Access Bank”) as the data source for
the instruction.

The Access RAM bit, ‘a’, determines how the address
is interpreted. When ‘a’ is ‘1’, the contents of the BSR
(Section 6.3.1 “Bank Select Register”) are used with
the address to determine the complete 12-bit address
of the register. When ‘a’ is ‘0’, the address is interpreted
as being a register in the Access Bank. Addressing that
uses the Access RAM is sometimes also known as
Direct Forced Addressing mode.

A few instructions, such as MOVFF, include the entire
12-bit address (either source or destination) in their
opcodes. In these cases, the BSR is ignored entirely.

The destination of the operation’s results is determined
by the destination bit, ‘d’. When ‘d’ is ‘1’, the results are
stored back in the source register, overwriting its
original contents. When ‘d’ is ‘0’, the results are stored
in the W register. Instructions without the ‘d’ argument
have a destination that is implicit in the instruction; their
destination is either the target register being operated
on or the W register.

6.4.3 INDIRECT ADDRESSING
Indirect Addressing allows the user to access a location
in data memory without giving a fixed address in the
instruction. This is done by using File Select Registers
(FSRs) as pointers to the locations to be read or written
to. Since the FSRs are themselves located in RAM as
SFRs, they can also be directly manipulated under
program control. This makes FSRs very useful in
implementing data structures such as tables and arrays
in data memory.

The registers for Indirect Addressing are also
implemented with Indirect File Operands (INDFs) that
permit automatic manipulation of the pointer value with
auto-incrementing, auto-decrementing or offsetting
with another value. This allows for efficient code using
loops, such as the example of clearing an entire RAM
bank in Example 6-5. It also enables users to perform
Indexed Addressing and other Stack Pointer
operations for program memory in data memory.

EXAMPLE 6-5: HOW TO CLEAR RAM 
(BANK 1) USING INDIRECT 
ADDRESSING 

Note: The execution of some instructions in the
core PIC18 instruction set are changed
when the PIC18 extended instruction set is
enabled. See Section 6.6 “Data Memory
and the Extended Instruction Set” for
more information.

LFSR FSR0, 0x100;   

NEXT CLRF POSTINC0 ; Clear INDF 

; register then 

; inc pointer 

BTFSS FSR0H, 1 ; All done with

; Bank1? 

BRA NEXT ; NO, clear next 

CONTINUE ; YES, continue 
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7.5 Writing to Flash Program Memory
The programming block is 32 words or 64 bytes.
Programming one word or 2 bytes at a time is also
supported.
Table writes are used internally to load the holding
registers needed to program the Flash memory. There
are 64 holding registers used by the table writes for
programming.
Since the Table Latch (TABLAT) is only a single byte, the
TBLWT instruction may need to be executed 64 times for
each programming operation (if WPROG = 0). All of the
table write operations will essentially be short writes
because only the holding registers are written. At the
end of updating the 64 holding registers, the EECON1
register must be written to in order to start the
programming operation with a long write.

The long write is necessary for programming the
internal Flash. Instruction execution is Halted while in a
long write cycle. The long write will be terminated by
the internal programming timer.

The on-chip timer controls the write time. The
write/erase voltages are generated by an on-chip
charge pump, rated to operate over the voltage range
of the device.

FIGURE 7-5: TABLE WRITES TO FLASH PROGRAM MEMORY 

7.5.1 FLASH PROGRAM MEMORY WRITE 
SEQUENCE

The sequence of events for programming an internal
program memory location should be:
1. Read 1024 bytes into RAM.
2. Update data values in RAM as necessary.
3. Load the Table Pointer register with address

being erased.
4. Execute the erase procedure.
5. Load the Table Pointer register with the address

of the first byte being written, minus 1.
6. Write the 64 bytes into the holding registers with

auto-increment.
7. Set the WREN bit (EECON1<2>) to enable byte

writes.

8. Disable interrupts.
9. Write 55h to EECON2.
10. Write 0AAh to EECON2.
11. Set the WR bit; this will begin the write cycle.
12. The CPU will stall for the duration of the write for

TIW (see parameter D133A).
13. Re-enable interrupts.
14. Repeat Steps 6 through 13 until all 1024 bytes

are written to program memory.
15. Verify the memory (table read).
An example of the required code is provided in
Example 7-3 on the following page.

Note 1: Unlike previous PIC® devices, devices of
the PIC18F47J13 Family do not reset the
holding registers after a write occurs. The
holding registers must be cleared or
overwritten before a programming
sequence.

2: To maintain the endurance of the pro-
gram memory cells, each Flash byte
should not be programmed more than
once between erase operations. Before
attempting to modify the contents of the
target cell a second time, an erase of the
target page, or a bulk erase of the entire
memory, must be performed.

