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REGISTER 5-1: RCON: RESET CONTROL REGISTER (ACCESS FD0h)

R/W-0 U-0 R/W-1 R/W-1 R-1 R-1 R/W-0 R/W-0

IPEN — CM RI TO PD POR BOR
bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 IPEN: Interrupt Priority Enable bit 
1 = Enable priority levels on interrupts
0 = Disable priority levels on interrupts (PIC16CXXX Compatibility mode)

bit 6 Unimplemented: Read as ‘0’
bit 5 CM: Configuration Mismatch Flag bit

1 = A Configuration Mismatch Reset has not occurred
0 = A Configuration Mismatch Reset has occurred (must be set in software after a Configuration

Mismatch Reset occurs)
bit 4 RI: RESET Instruction Flag bit

1 = The RESET instruction was not executed (set by firmware only)
0 = The RESET instruction was executed causing a device Reset (must be set in software after a

Brown-out Reset occurs)
bit 3 TO: Watchdog Time-out Flag bit

1 = Set by power-up, CLRWDT instruction or SLEEP instruction
0 = A WDT time-out occurred

bit 2 PD: Power-Down Detection Flag bit
1 = Set by power-up or by the CLRWDT instruction
0 = Set by execution of the SLEEP instruction

bit 1 POR: Power-on Reset Status bit
1 = A Power-on Reset has not occurred (set by firmware only)
0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)

bit 0 BOR: Brown-out Reset Status bit
1 = A Brown-out Reset has not occurred (set by firmware only)
0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs) 

Note 1: It is recommended that the POR bit be set after a Power-on Reset has been detected, so that subsequent
Power-on Resets may be detected.

2: If the on-chip voltage regulator is disabled, BOR remains ‘0’ at all times. See Section 5.4.1 “Detecting
BOR” for more information.

3: Brown-out Reset is said to have occurred when BOR is ‘0’ and POR is ‘1’ (assuming that POR was set to
‘1’ by software immediately after a Power-on Reset).
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6.4 Data Addressing Modes

While the program memory can be addressed in only
one way through the PC, information in the data mem-
ory space can be addressed in several ways. For most
instructions, the addressing mode is fixed. Other
instructions may use up to three modes, depending on
which operands are used and whether or not the
extended instruction set is enabled.

The addressing modes are:

• Inherent
• Literal
• Direct
• Indirect

An additional addressing mode, Indexed Literal Offset,
is available when the extended instruction set is
enabled (XINST Configuration bit = 1). Its operation is
discussed in more detail in Section 6.6.1 “Indexed
Addressing with Literal Offset”.

6.4.1 INHERENT AND LITERAL 
ADDRESSING

Many PIC18 control instructions do not need any
argument at all; they either perform an operation that
globally affects the device, or they operate implicitly on
one register. This addressing mode is known as
Inherent Addressing. Examples include SLEEP, RESET
and DAW.

Other instructions work in a similar way, but require an
additional explicit argument in the opcode. This is
known as Literal Addressing mode, because they
require some literal value as an argument. Examples
include ADDLW and MOVLW, which respectively, add or
move a literal value to the W register. Other examples
include CALL and GOTO, which include a 20-bit
program memory address.

6.4.2 DIRECT ADDRESSING
Direct Addressing specifies all or part of the source
and/or destination address of the operation within the
opcode itself. The options are specified by the
arguments accompanying the instruction.

In the core PIC18 instruction set, bit-oriented and
byte-oriented instructions use some version of Direct
Addressing by default. All of these instructions include
some 8-bit literal address as their LSB. This address
specifies either a register address in one of the banks
of data RAM (Section 6.3.3 “General Purpose

Register File”) or a location in the Access Bank
(Section 6.3.2 “Access Bank”) as the data source for
the instruction.

