

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 2.75V
Data Converters	A/D 10x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf26j13-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pin N	Pin Number		Buffer	
Pin Name	44- QFN	44- TQFP	Pin Type	Туре	Description
					PORTB is a bidirectional I/O port. PORTB can be
					software programmed for internal weak pull-ups or
					all inputs.
RB0/AN12/C3IND/INT0/RP3	9	8			
RB0			I/O	TTL/DIG	8
AN12				Analog	Analog Input 12.
C3IND				Analog	Comparator 3 Input D.
INT0				ST	External Interrupt 0.
RP3			I/O	ST/DIG	Remappable Peripheral Pin 3 input/output.
RB1/AN10/C3INC/PMBE/RTCC/	10	9			
RP4					
RB1			I/O	TTL/DIG	5
AN10				Analog	Analog Input 10.
C3INC				Analog	Comparator 3 Input C.
PMBE ⁽²⁾			0	DIG	Parallel Master Port byte enable.
RTCC			0	DIG	Asynchronous serial transmit data output.
RP4			I/O	ST/DIG	Remappable Peripheral Pin 4 input/output.
RB2/AN8/C2INC/CTED1/PMA3/	11	10			
REFO/RP5					
RB2			I/O	TTL/DIG	0
AN8				Analog	Analog Input 8.
C2INC				Analog	Comparator 2 Input C.
CTED1 PMA3 ⁽²⁾				ST	CTMU Edge 1 input.
REFO			0	DIG	Parallel Master Port address.
REFO RP5			0 1/0	DIG ST/DIG	Reference output clock. Remappable Peripheral Pin 5 input/output.
KF3			1/0	31/DIG	Remappable Peripheral Pill 5 inputoulput.
RB3/AN9/C3INA/CTED2/PMA2/	12	11			
RP6 RB3			I/O	TTL/DIG	Digital I/O.
AN9				Analog	Analog Input 9.
C3INA			i	Analog	Comparator 3 Input A.
CTED2			i	ST	CTMU Edge 2 input.
PMA2 ⁽²⁾			0	DIG	Parallel Master Port address.
RP6			I/O	ST/DIG	Remappable Peripheral Pin 6 input/output.
Legend: TTL = TTL compatible i	input				CMOS = CMOS compatible input or output
ST = Schmitt Trigger i		h CMO	S level	s	Analog = Analog input
I = Input	-				O = Output
P = Power					OD = Open-Drain (no P diode to VDD)
DIG = Digital output					I ² C = Open-Drain, I ² C specific
Note 1: RA7 and RA6 will be dis	sabled i	f OSC1	and O	SC2 are i	used for the clock function.
2: Available only on 44-pin	device	s (PIC1	8F46J	13, PIC18	3F47J13, PIC18LF46J13 and PIC18LF47J13).
					,

TABLE 1-4: PIC18F4XJ13 PINOUT I/O DESCRIPTIONS (CONTINUED)

3: 5.5V tolerant.

	Pin Number			Buffer	
Pin Name	44- QFN	44- TQFP	Type Type		Description
					PORTD is a bidirectional I/O port.
RD0/PMD0/SCL2 RD0 PMD0	38 ⁽³⁾	38 ⁽³⁾	I/O I/O	ST/DIG ST/TTL/ DIG	Digital I/O. Parallel Master Port data.
SCL2			I/O	I ² C	I ² C data input/output.
RD1/PMD1/SDA2 RD1 PMD1	39 (3)	39 (3)	I/O I/O	ST/DIG ST/TTL/ DIG	Digital I/O. Parallel Master Port data.
SDA2			I/O	I ² C	I ² C data input/output.
RD2/PMD2/RP19 RD2 PMD2	40 ⁽³⁾	40 ⁽³⁾	I/O I/O	ST/DIG ST/TTL/	Digital I/O. Parallel Master Port data.
				DIG	
RP19	(2)	(0)	I/O	ST/DIG	Remappable Peripheral Pin 19 input/output.
RD3/PMD3/RP20 RD3 PMD3	41 ⁽³⁾	41 ⁽³⁾	I/O I/O	ST/DIG ST/TTL/ DIG	Digital I/O. Parallel Master Port data.
RP20			I/O	ST/DIG	Remappable Peripheral Pin 20 input/output.
RD4/PMD4/RP21 RD4 PMD4	2 ⁽³⁾	2 ⁽³⁾	I/O I/O	ST/DIG ST/TTL/ DIG	Digital I/O. Parallel Master Port data.
RP21			I/O	ST/DIG	Remappable Peripheral Pin 21 input/output.
RD5/PMD5/RP22 RD5 PMD5	3(3)	3(3)	I/O I/O	ST/DIG ST/TTL/ DIG	Digital I/O. Parallel Master Port data.
RP22			I/O	ST/DIG	Remappable Peripheral Pin 22 input/output.
RD6/PMD6/RP23 RD6 PMD6	4(3)	4(3)	I/O I/O	ST/DIG ST/TTL/ DIG	Digital I/O. Parallel Master Port data.
RP23			I/O	ST/DIG	Remappable Peripheral Pin 23 input/output.
RD7/PMD7/RP24 RD7 PMD7	5 ⁽³⁾	5 ⁽³⁾	1/0 1/0	ST/DIG ST/TTL/	Digital I/O. Parallel Master Port data.
RP24			I/O	DIG ST/DIG	Remappable Peripheral Pin 24 input/output.
Legend: TTL = TTL compatible i ST = Schmitt Trigger in I = Input		h CMO		s	CMOS = CMOS compatible input or output Analog = Analog input O = Output
P = Power DIG = Digital output					OD = Open-Drain (no P diode to VDD) l^2C = Open-Drain, l^2C specific
- ·	abled if	OSC1	and O		used for the clock function.