TABLAT

TBLPTR = xxxx3FTBLPTR = xxxxx1TBLPTR = xxxxx0

Write Register

TBLPTR = xxxxx2

Program   Memory

Holding Register Holding Register Holding Register Holding Register

8 8 8 8

Note: Before setting the WR bit, the Table
Pointer address needs to be within the
intended address range of the 64 bytes in
the holding register.
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FIGURE 11-24: WRITE TIMING, 16-BIT MULTIPLEXED DATA, 

PARTIALLY MULTIPLEXED ADDRESS

FIGURE 11-25: READ TIMING, 16-BIT MULTIPLEXED DATA, 
FULLY MULTIPLEXED 16-BIT ADDRESS

FIGURE 11-26: WRITE TIMING, 16-BIT MULTIPLEXED DATA, 
FULLY MULTIPLEXED 16-BIT ADDRESS
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13.8.4 TIMER1 GATE SINGLE PULSE 

MODE
When Timer1 Gate Single Pulse mode is enabled, it is
possible to capture a single pulse gate event. Timer1
Gate Single Pulse mode is first enabled by setting the
T1GSPM bit in the T1GCON register. Next, the
T1GGO/T1DONE bit in the T1GCON register must be
set. The Timer1 will be fully enabled on the next incre-
menting edge. On the next trailing edge of the pulse,
the T1GGO/T1DONE bit will automatically be cleared.
No other gate events will be allowed to increment Tim-
er1 until the T1GGO/T1DONE bit is once again set in
software.

Clearing the T1GSPM bit of the T1GCON register will
also clear the T1GGO/T1DONE bit. See Figure 13-6
for timing details.

Enabling the Toggle mode and the Single Pulse mode,
simultaneously, will permit both sections to work together.
This allows the cycle times on the Timer1 gate source to
be measured. See Figure 13-7 for timing details.

13.8.5 TIMER1 GATE VALUE STATUS
When the Timer1 gate value status is utilized, it is
possible to read the most current level of the gate
control value. The value is stored in the T1GVAL bit in
the T1GCON register. The T1GVAL bit is valid even
when the Timer1 gate is not enabled (TMR1GE bit is
cleared).

FIGURE 13-6: TIMER1 GATE SINGLE PULSE MODE
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Cleared by Software
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SoftwareTMR1GIF

Counting Enabled on
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 2010-2017 Microchip Technology Inc.  DS30009974C-page 217

PIC18F47J13 FAMILY
REGISTER 15-3: OSCCON2: OSCILLATOR CONTROL REGISTER 2 (ACCESS F87h)

U-0 R-0(2) U-0 R/W-1 R/W-0(2) R/W-1 U-0 U-0
— SOSCRUN — SOSCDRV SOSCGO(3) PRISD — —

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 Unimplemented: Read as ‘0’
bit 6 SOSCRUN: SOSC Run Status bit

1 = System clock comes from secondary SOSC
0 = System clock comes from an oscillator other than SOSC

bit 5 Unimplemented: Read as ‘0’
bit 4 SOSCDRV: SOSC Drive Control bit

1 = T1OSC/SOSC oscillator drive circuit is selected by Configuration bits, CONFIG2L<4:3>
0 = Low-power T1OSC/SOSC circuit is selected

bit 3 SOSCGO: Oscillator Start Control bit
1 = Turns on the oscillator, even if no peripherals are requesting it
0 = Oscillator is shut off unless peripherals are requesting it

bit 2 PRISD: Primary Oscillator Drive Circuit Shutdown bit
1 = Oscillator drive circuit is on
0 = Oscillator drive circuit is off (zero power)

bit 1-0 Unimplemented: Read as ‘0’

Note 1: Reset value is ‘0’ when Two-Speed Start-up is enabled and ‘1’ if disabled.
2: Default output frequency of INTOSC on Reset (4 MHz).
3: When the SOSC is selected to run from a digital clock input, rather than an external crystal, this bit has no 

effect.
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20.3.1 REGISTERS
Each MSSP module has four registers for SPI mode
operation. These are: 

• MSSPx Control Register 1 (SSPxCON1)
• MSSPx Status Register (SSPxSTAT)
• Serial Receive/Transmit Buffer Register 

(SSPxBUF)
• MSSPx Shift Register (SSPxSR) – Not directly 

accessible

SSPxCON1 and SSPxSTAT are the control and status
registers in SPI mode operation. The SSPxCON1
register is readable and writable. The lower six bits of
the SSPxSTAT are read-only. The upper two bits of the
SSPxSTAT are read/write.

SSPxSR is the shift register used for shifting data in or
out. SSPxBUF is the buffer register to which data
bytes are written to or read from.

In receive operations, SSPxSR and SSPxBUF
together, create a double-buffered receiver. When
SSPxSR receives a complete byte, it is transferred to
SSPxBUF and the SSPxIF interrupt is set.

During transmission, the SSPxBUF is not
double-buffered. A write to SSPxBUF will write to both
SSPxBUF and SSPxSR.