The Access RAM bit, ‘a’, determines how the address
is interpreted. When ‘a’ is ‘1’, the contents of the BSR
(Section 6.3.1 “Bank Select Register”) are used with
the address to determine the complete 12-bit address
of the register. When ‘a’ is ‘0’, the address is interpreted
as being a register in the Access Bank. Addressing that
uses the Access RAM is sometimes also known as
Direct Forced Addressing mode.

A few instructions, such as MOVFF, include the entire
12-bit address (either source or destination) in their
opcodes. In these cases, the BSR is ignored entirely.

The destination of the operation’s results is determined
by the destination bit, ‘d’. When ‘d’ is ‘1’, the results are
stored back in the source register, overwriting its
original contents. When ‘d’ is ‘0’, the results are stored
in the W register. Instructions without the ‘d’ argument
have a destination that is implicit in the instruction; their
destination is either the target register being operated
on or the W register.

6.4.3 INDIRECT ADDRESSING
Indirect Addressing allows the user to access a location
in data memory without giving a fixed address in the
instruction. This is done by using File Select Registers
(FSRs) as pointers to the locations to be read or written
to. Since the FSRs are themselves located in RAM as
SFRs, they can also be directly manipulated under
program control. This makes FSRs very useful in
implementing data structures such as tables and arrays
in data memory.

The registers for Indirect Addressing are also
implemented with Indirect File Operands (INDFs) that
permit automatic manipulation of the pointer value with
auto-incrementing, auto-decrementing or offsetting
with another value. This allows for efficient code using
loops, such as the example of clearing an entire RAM
bank in Example 6-5. It also enables users to perform
Indexed Addressing and other Stack Pointer
operations for program memory in data memory.

EXAMPLE 6-5: HOW TO CLEAR RAM 
(BANK 1) USING INDIRECT 
ADDRESSING 

Note: The execution of some instructions in the
core PIC18 instruction set are changed
when the PIC18 extended instruction set is
enabled. See Section 6.6 “Data Memory
and the Extended Instruction Set” for
more information.

LFSR FSR0, 0x100;   

NEXT CLRF POSTINC0 ; Clear INDF 

; register then 

; inc pointer 

BTFSS FSR0H, 1 ; All done with

; Bank1? 

BRA NEXT ; NO, clear next 

CONTINUE ; YES, continue 



 2010-2017 Microchip Technology Inc.  DS30009974C-page 111

PIC18F47J13 FAMILY

8.0 8 x 8 HARDWARE MULTIPLIER

8.1 Introduction
All PIC18 devices include an 8 x 8 hardware multiplier
as part of the ALU. The multiplier performs an unsigned
operation and yields a 16-bit result that is stored in the
product register pair, PRODH:PRODL. The multiplier’s
operation does not affect any flags in the STATUS
register.

Making multiplication a hardware operation allows it to
be completed in a single instruction cycle. This has the
advantages of higher computational throughput and
reduced code size for multiplication algorithms and
allows the PIC18 devices to be used in many applica-
tions previously reserved for digital signal processors.
Table 8-1 provides a comparison of various hardware
and software multiply operations, along with the
savings in memory and execution time.

8.2 Operation
Example 8-1 provides the instruction sequence for an
8 x 8 unsigned multiplication. Only one instruction is
required when one of the arguments is already loaded
in the WREG register.

Example 8-2 provides the instruction sequence for an
8 x 8 signed multiplication. To account for the sign bits
of the arguments, each argument’s Most Significant bit
(MSb) is tested and the appropriate subtractions are
done.