TABLE 1-4: PIC18F4XJ13 PINOUT I/O DESCRIPTIONS (CONTINUED)

2: Available only on 44-pin devices (PIC18F46J13, PIC18F47J13, PIC18LF46J13 and PIC18LF47J13).

3: 5.5V tolerant.

5.5 Configuration Mismatch (CM)

The Configuration Mismatch (CM) Reset is designed to detect, and attempt to recover from, random memory corrupting events. These include Electrostatic Discharge (ESD) events, which can cause widespread single bit changes throughout the device and result in catastrophic failure.

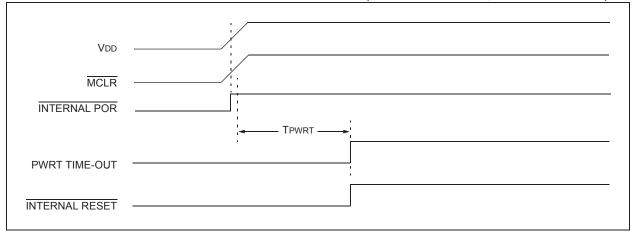
In PIC18FXXJ Flash devices, the device Configuration registers (located in the configuration memory space) are continuously monitored during operation by comparing their values to complimentary shadow registers. If a mismatch is detected between the two sets of registers, a CM Reset automatically occurs. These events are captured by the CM bit (RCON<5>). The state of the bit is set to '0' whenever a CM event occurs; it does not change for any other Reset event.

A CM Reset behaves similarly to MCLR, RESET instruction, WDT time-out or Stack Event Resets. As with all hard and power Reset events, the device Configuration Words are reloaded from the Flash Configuration Words in program memory as the device restarts.

5.6 Power-up Timer (PWRT)

PIC18F47J13 Family devices incorporate an on-chip PWRT to help regulate the POR process. The PWRT is always enabled. The main function is to ensure that the device voltage is stable before code is executed.

The Power-up Timer (PWRT) of the PIC18F47J13 Family devices is a counter which uses the INTRC source as the clock input. While the PWRT is counting, the device is held in Reset.


The power-up time delay depends on the INTRC clock and will vary from chip-to-chip due to temperature and process variation. See DC parameter 33 (TPWRT) for details.

5.6.1 TIME-OUT SEQUENCE

The PWRT time-out is invoked after the POR pulse has cleared. The total time-out will vary based on the status of the PWRT. Figure 5-2, Figure 5-3, Figure 5-4 and Figure 5-5 all depict time-out sequences on power-up with the PWRT.

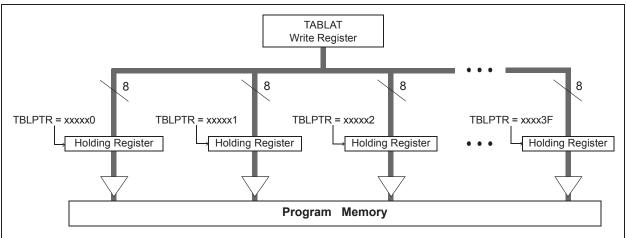
Since the time-outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the PWRT will expire. Bringing $\overline{\text{MCLR}}$ high will begin execution immediately if a clock source is available (Figure 5-4). This is useful for testing purposes or to synchronize more than one PIC18F device operating in parallel.

FIGURE 5-2: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD, VDD RISE < TPWRT)

7.5 Writing to Flash Program Memory

The programming block is 32 words or 64 bytes. Programming one word or 2 bytes at a time is also supported.