 

Note: Because the SSPxBUF register is
double-buffered, using read-modify-write
instructions such as BCF, COMF, etc., will
not work.

Similarly, when debugging under an
in-circuit debugger, performing actions that
cause reads of SSPxBUF (mouse hover-
ing, watch, etc.) can consume data that the
application code was expecting to receive. 

REGISTER 20-1: SSPxSTAT: MSSPx STATUS REGISTER (SPI MODE) (ACCESS 1, FC7h; 2, F73h)

R/W-1 R/W-1 R-1 R-1 R-1 R-1 R-1 R-1

SMP CKE(1) D/A P S R/W UA BF
bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 SMP: Sample bit
SPI Master mode:
1 = Input data sampled at the end of data output time
0 = Input data sampled at the middle of data output time
SPI Slave mode:
SMP must be cleared when SPI is used in Slave mode.

bit 6 CKE: SPI Clock Select bit(1)

1 = Transmit occurs on transition from active to Idle clock state
0 = Transmit occurs on transition from Idle to active clock state

bit 5 D/A: Data/Address bit 
Used in I2C mode only.

bit 4 P: Stop bit 
Used in I2C mode only; this bit is cleared when the MSSP module is disabled, SSPEN is cleared.

bit 3 S: Start bit
Used in I2C mode only. 

bit 2 R/W: Read/Write Information bit
Used in I2C mode only.

bit 1 UA: Update Address bit
Used in I2C mode only.

bit 0 BF: Buffer Full Status bit
1 = Receive complete, SSPxBUF is full
0 = Receive not complete, SSPxBUF is empty

Note 1: Polarity of the clock state is set by the CKP bit (SSPxCON1<4>).
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20.3.2 OPERATION
When initializing the SPI, several options need to be
specified. This is done by programming the appropriate
control bits (SSPxCON1<5:0> and SSPxSTAT<7:6>).
These control bits allow the following to be specified:

• Master mode (SCKx is the clock output)
• Slave mode (SCKx is the clock input)
• Clock Polarity (Idle state of SCKx)
• Data Input Sample Phase (middle or end of data 

output time)
• Clock Edge (output data on rising/falling edge of 

SCKx)
• Clock Rate (Master mode only)
• Slave Select mode (Slave mode only)

Each MSSP module consists of a Transmit/Receive
Shift register (SSPxSR) and a Buffer register
(SSPxBUF). The SSPxSR shifts the data in and out of
the device, MSb first. The SSPxBUF holds the data that
was written to the SSPxSR until the received data is
ready. Once the 8 bits of data have been received, that
byte is moved to the SSPxBUF register. Then, the Buffer
Full (BF) detect bit (SSPxSTAT<0>) and the interrupt
flag bit, SSPxIF, are set. This double-buffering of the
received data (SSPxBUF) allows the next byte to start
reception before reading the data that was just received. 

Any write to the SSPxBUF register during transmission
or reception of data will be ignored and the Write
Collision Detect bit, WCOL (SSPxCON1<7>), will be set.
User software must clear the WCOL bit so that it can be
determined if the following write(s) to the SSPxBUF
register completed successfully. 

The Buffer Full bit, BF (SSPxSTAT<0>), indicates when
SSPxBUF has been loaded with the received data
(transmission is complete). When the SSPxBUF is read,
the BF bit is cleared. This data may be irrelevant if the
SPI is only a transmitter. Generally, the MSSP interrupt
is used to determine when the transmission/reception
has completed. If the interrupt method is not going to be
used, then software polling can be done to ensure that a
write collision does not occur. 

Example 20-1 provides the loading of the SSPxBUF
(SSPxSR) for data transmission. 

The SSPxSR is not directly readable or writable and
can only be accessed by addressing the SSPxBUF
register. Additionally, the SSPxSTAT register indicates
the various status conditions.

20.3.3 OPEN-DRAIN OUTPUT OPTION
The drivers for the SDOx output and SCKx clock pins
can be optionally configured as open-drain outputs.
This feature allows the voltage level on the pin to be
pulled to a higher level through an external pull-up
resistor, provided the SDOx or SCKx pin is not multi-
plexed with an ANx analog function. This allows the
output to communicate with external circuits without the
need for additional level shifters. For more information,
see Section 10.1.4 “Open-Drain Outputs”.

The open-drain output option is controlled by the
SPI2OD and SPI1OD bits (ODCON3<1:0>). Setting an
SPIxOD bit configures both the SDOx and SCKx pins for
the corresponding open-drain operation.

EXAMPLE 20-1: LOADING THE SSP1BUF (SSP1SR) REGISTER

Note: When the application software is expecting
to receive valid data, the SSPxBUF should
be read before the next byte of transfer
data is written to the SSPxBUF. Application
software should follow this process even
when the current contents of SSPxBUF
are not important.

LOOP BTFSS SSP1STAT, BF ;Has data been received (transmit complete)? 