EXAMPLE 8-1: 8 x 8 UNSIGNED MULTIPLY 
ROUTINE    

EXAMPLE 8-2: 8 x 8 SIGNED MULTIPLY 
ROUTINE 

TABLE 8-1: PERFORMANCE COMPARISON FOR VARIOUS MULTIPLY OPERATIONS  

MOVF ARG1, W ; 

MULWF ARG2 ; ARG1 * ARG2 -> 

; PRODH:PRODL 

MOVF ARG1, W    

MULWF ARG2 ; ARG1 * ARG2 -> 

; PRODH:PRODL 

BTFSC ARG2, SB ; Test Sign Bit 

SUBWF PRODH, F ; PRODH = PRODH 

;         - ARG1 

MOVF ARG2, W

BTFSC ARG1, SB ; Test Sign Bit 

SUBWF PRODH, F ; PRODH = PRODH 

;         - ARG2 

Routine Multiply Method
Program
Memory
(Words)

Cycles
(Max)

Time

@ 48 MHz @ 10 MHz @ 4 MHz

8 x 8 unsigned
Without hardware multiply 13 69 5.7 s 27.6 s 69 s

Hardware multiply 1 1 83.3 ns 400 ns 1 s

8 x 8 signed
Without hardware multiply 33 91 7.5 s 36.4 s 91 s

Hardware multiply 6 6 500 ns 2.4 s 6 s

16 x 16 unsigned
Without hardware multiply 21 242 20.1 s 96.8 s 242 s

Hardware multiply 28 28 2.3 s 11.2 s 28 s

16 x 16 signed
Without hardware multiply 52 254 21.6 s 102.6 s 254 s

Hardware multiply 35 40 3.3 s 16.0 s 40 s
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9.6 INTx Pin Interrupts
External interrupts on the INT0, INT1, INT2 and INT3
pins are edge-triggered. If the corresponding INTEDGx
bit in the INTCON2 register is set (= 1), the interrupt is
triggered by a rising edge; if the bit is clear, the trigger
is on the falling edge. When a valid edge appears on
the INTx pin, the corresponding flag bit and INTxIF are
set. This interrupt can be disabled by clearing the
corresponding enable bit, INTxIE. Flag bit, INTxIF,
must be cleared in software in the Interrupt Service
Routine before re-enabling the interrupt.

All external interrupts (INT0, INT1, INT2 and INT3) can
wake up the processor from the Sleep and Idle modes
if bit, INTxIE, was set prior to going into the
power-managed modes. Deep Sleep mode can wake
up from INT0, but the processor will start execution
from the Power-on Reset vector rather than branch to
the interrupt vector.

Interrupt priority for INT1, INT2 and INT3 is determined
by the value contained in the Interrupt Priority bits,
INT1IP (INTCON3<6>), INT2IP (INTCON3<7>) and
INT3IP (INTCON2<1>). There is no priority bit
associated with INT0; It is always a high-priority
interrupt source.

9.7 TMR0 Interrupt
In 8-bit mode (which is the default), an overflow in the
TMR0 register (FFh  00h) will set flag bit, TMR0IF. In
16-bit mode, an overflow in the TMR0H:TMR0L register

pair (FFFFh  0000h) will set TMR0IF. The interrupt
can be enabled/disabled by setting/clearing enable bit,
TMR0IE (INTCON<5>). Interrupt priority for Timer0 is
determined by the value contained in the interrupt
priority bit, TMR0IP (INTCON2<2>). See Section 12.0
“Timer0 Module” for further details on the Timer0
module.

9.8 PORTB Interrupt-on-Change
An input change on PORTB<7:4> sets flag bit, RBIF
(INTCON<0>). The interrupt can be enabled/disabled
by setting/clearing enable bit, RBIE (INTCON<3>).
Interrupt priority for PORTB interrupt-on-change is
determined by the value contained in the interrupt
priority bit, RBIP (INTCON2<0>).

9.9 Context Saving During Interrupts
During interrupts, the return PC address is saved on
the stack. Additionally, the WREG, STATUS and BSR
registers are saved on the Fast Return Stack. If a fast
return from interrupt is not used (see Section 6.3
“Data Memory Organization”), the user may need to
save the WREG, STATUS and BSR registers on entry
to the Interrupt Service Routine. Depending on the
user’s application, other registers may also need to be
saved. Example 9-1 saves and restores the WREG,
STATUS and BSR registers during an Interrupt Service
Routine (ISR).