Table writes are used internally to load the holding registers needed to program the Flash memory. There are 64 holding registers used by the table writes for programming.


Since the Table Latch (TABLAT) is only a single byte, the TBLWT instruction may need to be executed 64 times for each programming operation (if WPROG = 0). All of the table write operations will essentially be short writes because only the holding registers are written. At the end of updating the 64 holding registers, the EECON1 register must be written to in order to start the programming operation with a long write.

The long write is necessary for programming the internal Flash. Instruction execution is Halted while in a long write cycle. The long write will be terminated by the internal programming timer.

The on-chip timer controls the write time. The write/erase voltages are generated by an on-chip charge pump, rated to operate over the voltage range of the device.

- Note 1: Unlike previous PIC[®] devices, devices of the PIC18F47J13 Family do not reset the holding registers after a write occurs. The holding registers must be cleared or overwritten before a programming sequence.
 - 2: To maintain the endurance of the program memory cells, each Flash byte should not be programmed more than once between erase operations. Before attempting to modify the contents of the target cell a second time, an erase of the target page, or a bulk erase of the entire memory, must be performed.

7.5.1 FLASH PROGRAM MEMORY WRITE SEQUENCE

The sequence of events for programming an internal program memory location should be:

- 1. Read 1024 bytes into RAM.
- 2. Update data values in RAM as necessary.
- 3. Load the Table Pointer register with address being erased.
- 4. Execute the erase procedure.
- 5. Load the Table Pointer register with the address of the first byte being written, minus 1.
- 6. Write the 64 bytes into the holding registers with auto-increment.
- Set the WREN bit (EECON1<2>) to enable byte writes.

- 8. Disable interrupts.
- 9. Write 55h to EECON2.
- 10. Write 0AAh to EECON2.
- 11. Set the WR bit; this will begin the write cycle.
- 12. The CPU will stall for the duration of the write for TIW (see parameter D133A).
- 13. Re-enable interrupts.
- 14. Repeat Steps 6 through 13 until all 1024 bytes are written to program memory.
- 15. Verify the memory (table read).

An example of the required code is provided in Example 7-3 on the following page.

Note: Before setting the WR bit, the Table Pointer address needs to be within the intended address range of the 64 bytes in the holding register.

R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
SSP2IF	BCL2IF	RC2IF	TX2IF	TMR4IF	CTMUIF	TMR3GIF	RTCCIF
bit 7				·		•	bit 0
Legend:							
R = Readable	e bit	W = Writable		U = Unimplen	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 7	SSP2IF: Mag	ster Synchrono	is Serial Port 2	PInterrunt Flag	hit		
		ismission/recep				e)	
		to transmit/rece	•			- /	
bit 6	BCL2IF: Bus	Collision Interi	upt Flag bit (N	SSP2 module)			
		ollision occurred	•	red in software)		
		collision occurre	-				
bit 5		ART2 Receive					
		SART2 receive			ed when RCRE	G2 is read)	
bit 4		ART2 Transmit	1,3				
					eared when T>	REG2 is writter	ר)
	0 = The EUS	SART2 transmit	buffer is full				
bit 3	TMR4IF: TM	R4 to PR4 Mate	ch Interrupt Fla	ıg bit			
		to PR4 match	```	t be cleared in s	software)		
		4 to PR4 match			•.		
bit 2		arge Time Mea					
		J event has occ J event has not	`	cleared in som	ware)		
bit 1	TMR3GIF: ⊤	imer3 Gate Eve	nt Interrupt Fla	ag bit			
		3 gate event co	•	•	oftware)		
	0 = No Time	er3 gate event c	ompleted				
bit 0		CC Interrupt Fla	•				
	1 = An RTCC	C interrupt occu	rred (must be o	cleared in softw	are)		
	$0 = N_0 RTCO$	C interrupt occu	rred				

TADLE 10-3. F					,
Pin	Function	TRIS Setting	I/O	I/O Type	Description
RA5/AN4/C1INC/	RA5	0	0	DIG	LATA<5> data output; not affected by analog input.
SS1/HLVDIN/		1	Ι	PORTA<5> data input; disabled when analog input is enabled.	
RP2	AN4	1	Ι	ANA	A/D Input Channel 4. Default configuration on POR.
	C1INC	0	0	DIG	Comparator 1 Input C.
	SS1	1	Ι	TTL	Slave select input for MSSP1.
	HLVDIN	1	Ι	ANA	High/Low-Voltage Detect external trip point reference input.
RP2		1	Ι	ST	Remappable Peripheral Pin 2 input.
		0	0	DIG	Remappable Peripheral Pin 2 output.
OSC2/CLKO/	OSC2	х	0	ANA	Main oscillator feedback output connection (HS mode).
RA6	CLKO	Х	0	DIG	System cycle clock output (Fosc/4) in RC and EC Oscillator modes.
	RA6	1	Ι	TTL	PORTA<6> data input.
		0	0	DIG	LATA<6> data output.
OSC1/CLKI/RA7	OSC1	1	Ι	ANA	Main oscillator input connection.
	CLKI	1	I	ANA	Main clock input connection.
	RA7	1	Ι	TTL	PORTA<6> data input.
		0	0	DIG	LATA<6> data output.