BRA LOOP ;No 

MOVF SSP1BUF, W ;WREG reg = contents of SSP1BUF 

MOVWF RXDATA ;Save in user RAM, if data is meaningful

MOVF TXDATA, W ;W reg = contents of TXDATA 

MOVWF SSP1BUF ;New data to xmit 
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TABLE 21-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION 

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF
PIR1 PMPIF(1) ADIF RC1IF TX1IF SSP1IF CCP1IF TMR2IF TMR1IF
PIE1 PMPIE(1) ADIE RC1IE TX1IE SSP1IE CCP1IE TMR2IE TMR1IE
IPR1 PMPIP(1) ADIP RC1IP TX1IP SSP1IP CCP1IP TMR2IP TMR1IP
PIR3 SSP2IF BCL2IF RC2IF TX2IF TMR4IF CTMUIF TMR3GIF RTCCIF
PIE3 SSP2IE BCL2IE RC2IE TX2IE TMR4IE CTMUIE TMR3GIE RTCCIE
IPR3 SSP2IP BCL2IP RC2IP TX2IP TMR4IP CTMUIP TMR3GIP RTCCIP
RCSTAx SPEN RX9 SREN CREN ADDEN FERR OERR RX9D
RCREGx EUSARTx Receive Register
TXSTAx CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D
BAUDCONx ABDOVF RCIDL RXDTP TXCKP BRG16 — WUE ABDEN
SPBRGHx EUSARTx Baud Rate Generator High Byte
SPBRGx EUSARTx Baud Rate Generator Low Byte
ODCON2 — — — — CCP10OD CCP9OD U2OD U1OD
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for synchronous master reception.
Note 1: These pins are only available on 44-pin devices.
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25.0 HIGH/LOW VOLTAGE DETECT 
(HLVD)

The High/Low-Voltage Detect (HLVD) module can be
used to monitor the absolute voltage on VDD or the
HLVDIN pin. This is a programmable circuit that allows
the user to specify both a device voltage trip point and
the direction of change from that point.

If the module detects an excursion past the trip point in
that direction, an interrupt flag is set. If the interrupt is
enabled, the program execution will branch to the inter-
rupt vector address and the software can then respond
to the interrupt. 

The High/Low-Voltage Detect Control register
(Register 25-1) completely controls the operation of the
HLVD module. This allows the circuitry to be “turned
off” by the user under software control, which
minimizes the current consumption for the device.

Figure 25-1 provides a block diagram for the HLVD
module.

  
REGISTER 25-1: HLVDCON: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER (ACCESS F85h)

R/W-0 R-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
VDIRMAG BGVST IRVST HLVDEN HLVDL3(1) HLVDL2(1) HLVDL1(1) HLVDL0(1)

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 VDIRMAG: Voltage Direction Magnitude Select bit
1 = Event occurs when the voltage equals or exceeds the trip point (HLVDL<3:0>)
0 = Event occurs when the voltage equals or falls below the trip point (HLVDL<3:0>)

bit 6 BGVST: Band Gap Reference Voltages Stable Status Flag bit
1 = Indicates internal band gap voltage references is stable
0 = Indicates internal band gap voltage reference is not stable

bit 5 IRVST: Internal Reference Voltage Stable Flag bit
1 = Indicates that the voltage detect logic will generate the interrupt flag at the specified voltage range
0 = Indicates that the voltage detect logic will not generate the interrupt flag at the specified voltage

range and the HLVD interrupt should not be enabled 
bit 4 HLVDEN: High/Low-Voltage Detect Power Enable bit

1 = HLVD is enabled
0 = HLVD is disabled

bit 3-0 HLVDL<3:0>: Voltage Detection Limit bits(1)

1111 = External analog input is used (input comes from the HLVDIN pin)
1110 = Maximum setting 
.
.
.
0000 = Minimum setting

Note 1: See Table 30-8 in Section 30.0 “Electrical Characteristics” for specifications.
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The module is enabled by setting the HLVDEN bit.
Each time the module is enabled, the circuitry requires
some time to stabilize. The IRVST bit is a read-only bit
that indicates when the circuit is stable. The module
can generate an interrupt only after the circuit is stable
and IRVST is set.

The VDIRMAG bit determines the overall operation of
the module. When VDIRMAG is cleared, the module
monitors for drops in VDD below a predetermined set
point. When the bit is set, the module monitors for rises
in VDD above the set point.

25.1 Operation
When the HLVD module is enabled, a comparator uses
an internally generated reference voltage as the set
point. The set point is compared with the trip point,
where each node in the resistor divider represents a

trip point voltage. The “trip point” voltage is the voltage
level at which the device detects a high or low-voltage
event, depending on the configuration of the module.

When the supply voltage is equal to the trip point, the
voltage tapped off of the resistor array is equal to the
internal reference voltage generated by the voltage
reference module. The comparator then generates an
interrupt signal by setting the HLVDIF bit.