EXAMPLE 9-1: SAVING STATUS, WREG AND BSR REGISTERS IN RAM  
MOVWF W_TEMP ; W_TEMP is in virtual bank

MOVFF STATUS, STATUS_TEMP ; STATUS_TEMP located anywhere

MOVFF BSR, BSR_TEMP ; BSR_TMEP located anywhere

;

; USER ISR CODE

;

MOVFF BSR_TEMP, BSR ; Restore BSR

MOVF W_TEMP, W ; Restore WREG

MOVFF STATUS_TEMP, STATUS ; Restore STATUS
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REGISTER 10-8: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3 (BANKED EE3h)

U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
— — — INTR3R4 INTR3R3 INTR3R2 INTR3R1 INTR3R0

bit 7 bit 0

Legend: R/W = Readable bit, Writable bit if IOLOCK = 0
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-5 Unimplemented: Read as ‘0’ 
bit 4-0 INTR3R<4:0>: Assign External Interrupt 3 (INT3) to the Corresponding RPn Pin bits

REGISTER 10-9: RPINR4: PERIPHERAL PIN SELECT INPUT REGISTER 4 (BANKED EE4h)

U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
— — — T0CKR4 T0CKR3 T0CKR2 T0CKR1 T0CKR0

bit 7 bit 0

Legend: R/W = Readable bit, Writable bit if IOLOCK = 0
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-5 Unimplemented: Read as ‘0’ 
bit 4-0 T0CKR<4:0>: Timer0 External Clock Input (T0CKI) to the Corresponding RPn Pin bits

REGISTER 10-10: RPINR6: PERIPHERAL PIN SELECT INPUT REGISTER 6 (BANKED EE6h)

U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
— — — T3CKR4 T3CKR3 T3CKR2 T3CKR1 T3CKR0

bit 7 bit 0

Legend: R/W = Readable bit, Writable bit if IOLOCK = 0
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-5 Unimplemented: Read as ‘0’ 
bit 4-0 T3CKR<4:0>: Timer3 External Clock Input (T3CKI) to the Corresponding RPn Pin bits
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11.4 Application Examples
This section introduces some potential applications for
the PMP module.

11.4.1 MULTIPLEXED MEMORY OR 
PERIPHERAL

Figure 11-27 demonstrates the hookup of a memory or
another addressable peripheral in Full Multiplex mode.
Consequently, this mode achieves the best pin saving
from the microcontroller perspective. However, for this
configuration, there needs to be some external latches
to maintain the address. 

FIGURE 11-27: MULTIPLEXED ADDRESSING APPLICATION EXAMPLE

11.4.2 PARTIALLY MULTIPLEXED 
MEMORY OR PERIPHERAL

Partial multiplexing implies using more pins; however,
for a few extra pins, some extra performance can be
achieved. Figure 11-28 provides an example of a
memory or peripheral that is partially multiplexed with

an external latch. If the peripheral has internal latches,
as displayed in Figure 11-29, then no extra circuitry is
required except for the peripheral itself.

FIGURE 11-28: EXAMPLE OF A PARTIALLY MULTIPLEXED ADDRESSING APPLICATION

FIGURE 11-29: EXAMPLE OF AN 8-BIT MULTIPLEXED ADDRESS AND DATA APPLICATION
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15.5.4 TIMER3/5 GATE SINGLE PULSE 

MODE
When Timer3/5 Gate Single Pulse mode is enabled, it
is possible to capture a single pulse gate event. Tim-
er3/5 Gate Single Pulse mode is first enabled by setting
the TxGSPM bit (TxGCON<4>). Next, the
TxGGO/TxDONE bit (TxGCON<3>) must be set.

The Timer3/5 will be fully enabled on the next incre-
menting edge. On the next trailing edge of the pulse,
the TxGGO/TxDONE bit will automatically be cleared.