TABLE 10-3: PORTA I/O SUMMARY (CONTINUED)

Legend: DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; ANA = Analog level input/output; x = Don't care (TRISx bit does not affect port direction or is overridden for this option)

Note 1: This bit is only available on 44-pin devices (PIC18F46J13, PIC18F47J13, PIC18LF46J13 and PIC18LF47J13).

TABLE 10-4: SUMMAI	Y OF REGISTERS	ASSOCIATED WITH PORTA
--------------------	----------------	-----------------------

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PORTA	RA7	RA6	RA5		RA3	RA2	RA1	RA0
LATA	LAT7	LAT6	LAT5	_	LAT3	LAT2	LAT1	LAT0
TRISA	TRIS7	TRIS6	TRISA5	—	TRISA3	TRISA2	TRISA1	TRISA0
ANCON0	PCFG7 ⁽¹⁾	PCFG6 ⁽¹⁾	PCFG5 ⁽¹⁾	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0
CMxCON	CON	COE	CPOL	EVPOL1	EVPOL0	CREF	CCH1	CCH0
CVRCON	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0
WDTCON	REGSLP	LVDSTAT	ULPLVL	VBGOE	DS	ULPEN	ULPSINK	SWDTEN
HLVDCON	VDIRMAG	BGVST	IRVST	HLVDEN	HLVDL3	HLVDL2	HLVDL1	HLVDL0

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PORTA.

Note 1: These bits are only available in 44-pin devices (PIC18F46J13, PIC18F47J13, PIC18LF46J13 and PIC18LF47J13).

Pin	Function	TRIS Setting	I/O	l/O Type	Description
RB7/CCP7/	RB7	0	0	DIG	LATB<7> data output.
KBI3/PGD/ RP10		1	Ι	TTL	PORTB<7> data input; weak pull-up when the $\overline{\text{RBPU}}$ bit is cleared.
	CCP7		Ι	ST	Capture input.
		0	0	DIG	Compare/PWM output.
	KBI3	1	0	TTL	Interrupt-on-change pin.
	PGD	х	0	DIG	Serial execution data output for ICSP and ICD operation. ⁽²⁾
		х	Ι	ST	Serial execution data input for ICSP and ICD operation. ⁽²⁾
RP10 1		1	Ι	ST	Remappable Peripheral Pin 10 input.
		0	0	DIG	Remappable Peripheral Pin 10 output.

TABLE 10-5: PORTB I/O SUMMARY (CONTINUED)

Legend: DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; ANA = Analog level input/output; x = Don't care (TRISx bit does not affect port direction or is overridden for this option)

Note 1: Pins are configured as analog inputs by default on POR. Using these pins for digital inputs requires setting the appropriate bits in the ANCON1 register.

- **2:** All other pin functions are disabled when ICSP[™] or ICD is enabled.
- 3: Only on 44-pin devices (PIC18F46J13, PIC18F47J13, PIC18LF46J13 and PIC18LF47J13).
- 4: Only on 28-pin devices (PIC18F26J13, PIC18F27J13, PIC18LF26J13 and PIC18LF27J13).

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0
LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	INTEDG3	TMR0IP	INT3IP	RBIP
INTCON3	INT2IP	INT1IP	INT3IE	INT2IE	INT1IE	INT3IF	INT2IF	INT1IF
ANCON1	VBGEN	—	—	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8
REFOCON	ROON	—	ROSSLP	ROSEL	RODIV3	RODIV2	RODIV1	RODIV0
CM3CON	CON	COE	CPOL	EVPOL1	EVPOL0	CREF	CCH1	CCH0
PADCFG1	_	—	—	—	_	RTSECSEL1	RTSECSEL0	PMPTTL
RTCCFG	RTCEN	_	RTCWREN	RTCSYNC	HALFSEC	RTCOE	RTCPTR1	RTCPTR0

TABLE 10-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PORTB.