The trip point voltage is software programmable to any
one of 16 values. The trip point is selected by
programming the HLVDL<3:0> bits (HLVDCON<3:0>).

Additionally, the HLVD module allows the user to
supply the trip voltage to the module from an external
source. This mode is enabled when bits, HLVDL<3:0>,
are set to ‘1111’. In this state, the comparator input is
multiplexed from the external input pin, HLVDIN. This
gives users flexibility because it allows them to
configure the HLVD interrupt to occur at any voltage in
the valid operating range.

FIGURE 25-1: HLVD MODULE BLOCK DIAGRAM (WITH EXTERNAL INPUT) 
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27.0 SPECIAL FEATURES OF THE 
CPU

PIC18F47J13 Family devices include several features
intended to maximize reliability and minimize cost
through elimination of external components. These are:
• Oscillator Selection
• Resets:

- Power-on Reset (POR)
- Power-up Timer (PWRT)
- Oscillator Start-up Timer (OST)
- Brown-out Reset (BOR)

• Interrupts
• Watchdog Timer (WDT)
• Fail-Safe Clock Monitor (FSCM)
• Two-Speed Start-up
• Code Protection
• In-Circuit Serial Programming (ICSP)
The oscillator can be configured for the application
depending on frequency, power, accuracy and cost. All
of the options are discussed in detail in Section 3.0
“Oscillator Configurations”.
A complete discussion of device Resets and interrupts
is available in previous sections of this data sheet. In
addition to their Power-up and Oscillator Start-up
Timers provided for Resets, the PIC18F47J13 Family
of devices has a configurable Watchdog Timer (WDT),
which is controlled in software.
The inclusion of an internal RC oscillator also provides
the additional benefits of a Fail-Safe Clock Monitor
(FSCM) and Two-Speed Start-up. FSCM provides for
background monitoring of the peripheral clock and
automatic switchover in the event of its failure.
Two-Speed Start-up enables code to be executed
almost immediately on start-up, while the primary clock
source completes its start-up delays. 
All of these features are enabled and configured by
setting the appropriate Configuration register bits.

27.1 Configuration Bits
The Configuration bits can be programmed to select
various device configurations. The configuration data is
stored in the last four words of Flash program memory;
Figure 6-1 depicts this. The configuration data gets
loaded into the volatile Configuration registers, CON-
FIG1L through CONFIG4H, which are readable and
mapped to program memory, starting at location
300000h.

Table 27-2 provides a complete list of the Configuration
bits and Device IDs. A detailed explanation of the vari-
ous bit functions is provided in Register 27-1 through
Register 27-6.

27.1.1 CONSIDERATIONS FOR 
CONFIGURING THE PIC18F47J13 
FAMILY DEVICES

Unlike some previous PIC18 microcontrollers,
PIC18F47J13 Family devices do not use persistent
memory registers to store configuration information.
The Configuration registers, CONFIG1L through CON-
FIG4H, are implemented as volatile memory.

Immediately after power-up, or after a device Reset,
the microcontroller hardware automatically loads the
CONFIG1L through CONFIG4L registers with configu-
ration data stored in nonvolatile Flash program
memory. The last four words of Flash program memory,
known as the Flash Configuration Words (FCW), are
used to store the configuration data.

Table 27-1 provides the Flash program memory, which
will be loaded into the corresponding Configuration
register.

When creating applications for these devices, users
should always specifically allocate the location of the
FCW for configuration data. This is to make certain that
program code is not stored in this address when the
code is compiled.

The four Most Significant bits (MSb) of the FCW, corre-
sponding to CONFIG1H, CONFIG2H, CONFIG3H and
CONFIG4H, should always be programmed to ‘1111’.
This makes these FCWs appear to be NOP instructions
in the remote event that their locations are ever
executed by accident.

The four MSbs of the CONFIG1H, CONFIG2H,
CONFIG3H and CONFIG4H registers are not
implemented, so writing ‘1’s to their corresponding
FCW has no effect on device operation.

To prevent inadvertent configuration changes during
code execution, the Configuration registers, CON-
FIG1L through CONFIG4L, are loaded only once per
power-up or Reset cycle. User’s firmware can still
change the configuration by using self-reprogramming
to modify the contents of the FCW. 