No other gate events will be allowed to increment Tim-
er3/5 until the TxGGO/TxDONE bit is once again set in
software.

Clearing the TxGSPM bit will also clear the
TxGGO/TxDONE bit. (For timing details, see
Figure 15-4.)

Simultaneously, enabling the Toggle mode and the
Single Pulse mode will permit both sections to work
together. This allows the cycle times on the Timer3/5
gate source to be measured. (For timing details, see
Figure 15-5.)

FIGURE 15-4: TIMER3/5 GATE SINGLE PULSE MODE
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TABLE 15-5: REGISTERS ASSOCIATED WITH TIMER3/5 AS A TIMER/COUNTER 

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF
PIR5 — — CM3IF TMR8IF TMR6IF TMR5IF TMR5GIF TMR1GIF
PIE5 — — CM3IE TMR8IE TMR6IE TMR5IE TMR5GIE TMR1GIE
PIR2 OSCFIF CM2IF CM1IF — BCL1IF HLVDIF TMR3IF CCP2IF
PIE2 OSCFIE CM2IE CM1IE — BCL1IE HLVDIE TMR3IE CCP2IE
TMR3H Timer3 Register High Byte
TMR3L Timer3 Register Low Byte
T3GCON TMR3GE T3GPOL T3GTM T3GSPM T3GGO/

T3DONE
T3GVAL T3GSS1 T3GSS0

T3CON TMR3CS1 TMR3CS0 T3CKPS1 T3CKPS0 T3OSCEN T3SYNC RD16 TMR3ON
TMR5H Timer5 Register High Byte
TMR5L Timer5 Register Low Byte
T5GCON TMR5GE T5GPOL T5GTM T5GSPM T5GGO/

T5DONE
T5GVAL T5GSS1 T5GSS0

T5CON TMR5CS1 TMR5CS0 T5CKPS1 T5CKPS0 T5OSCEN T5SYNC RD16 TMR5ON
OSCCON2 — SOSCRUN — SOSCDRV SOSCGO — — —
CCPTMRS0 C3TSEL1 C3TSEL0 C2TSEL2 C2TSEL1 C2TSEL0 C1TSEL2 C1TSEL1 C1TSEL0
CCPTMRS1 C7TSEL1 C7TSEL0 — C6TSEL0 — C5TSEL0 C4TSEL1 C4TSEL0
CCPTMRS1 — — — C10TSEL0 — C9TSEL0 C8TSEL1 C8TSEL0
CCPTMRS2 — — — C10TSEL0 — C9TSEL0 C8TSEL1 C8TSEL0
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the Timer3 module.



 2010-2017 Microchip Technology Inc.  DS30009974C-page 227

PIC18F47J13 FAMILY

16.2 Timer4/6/8 Interrupt
The Timer4/6/8 modules have 8-bit Period registers,
PRx, that are both readable and writable. Timer4/6/8
increment from 00h until they match PR4/6/8 and then
reset to 00h on the next increment cycle. The PRx
registers are initialized to FFh upon Reset.

16.3 Output of TMRx
The outputs of TMRx (before the postscaler) are used
only as a PWM time base for the ECCP modules. They
are not used as baud rate clocks for the MSSP
modules as is the Timer2 output.

FIGURE 16-1: TIMER4 BLOCK DIAGRAM     

REGISTER 16-1: TxCON: TIMER4/6/8 CONTROL REGISTER (ACCESS F76h, BANKED F1Eh, 
BANKED F1Bh)

U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
— TxOUTPS3 TxOUTPS2 TxOUTPS1 TxOUTPS0 TMRxON TxCKPS1 TxCKPS0

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 Unimplemented: Read as ‘0’
bit 6-3 TxOUTPS<3:0>: Timerx Output Postscale Select bits