10.7.3.3 Mapping Limitations

The control schema of the PPS is extremely flexible. Other than systematic blocks that prevent signal contention caused by two physical pins being configured as the same functional input or two functional outputs configured as the same pin, there are no hardware enforced lockouts. The flexibility extends to the point of allowing a single input to drive multiple peripherals or a single functional output to drive multiple output pins.

10.7.4 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. PIC18F devices include three features to prevent alterations to the peripheral map:

- Control register lock sequence
- Continuous state monitoring
- Configuration bit remapping lock

10.7.4.1 Control Register Lock

Under normal operation, writes to the RPINRx and RPORx registers are not allowed. Attempted writes will appear to execute normally, but the contents of the registers will remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK bit (PPSCON<0>). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes.

To set or clear IOLOCK, a specific command sequence must be executed:

- 1. Write 55h to EECON2<7:0>.
- 2. Write AAh to EECON2<7:0>.
- 3. Clear (or set) IOLOCK as a single operation.

IOLOCK remains in one state until changed. This allows all of the PPS registers to be configured with a single unlock sequence followed by an update to all control registers, then locked with a second lock sequence.

10.7.4.2 Continuous State Monitoring

In addition to being protected from direct writes, the contents of the RPINRx and RPORx registers are constantly monitored in hardware by shadow registers. If an unexpected change in any of the registers occurs (such as cell disturbances caused by ESD or other external events), a Configuration Mismatch Reset will be triggered.

10.7.4.3 Configuration Bit Pin Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPINRx and RPORx registers. The IOL1WAY (CON-FIG3H<0>) Configuration bit blocks the IOLOCK bit from being cleared after it has been set once. If IOLOCK remains set, the register unlock procedure will not execute and the PPS Control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.

In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session. Programming IOL1WAY allows users unlimited access (with the proper use of the unlock sequence) to the PPS registers.

10.7.5 CONSIDERATIONS FOR PERIPHERAL PIN SELECTION

The ability to control Peripheral Pin Selection introduces several considerations into application design that could be overlooked. This is particularly true for several common peripherals that are available only as remappable peripherals.

The main consideration is that the PPS is not available on default pins in the device's default (Reset) state. Since all RPINRx registers reset to '11111' and all RPORx registers reset to '00000', all PPS inputs are tied to RP31 and all PPS outputs are disconnected.

Note: In tying PPS inputs to RP31, RP31 does not have to exist on a device for the registers to be reset to it.

This situation requires the user to initialize the device with the proper peripheral configuration before any other application code is executed. Since the IOLOCK bit resets in the unlocked state, it is not necessary to execute the unlock sequence after the device has come out of Reset.

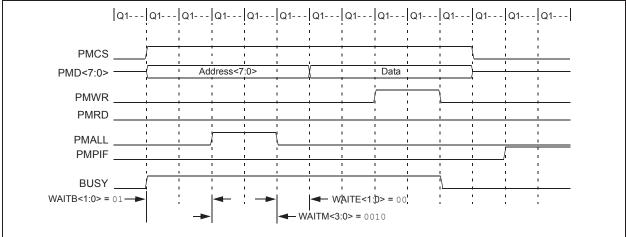
For application safety, however, it is best to set IOLOCK and lock the configuration after writing to the control registers.

The unlock sequence is timing-critical. Therefore, it is recommended that the unlock sequence be executed as an assembly language routine with interrupts temporarily disabled. If the bulk of the application is written in C or another high-level language, the unlock sequence should be performed by writing in-line assembly.

REGISTER 11-4: PMMODEL: PARALLEL PORT MODE REGISTER LOW BYTE (BANKED F5Ch)⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAITB1 ⁽²⁾	WAITB0 ⁽²⁾	WAITM3	WAITM2	WAITM1	WAITM0	WAITE1 ⁽²⁾	WAITE0 ⁽²⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown


bit 7-6	WAITB<1:0>: Data Setup to Read/Write Wait State Configuration bits ⁽²⁾ 11 = Data Wait of 4 Tcy; multiplexed address phase of 4 Tcy 10 = Data Wait of 3 Tcy; multiplexed address phase of 3 Tcy 01 = Data Wait of 2 Tcy; multiplexed address phase of 2 Tcy 00 = Data Wait of 1 Tcy; multiplexed address phase of 1 Tcy
bit 5-2	WAITM<3:0>: Read to Byte Enable Strobe Wait State Configuration bits 1111 = Wait of additional 15 Tcy
	0001 = Wait of additional 1 Tcy 0000 = No additional Wait cycles (operation forced into one Tcy)
bit 1-0	WAITE<1:0>: Data Hold After Strobe Wait State Configuration bits ⁽²⁾ 11 = Wait of 4 Tcy 10 = Wait of 3 Tcy 01 = Wait of 2 Tcy 00 = Wait of 1 Tcy
Note 1	This register is only systemed on 44 nin devises

Note 1: This register is only available on 44-pin devices.