Modifying the FCW will not change the active contents
being used in the CONFIG1L through CONFIG4H
registers until after the device is reset.
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REGISTER 27-8: CONFIG4H: CONFIGURATION REGISTER 4 HIGH (BYTE ADDRESS 300007h)

U-1 U-1 U-1 U-1 U-0 U-0 R/WO-1 R/WO-1
— — — — — — WPEND WPDIS

bit 7 bit 0

Legend:
R = Readable bit WO = Write-Once bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-4 Unimplemented: Program the corresponding Flash Configuration bit to ‘1’
bit 3-2 Unimplemented: Read as ‘0’
bit 1 WPEND: Write-Protect Disable bit

1 = Flash pages, WPFP<6:0> to (Configuration Words page), are erase/write-protected
0 = Flash pages 0 to WPFP<6:0> are erase/write-protected

bit 0 WPDIS: Write-Protect Disable bit
1 = WPFP<5:0>, WPEND and WPCFG bits are ignored; all Flash memory may be erased or written
0 = WPFP<5:0>, WPEND and WPCFG bits are enabled; erase/write-protect is active for the selected

region(s)

REGISTER 27-9: DEVID1: DEVICE ID REGISTER 1 FOR PIC18F47J13 FAMILY DEVICES 
(BYTE ADDRESS 3FFFFEh)

R R R R R R R R
DEV2 DEV1 DEV0 REV4 REV3 REV2 REV1 REV0

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-5 DEV<2:0>: Device ID bits
These bits are used with DEV<10:3> bits in Device ID Register 2 to identify the part number. See 
Register 27-10.

bit 4-0 REV<4:0>: Revision ID bits
These bits are used to indicate the device revision.
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BIT-ORIENTED OPERATIONS
BCF
BSF
BTFSC
BTFSS
BTG

f, b, a
f, b, a
f, b, a
f, b, a
f, b, a

Bit Clear f
Bit Set f
Bit Test f, Skip if Clear
Bit Test f, Skip if Set
Bit Toggle f

1
1
1 (2 or 3)
1 (2 or 3)
1

1001
1000
1011
1010
0111

bbba
bbba
bbba
bbba
bbba

ffff
ffff
ffff
ffff
ffff

ffff
ffff
ffff
ffff
ffff

None
None
None
None
None

1, 2
1, 2
3, 4
3, 4
1, 2

CONTROL OPERATIONS
BC
BN
BNC
BNN
BNOV
BNZ
BOV
BRA
BZ
CALL

CLRWDT
DAW
GOTO

NOP
NOP
POP
PUSH
RCALL
RESET
RETFIE

RETLW
RETURN
SLEEP

n
n
n
n
n
n
n
n
n
n, s

—
—
n

—
—
—
—
n

s

k
s
—

Branch if Carry
Branch if Negative
Branch if Not Carry
Branch if Not Negative
Branch if Not Overflow
Branch if Not Zero
Branch if Overflow
Branch Unconditionally 
Branch if Zero
Call Subroutine 1st word

2nd word
Clear Watchdog Timer
Decimal Adjust WREG
Go to Address 1st word

2nd word
No Operation
No Operation
Pop Top of Return Stack (TOS)
Push Top of Return Stack (TOS)
Relative Call
Software Device Reset
Return from Interrupt Enable

Return with Literal in WREG 
Return from Subroutine
Go into Standby mode

1 (2)
1 (2)
1 (2)
1 (2)
1 (2)
1 (2)
1 (2)
2
1 (2)
2

1
1
2

1
1
1
1
2
1
2

2
2
1

1110
1110
1110
1110
1110
1110
1110
1101
1110
1110
1111
0000
0000
1110
1111
0000
1111
0000
0000
1101
0000
0000

0000
0000
0000

0010
0110
0011
0111
0101
0001
0100
0nnn
0000
110s
kkkk
0000
0000
1111
kkkk
0000
xxxx
0000
0000
1nnn
0000
0000

1100
0000
0000

nnnn
nnnn
nnnn
nnnn
nnnn
nnnn
nnnn
nnnn
nnnn
kkkk
kkkk
0000
0000
kkkk
kkkk
0000
xxxx
0000
0000
nnnn
1111
0001

kkkk
0001
0000

nnnn
nnnn
nnnn
nnnn
nnnn
nnnn
nnnn
nnnn
nnnn
kkkk
kkkk
0100
0111
kkkk
kkkk
0000
xxxx
0110
0101
nnnn
1111
000s

kkkk
001s
0011

None
None
None
None
None
None
None
None
None
None

TO, PD
C
None

None
None
None
None
None
All
GIE/GIEH, 
PEIE/GIEL
None
None
TO, PD

4

TABLE 28-2: PIC18F47J13 FAMILY INSTRUCTION SET (CONTINUED) 

Mnemonic,
Operands Description Cycles

16-Bit Instruction Word Status
Affected Notes

MSb LSb

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be 
that value present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as an input 
and is driven low by an external device, the data will be written back with a ‘0’.

2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared 
if assigned.

3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The 
second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP 
unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all 
program memory locations have a valid instruction.
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RCALL Relative Call

Syntax: RCALL    n

Operands: -1024  n  1023

Operation: (PC) + 2  TOS,
(PC) + 2 + 2n  PC

Status Affected: None

Encoding: 1101 1nnn nnnn nnnn

Description: Subroutine call with a jump up to 1K 
from the current location. First, return 
address (PC + 2) is pushed onto the 
stack. Then, add the 2’s complement 
number ‘2n’ to the PC. Since the PC will 
have incremented to fetch the next 
instruction, the new address will be 
PC + 2 + 2n. This instruction is a 
2-cycle instruction.