0000 = 1:1 Postscale
0001 = 1:2 Postscale
• 
• 
• 
1111 = 1:16 Postscale

bit 2 TMRxON: Timerx On bit
1 = Timerx is on
0 = Timerx is off

bit 1-0 TxCKPS<1:0>: Timerx Clock Prescale Select bits
00 = Prescaler is 1
01 = Prescaler is 4
1x = Prescaler is 16

Comparator

TMRx Output

TMRx

Postscaler

Prescaler
PRx

2

FOSC/4

1:1 to 1:16

1:1, 1:4, 1:16

4
TxOUTPS<3:0>

TxCKPS<1:0>

Set TMRxIF

Internal Data Bus
8

Reset
TMRx/PRx

88

(to PWM) 

Match
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17.2.2 CLOCK SOURCE
As mentioned earlier, the RTCC module is intended to
be clocked by an external Real-Time Clock (RTC)
crystal oscillating at 32.768 kHz, but can also be
clocked by the INTRC. The RTCC clock selection is
decided by the RTCOSC bit (CONFIG3L<1>).

Calibration of the crystal can be done through this
module to yield an error of 3 seconds or less per month.
(For further details, see Section 17.2.9 “Calibration”.)

FIGURE 17-4: CLOCK SOURCE MULTIPLEXING 

17.2.2.1 Real-Time Clock Enable
The RTCC module can be clocked by an external,
32.768 kHz crystal (Timer1 oscillator or T1CKI input) or
the INTRC oscillator, which can be selected in CON-
FIG3L<1>.

If the Timer1 oscillator will be used as the clock source
for the RTCC, make sure to enable it by setting
T1CON<3> (T1OSCEN). The selected RTC clock can
be brought out to the RTCC pin by the
RTSECSEL<1:0> bits in the PADCFG1 register.

17.2.3 DIGIT CARRY RULES
This section explains which timer values are affected
when there is a rollover. 

• Time of Day: From 23:59:59 to 00:00:00 with a 
carry to the Day field

• Month: From 12/31 to 01/01 with a carry to the 
Year field

• Day of Week: From 6 to 0 with no carry (see 
Table 17-1)

• Year Carry: From 99 to 00; this also surpasses the 
use of the RTCC

For the day to month rollover schedule, see Table 17-2.

Considering that the following values are in BCD
format, the carry to the upper BCD digit will occur at a
count of 10 and not at 16 (SECONDS, MINUTES,
HOURS, WEEKDAY, DAYS and MONTHS).

TABLE 17-1: DAY OF WEEK SCHEDULE

Note 1: Writing to the lower half of the MINSEC register resets all counters, allowing fraction of a second synchronization. 
The clock prescaler is held in Reset when RTCEN = 0.

32.768 kHz XTAL
1:16384

Half Second(1)

Half Second
Clock One Second Clock

YearMonth
Day

Day of Week
Second Hour:Minute

Clock Prescaler(1)
from T1OSC

Internal RC

CONFIG 3L<1>

Day of Week

Sunday 0
Monday 1
Tuesday 2

Wednesday 3
Thursday 4

Friday 5
Saturday 6
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REGISTER 18-2: CCPTMRS1: CCP4-10 TIMER SELECT 1 REGISTER (BANKED F51h)

R/W-0 R/W-0 U-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 
C7TSEL1 C7TSEL0 — C6TSEL0 — C5TSEL0 C4TSEL1 C4TSEL0