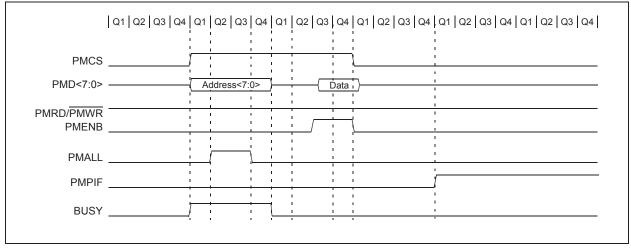
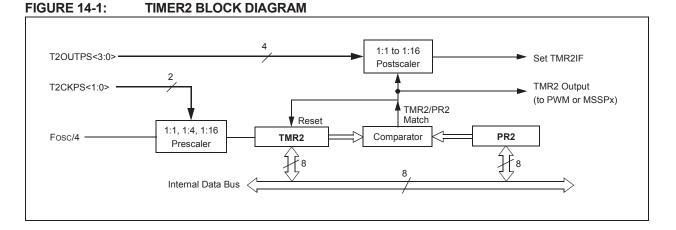

2: WAITBx and WAITEx bits are ignored whenever WAITM<3:0> = 0000.

FIGURE 11-16: WRITE TIMING, 8-BIT DATA, WAIT STATES ENABLED, PARTIALLY MULTIPLEXED ADDRESS

FIGURE 11-17: READ TIMING, 8-BIT DATA, PARTIALLY MULTIPLEXED ADDRESS, ENABLE STROBE

14.2 Timer2 Interrupt


Timer2 can also generate an optional device interrupt. The Timer2 output signal (TMR2 to PR2 match) provides the input for the 4-bit output counter/postscaler. This counter generates the TMR2 Match Interrupt Flag, which is latched in TMR2IF (PIR1<1>). The interrupt is enabled by setting the TMR2 Match Interrupt Enable bit, TMR2IE (PIE1<1>).

A range of 16 postscaler options (from 1:1 through 1:16 inclusive) can be selected with the postscaler control bits, T2OUTPS<3:0> (T2CON<6:3>).

14.3 Timer2 Output

The unscaled output of TMR2 is available primarily to the ECCP modules, where it is used as a time base for operations in PWM mode.

Timer2 can be optionally used as the shift clock source for the MSSP modules operating in SPI mode. Additional information is provided in Section 20.0 "Master Synchronous Serial Port (MSSP) Module".

TABLE 14-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF			
PIR1	PMPIF ⁽¹⁾	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF			
PIE1	PMPIE ⁽¹⁾	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE			
IPR1	PMPIP ⁽¹⁾	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP			
TMR2	Timer2 Register										
T2CON	—	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0			
PR2	Timer2 Peri	od Register	Timer2 Period Register								

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Timer2 module.

Note 1: These bits are only available in 44-pin devices.

15.0 TIMER3/5 MODULE

The Timer3/5 timer/counter modules incorporate these features:

- Software selectable operation as a 16-bit timer or counter
- Readable and writable 8-bit registers (TMRxH and TMRxL)
- Selectable clock source (internal or external) with device clock or Timer1 oscillator internal options
- Interrupt-on-overflow
- Module Reset on ECCP Special Event Trigger

Note: Throughout this section, generic references are used for register and bit names that are the same – except for an 'x' variable that indicates the item's association with the Timer3 or Timer5 module. For example, the control register is named TxCON, and refers to T3CON and T5CON.

A simplified block diagram of the Timer3/5 module is shown in Figure 15-1.

The Timer3/5 module is controlled through the TxCON register (Register 15-1). It also selects the clock source options for the ECCP modules. (For more information, see Section 19.1.1 "ECCP Module and Timer Resources".)

The Fosc clock source should not be used with the ECCP capture/compare features. If the timer will be used with the capture or compare features, always select one of the other timer clocking options.