Words: 1

Cycles: 2

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read literal 
‘n’

PUSH PC 
to stack

Process 
Data

Write to PC

No 
operation

No 
operation

No 
operation

No 
operation

Example: HERE RCALL Jump

Before Instruction
PC = Address (HERE)

After Instruction
PC = Address (Jump)
TOS = Address (HERE + 2)

RESET Reset

Syntax: RESET

Operands: None

Operation: Reset all registers and flags that are 
affected by a MCLR Reset.

Status Affected: All

Encoding: 0000 0000 1111 1111

Description: This instruction provides a way to 
execute a MCLR Reset in software.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Start 
reset

No 
operation

No 
operation

Example: RESET

After Instruction
Registers = Reset Value
Flags* = Reset Value
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XORWF Exclusive OR W with f

Syntax: XORWF     f {,d {,a}}

Operands: 0  f  255
d  [0,1]
a  [0,1]

Operation: (W) .XOR. (f) dest

Status Affected: N, Z

Encoding: 0001 10da ffff ffff

Description: Exclusive OR the contents of W with 
register ‘f’. If ‘d’ is ‘0’, the result is stored 
in W. If ‘d’ is ‘1’, the result is stored back 
in the register ‘f’ (default). 

If ‘a’ is ‘0’, the Access Bank is selected. 
If ‘a’ is ‘1’, the BSR is used to select the 
GPR bank (default). 

If ‘a’ is ‘0’ and the extended instruction 
set is enabled, this instruction operates 
in Indexed Literal Offset Addressing 
mode whenever f 95 (5Fh). See 
Section 28.2.3 “Byte-Oriented and 
Bit-Oriented Instructions in Indexed 
Literal Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process 
Data

Write to 
destination

Example: XORWF   REG, 1, 0

Before Instruction
REG = AFh
W = B5h

After Instruction
REG = 1Ah
W = B5h
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28.2.3 BYTE-ORIENTED AND 

BIT-ORIENTED INSTRUCTIONS IN 
INDEXED LITERAL OFFSET MODE

In addition to eight new commands in the extended set,
enabling the extended instruction set also enables
Indexed Literal Offset Addressing (Section 6.6.1
“Indexed Addressing with Literal Offset”). This has
a significant impact on the way that many commands of
the standard PIC18 instruction set are interpreted.

When the extended set is disabled, addresses embed-
ded in opcodes are treated as literal memory locations:
either as a location in the Access Bank (a = 0) or in a
GPR bank designated by the BSR (a = 1). When the
extended instruction set is enabled and a = 0, however,
a file register argument of 5Fh or less is interpreted as
an offset from the pointer value in FSR2 and not as a
literal address. For practical purposes, this means that
all instructions that use the Access RAM bit as an
argument – that is, all byte-oriented and bit-oriented
instructions, or almost half of the core PIC18 instruc-
tions – may behave differently when the extended
instruction set is enabled. 

When the content of FSR2 is 00h, the boundaries of the
Access RAM are essentially remapped to their original
values. This may be useful in creating
backward-compatible code. If this technique is used, it
may be necessary to save the value of FSR2 and
restore it when moving back and forth between C and
assembly routines in order to preserve the Stack
Pointer. Users must also keep in mind the syntax
requirements of the extended instruction set (see
Section 28.2.3.1 “Extended Instruction Syntax with
Standard PIC18 Commands”).

Although the Indexed Literal Offset mode can be very
useful for dynamic stack and pointer manipulation, it
can also be very annoying if a simple arithmetic opera-
tion is carried out on the wrong register. Users who are
accustomed to the PIC18 programming must keep in
mind that, when the extended instruction set is
enabled, register addresses of 5Fh or less are used for
Indexed Literal Offset Addressing. 

Representative examples of typical byte-oriented and
bit-oriented instructions in the Indexed Literal Offset
mode are provided on the following page to show how
execution is affected. The operand conditions shown in
the examples are applicable to all instructions of these
types.

28.2.3.1 Extended Instruction Syntax with 
Standard PIC18 Commands

When the extended instruction set is enabled, the file
register argument, ‘f’, in the standard byte-oriented and
bit-oriented commands is replaced with the literal offset
value, ‘k’. As already noted, this occurs only when ‘f’ is
less than or equal to 5Fh. When an offset value is used,
it must be indicated by square brackets (“[ ]”). As with
the extended instructions, the use of brackets indicates
to the compiler that the value is to be interpreted as an
index or an offset. Omitting the brackets, or using a
value greater than 5Fh within the brackets, will
generate an error in the MPASM Assembler.