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-6 C7TSEL<1:0>: CCP7 Timer Selection bit
00 = CCP7 is based off of TMR1/TMR2
01 = CCP7 is based off of TMR5/TMR4
10 = CCP7 is based off of TMR5/TMR6
11 = CCP7 is based off of TMR5/TMR8

bit 5 Unimplemented: Read as ‘0’
bit 4 C6TSEL0: CCP6 Timer Selection bit

0 = CCP6 is based off of TMR1/TMR2
1 = CCP6 is based off of TMR5/TMR2

bit 3 Unimplemented: Read as ‘0’
bit 2 C5TSEL0: CCP5 Timer Selection bit

0 = CCP5 is based off of TMR1/TMR2
1 = CCP5 is based off of TMR5/TMR4

bit 1-0 C4TSEL<1:0>: CCP4 Timer Selection bits
00 = CCP4 is based off of TMR1/TMR2
01 = CCP4 is based off of TMR3/TMR4
10 = CCP4 is based off of TMR3/TMR6
11 = Reserved; do not use
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18.4.2 PWM DUTY CYCLE
The PWM duty cycle is specified by writing to the
CCPR4L register and to the CCP4CON<5:4> bits. Up
to 10-bit resolution is available. The CCPR4L contains
the eight MSbs and the CCP4CON<5:4> contains the
two LSbs. This 10-bit value is represented by
CCPR4L:CCP4CON<5:4>. The following equation is
used to calculate the PWM duty cycle in time:

EQUATION 18-2:

CCPR4L and CCP4CON<5:4> can be written to at any
time, but the duty cycle value is not latched into
CCPR4H until after a match between PR2 and TMR2
occurs (that is, the period is complete). In PWM mode,
CCPR4H is a read-only register.

The CCPR4H register and a two-bit internal latch are
used to double-buffer the PWM duty cycle. This
double-buffering is essential for glitchless PWM
operation.

When the CCPR4H and two-bit latch match TMR2,
concatenated with an internal two-bit Q clock or two
bits of the TMR2 prescaler, the CCP4 pin is cleared.

The maximum PWM resolution (bits) for a given PWM
frequency is given by the equation:

EQUATION 18-3:

TABLE 18-5: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 40 MHz  

18.4.3 SETUP FOR PWM OPERATION
To configure the CCP module for PWM operation:

1. Set the PWM period by writing to the PR2
register.

2. Set the PWM duty cycle by writing to the
CCPR4L register and CCP4CON<5:4> bits.

3. Make the CCP4 pin an output by clearing the
appropriate TRISx bit.

4. Set the TMR2 prescale value, then enable Tim-
er2 by writing to T2CON.

5. Configure the CCP4 module for PWM operation.

PWM Duty Cycle = (CCPR4L:CCP4CON<5:4>) •
TOSC • (TMR2 Prescale Value)

Note: If the PWM duty cycle value is longer than
the PWM period, the CCP4 pin will not be
cleared.

FOSC
FPWM
--------------- 
 log

2 log-----------------------------bits=PWM Resolution (max)

PWM Frequency 2.44 kHz 9.77 kHz 39.06 kHz 156.25 kHz 312.50 kHz 416.67 kHz

Timer Prescaler (1, 4, 16) 16 4 1 1 1 1
PR2 Value FFh FFh FFh 3Fh 1Fh 17h
Maximum Resolution (bits) 10 10 10 8 7 6.58



 2010-2017 Microchip Technology Inc.  DS30009974C-page 276

PIC18F47J13 FAMILY
19.4.6 PROGRAMMABLE DEAD-BAND 

DELAY MODE
In half-bridge applications, where all power switches
are modulated at the PWM frequency, the power
switches normally require more time to turn off than to
turn on. If both the upper and lower power switches are
switched at the same time (one turned on and the other
turned off), both switches may be on for a short period
until one switch completely turns off. During this brief
interval, a very high current (shoot-through current) will
flow through both power switches, shorting the bridge
supply. To avoid this potentially destructive
shoot-through current from flowing during switching,
turning on either of the power switches is normally
delayed to allow the other switch to completely turn off.

In Half-Bridge mode, a digitally programmable,
dead-band delay is available to avoid shoot-through
current from destroying the bridge power switches. The
delay occurs at the signal transition from the non-active
state to the active state. For an illustration, see
Figure 19-14. The lower seven bits of the associated
ECCPxDEL register (Register 19-5) set the delay
period in terms of microcontroller instruction cycles
(TCY or 4 TOSC).