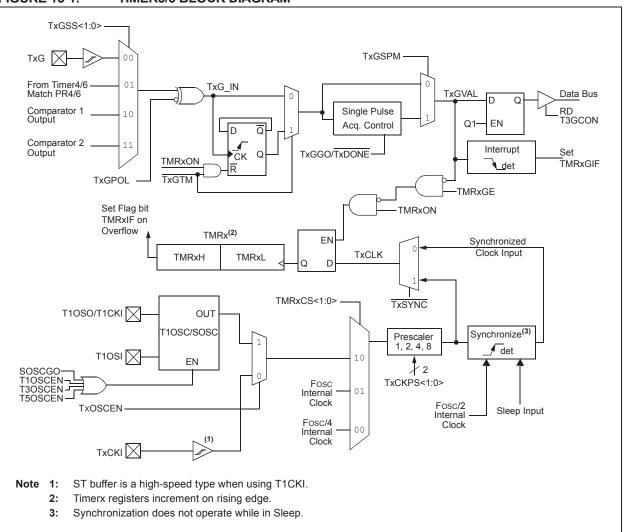
The operating mode is determined by the clock select

bits, TMRxCSx (TxCON<7:6>). When the TMRxCSx bits

are cleared (= 00), Timer3/5 increments on every internal

instruction cycle (Fosc/4). When TMRxCSx = 01, the Timer3/5 clock source is the system clock (Fosc), and

when it is '10', Timer3/5 works as a counter from the


external clock from the TxCKI pin (on the rising edge after

the first falling edge) or the Timer1 oscillator.

15.2 Timer3/5 Operation

Timer3 and Timer5 can operate in these modes:

- Timer
- Synchronous Counter
- Asynchronous Counter
- Timer with Gated Control

FIGURE 15-1: TIMER3/5 BLOCK DIAGRAM

REGISTER 26-2: CTMUCONL: CTMU CONTROL REGISTER LOW (ACCESS FB2h)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x	R/W-x		
EDG2POL	EDG2SEL1	EDG2SEL0	EDG1POL	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT		
bit 7	-	•		•	•	•	bit 0		
Legend:									
R = Readable	e bit	W = Writable I	oit	U = Unimplem	nented bit, read	l as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown			
bit 7	EDG2POL: E	dge 2 Polarity	Select bit						
		s programmed f							
	-	s programmed f	-	-					
bit 6-5		:0>: Edge 2 So	urce Select bit	S					
	11 = CTED1 10 = CTED2	•							
		output compare	e module						
	00 = Timer1 r								
bit 4	EDG1POL: E	dge 1 Polarity	Select bit						
	•	s programmed f		•					
	0 = Edge 1 is	s programmed f	or a negative e	edge response					
bit 3-2		:0>: Edge 1 So	urce Select bit	S					
	11 = CTED1 pin								
	10 = CTED2 pin 01 = ECCP1 output compare module								
	00 = Timer1 r		modulo						
bit 1	EDG2STAT: Edge 2 Status bit								
	1 = Edge 2 event has occurred								
	0 = Edge 2 e	vent has not oc	curred						
bit 0	EDG1STAT: E	Edge 1 Status b	it						
		vent has occurr							
	0 = Edge 1 e	vent has not oc	curred						

27.7 In-Circuit Serial Programming[™] (ICSP[™])

PIC18F47J13 Family microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

27.8 In-Circuit Debugger

When the DEBUG Configuration bit is programmed to a '0', the In-Circuit Debugger functionality is enabled. This function allows simple debugging functions when used with MPLAB[®] IDE. When the microcontroller has this feature enabled, some resources are not available for general use.

Table 27-4 lists the resources required by the background debugger.

TABLE 27-4: DEBUGGER RESOURCES

I/O Pins:	RB6, RB7
	TOSx registers reserved.

PIC18F47J13 FAMILY

RET	JRN	Return fro	Return from Subroutine					
Synta	ax:	RETURN	{s}					
Oper	ands:	$s \in [0,1]$						
Oper	ation:	if s = 1, (WS) \rightarrow W (STATUSS (BSRS) \rightarrow	$(TOS) \rightarrow PC;$ if s = 1, $(WS) \rightarrow W,$ $(STATUSS) \rightarrow STATUS,$ $(BSRS) \rightarrow BSR,$ PCLATU, PCLATH are unchanged					
Statu	s Affected:	None						
Enco	ding:	0000	0000	000	1	001s		
Desc	ription:	Return from popped and is loaded in 's'= 1, the of registers, V are loaded registers, V 's' = 0, no of occurs (det	d the top nto the pr contents VS, STAT into their V, STATL update of	of the ogram of the USS a corres JS and	stac cou shac and spor BS	ck (TOS) unter. If dow BSRS, nding R. If		
Word	ls:	1	1					
Cycle	es:	2	2					
QC	ycle Activity:							
	Q1	Q2	Q	3		Q4		
	Decode	No operation	Proce Data		•	OP PC m stack		
	No	No	No			No		
	operation	operation	operat	tion	ор	eration		
	Example: RETURN After Instruction:							