If the index argument is properly bracketed for Indexed
Literal Offset Addressing, the Access RAM argument is
never specified; it will automatically be assumed to be
‘0’. This is in contrast to standard operation (extended
instruction set disabled), when ‘a’ is set on the basis of
the target address. Declaring the Access RAM bit in
this mode will also generate an error in the MPASM
Assembler. 

The destination argument ‘d’ functions as before.

In the latest versions of the MPASM Assembler,
language support for the extended instruction set must
be explicitly invoked. This is done with either the
command line option, /y, or the PE directive in the
source listing.

28.2.4 CONSIDERATIONS WHEN 
ENABLING THE EXTENDED 
INSTRUCTION SET

It is important to note that the extensions to the instruc-
tion set may not be beneficial to all users. In particular,
users who are not writing code that uses a software
stack may not benefit from using the extensions to the
instruction set.

Additionally, the Indexed Literal Offset Addressing
mode may create issues with legacy applications
written to the PIC18 assembler. This is because
instructions in the legacy code may attempt to address
registers in the Access Bank below 5Fh. Since these
addresses are interpreted as literal offsets to FSR2
when the instruction set extension is enabled, the
application may read or write to the wrong data
addresses. 

When porting an application to the PIC18F47J13 Fam-
ily, it is very important to consider the type of code. A
large, re-entrant application that is written in C and would
benefit from efficient compilation will do well when using
the instruction set extensions. Legacy applications that
heavily use the Access Bank will most likely not benefit
from using the extended instruction set.

Note: Enabling the PIC18 instruction set exten-
sion may cause legacy applications to
behave erratically or fail entirely. 
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TABLE 30-10: 96 MHz PLL CLOCK TIMING SPECIFICATIONS (VDDCORE = 2.35V TO 2.75V)

TABLE 30-11: 4x PLL CLOCK TIMING SPECIFICATIONS

TABLE 30-12: INTERNAL RC ACCURACY (INTOSC AND INTRC SOURCES)

Param 
No. Sym Characteristic Min Typ† Max Units Conditions

F10 FOSC Oscillator Frequency Range 4 — 48 MHz
F11 FSYS On-Chip VCO System Frequency — 96 — MHz
F12 trc PLL Start-up Time (lock time) — — 2 ms

Param 
No. Sym Characteristic Min Typ† Max Units Conditions

F10 FPLLIN PLL Input Frequency Range 4 — 12 MHz
F11 FPLLO PLL Output Frequency (4x FPLLIN) 16 — 48 MHz
F12 trc PLL Start-up Time (lock time) — — 2 ms

† Data in “Typ” column is at 3.3V, 25C, unless otherwise stated. These parameters are for design guidance 
only and are not tested.

Param
No. Device Min Typ Max Units Conditions

INTOSC Accuracy @ Freq = 8 MHz, 4 MHz, 2 MHz, 1 MHz, 500 kHz, 250 kHz, 125 kHz, 31 kHz(1)

All Devices -1 +0.15 +1 % 0°C to +85°C VDD = 2.4V-3.6V,
VDDCORE = 2.3V-2.7V

-1 +0.25 +1 % -40°C to +85°C VDD = 2.0V-3.6V,
VDDCORE = 2.0V-2.7V

INTRC Accuracy @ Freq = 31 kHz(1)

All Devices 20.3 — 42.2 kHz -40°C to +85°C VDD = 2.0V-3.6V,
VDDCORE = 2.0V-2.7V

Note 1: The accuracy specification of the 31 kHz clock is determined by which source is providing it at a given time. 
When INTSRC (OSCTUNE<7>) is ‘1’, use the INTOSC accuracy specification. When INTSRC is ‘0’, use 
the INTRC accuracy specification.
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FIGURE 30-19: MSSPx I2C BUS START/STOP BITS TIMING WAVEFORMS 

TABLE 30-27: MSSPx I2C BUS START/STOP BITS REQUIREMENTS  

FIGURE 30-20: MSSPx I2C BUS DATA TIMING 

Param.
No. Symbol Characteristic Min Max Units Conditions

90 TSU:STA Start Condition 100 kHz mode 2(TOSC)(BRG + 1) — ns Only relevant for 
Repeated Start 
condition

Setup Time 400 kHz mode 2(TOSC)(BRG + 1) —

91 THD:STA Start Condition 100 kHz mode 2(TOSC)(BRG + 1) — ns After this period, the 
first clock pulse is 
generated

Hold Time 400 kHz mode 2(TOSC)(BRG + 1) —

92 TSU:STO Stop Condition 100 kHz mode 2(TOSC)(BRG + 1) — ns
Setup Time 400 kHz mode 2(TOSC)(BRG + 1) —

93 THD:STO Stop Condition 100 kHz mode 2(TOSC)(BRG + 1) — ns
Hold Time 400 kHz mode 2(TOSC)(BRG + 1) —

Note: Refer to Figure 30-4 for load conditions.

91 93
SCLx

SDAx

Start
Condition
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Condition

90 92

Note: Refer to Figure 30-4 for load conditions.
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