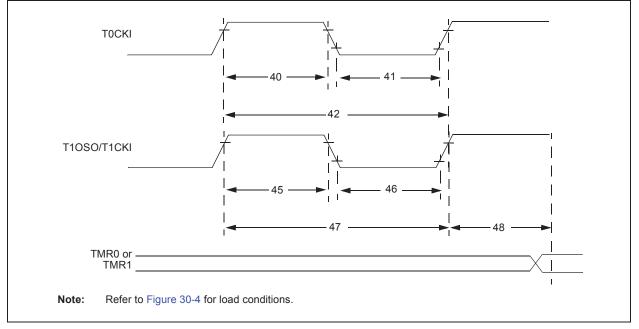
After Instruction: PC = TOS

RLCF	Rotate Lef		in Carry	/			
Syntax:	RLCF f	{,d {,a}}					
Operands:	$0 \le f \le 255$						
	d ∈ [0,1] a ∈ [0,1]						
Operation:	$(f < n >) \rightarrow dest < n + 1 >,$						
operation.	$(f<7>) \rightarrow C,$						
	$(C) \rightarrow dest$	<0>					
Status Affected:	C, N, Z						
Encoding:	0011	01da	ffff	ffff			
Description:	one bit to th If 'd' is '0', t	The contents of register 'f' are rotated one bit to the left through the Carry flag. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f' (default)					
		he BSR i		is selected. to select the			
	in Indexed mode wher Section 28	led, this i Literal Of never $f \leq s$	nstructic fset Ado 95 (5Fh)	on operates fressing). See			
			ctions i	n Indexed			
	Bit-Oriente	set Mode	ctions i	n Indexed tails.			
	Literal Off	set Mode	ctions i " for de	n Indexed tails.			
Words:	Literal Off	set Mode	ctions i " for de	n Indexed tails.			
Cycles:	Literal Off	set Mode	ctions i " for de	n Indexed tails.			
Cycles: Q Cycle Activity:	Literal Offs C 1 1	set Mode	ctions i " for de egister f	n Indexed tails.			
Cycles: Q Cycle Activity: Q1	Literal Offs C 1 1 Q2	set Mode	ctions i " for de egister f	n Indexed tails.			
Cycles: Q Cycle Activity:	Literal Offs C 1 1	set Mode	ctions i "" for de egister f 3 ess	n Indexed tails.			

30.5 AC (Timing) Characteristics

30.5.1 TIMING PARAMETER SYMBOLOGY

The timing parameter symbols have been created following one of the following formats:


1. TppS2ppS	8	3. Tcc:st	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			
F	Frequency	Т	Time
Lowercase le	etters (pp) and their meanings:		
рр			
сс	CCP1	osc	OSC1
ck	CLKO	rd	RD
cs	CS	rw	RD or WR
di	SDI	sc	SCK
do	SDO	ss	SS
dt	Data in	tO	TOCKI
io	I/O port	t1	T13CKI
mc	MCLR	wr	WR
Uppercase le	etters and their meanings:		
S			
F	Fall	Р	Period
н	High	R	Rise
I	Invalid (High-impedance)	V	Valid
L	Low	Z	High-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
TCC:ST (I ² C s	specifications only)	•	
CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	Stop condition
STA	Start condition		

PIC18F47J13 FAMILY

Param. No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
W1	Wds	Deep Sleep	—	500		μS	REGSLP = 1
W2	WSLEEP	Sleep	—	35		μS	REGSLP = 1, PLLEN = 0, Fosc = 8 MHz INTOSC
W3	WDOZE1	Sleep	—	12	—	μS	REGSLP = 0, PLLEN = 0, Fosc = 8 MHz INTOSC
W4	WDOZE2	Sleep	—	1.1	—	μS	REGSLP = 0, PLLEN = 0, Fosc = 8 MHz EC
W5	WDOZE3	Sleep	—	230	—	ns	REGSLP = 0, PLLEN = 0, Fosc = 48 MHz EC
W6	WIDLE	Idle	—	230	_	ns	Fosc = 48 MHz EC

TABLE 30-15: LOW-POWER WAKE-UP TIME

APPENDIX A: REVISION HISTORY

Revision A (March 2010)

Original data sheet for PIC18F47J13 Family devices.

Revision B (9/2016)

Removed Preliminary from the data sheet; Updated Packages; Other minor corrections.

Revision C (3/2017)

Replaced ADC chapter with version from Revision A of the document; Minor changes to the entire document.

THE MICROCHIP WEBSITE

Microchip provides online support via our website at www.microchip.com. This website is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the website contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Micro-chip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip website at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the website at: http://microchip.com/support