FIGURE 19-14: EXAMPLE OF 
HALF-BRIDGE PWM 
OUTPUT

FIGURE 19-15: EXAMPLE OF HALF-BRIDGE APPLICATIONS

  

Period

Pulse Width

td

td

(1)

PxA(2)

PxB(2)

td = Dead-Band Delay

Period

(1) (1)

Note 1: At this time, the TMR2 register is equal to the
PR2 register.

2: Output signals are shown as active-high.

PxA

PxB

FET
Driver

FET
Driver

V+

V-

Load

+
V
-

+
V
-

Standard Half-Bridge Circuit (“Push-Pull”)
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REGISTER 20-9: SSPxMSK: I2C SLAVE ADDRESS MASK REGISTER (7-BIT MASKING MODE)
(1, ACCESS FC8h; 2, F74h)(1)    

REGISTER 20-8: SSPxCON2: MSSPx CONTROL REGISTER 2 (I2C SLAVE MODE) 
(1, ACCESS FC5h; 2, F71h)  

R/W-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
GCEN ACKSTAT(2) ADMSK5 ADMSK4 ADMSK3 ADMSK2 ADMSK1 SEN(1)

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 GCEN: General Call Enable bit (Slave mode only)
1 = Enables interrupt when a general call address (0000h) is received in the SSPxSR
0 = General call address disabled

bit 6 ACKSTAT: Acknowledge Status bit(2)

Unused in Slave mode. 
bit 5-2 ADMSK<5:2>: Slave Address Mask Select bits (5-bit address masking)

1 = Masking of the corresponding bits of SSPxADD is enabled
0 = Masking of the corresponding bits of SSPxADD is disabled

bit 1 ADMSK1: Slave Address Least Significant bit(s) Mask Select bit
In 7-Bit Addressing mode:
1 = Masking of SSPxADD<1> only is enabled 
0 = Masking of SSPxADD<1> only is disabled
In 10-Bit Addressing mode:
1 = Masking of SSPxADD<1:0> is enabled
0 = Masking of SSPxADD<1:0> is disabled

bit 0 SEN: Start Condition Enable/Stretch Enable bit(1)

1 = Clock stretching is enabled for both slave transmit and slave receive (stretch enabled)
0 = Clock stretching is disabled

Note 1: If the I2C module is active, these bits may not be set (no spooling) and the SSPxBUF may not be written
(or writes to the SSPxBUF are disabled).

2: This bit is unimplemented in I2C Slave mode.

R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
MSK7 MSK6 MSK5 MSK4 MSK3 MSK2 MSK1 MSK0(2)

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-0 MSK<7:0>: Slave Address Mask Select bits
1 = Masking of the corresponding bit of SSPxADD is enabled
0 = Masking of the corresponding bit of SSPxADD is disabled

Note 1: This register shares the same SFR address as SSPxADD and is only addressable in select MSSP 
operating modes. See Section 20.5.3.4 “7-Bit Address Masking Mode” for more details.

2: MSK0 is not used as a mask bit in 7-bit addressing.
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1 1 1 1 0 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D1 D0

Receive Data Byte

ACK
R/W = 0

ACK

Receive First Byte of Address

Cleared in software

D2

6

 

Cleared in software

Receive Second Byte of Address

Cleared by hardware
when SSPxADD is updated
with low byte of address

UA (SSPxSTAT<1>)

Clock is held low until
update of SSPxADD has 
taken place

UA is set indicating that
the SSPxADD needs to be
updated

UA is set indicating that
SSPxADD needs to be
updated

Cleared by hardware when
SSPxADD is updated with high
byte of address

SSPxBUF is written with
contents of SSPxSR

Dummy read of SSPxBUF
to clear BF flag

ACK

CKP (SSPxCON1<4>)

1 2 3 4 5 7 8 9

D7 D6 D5 D4 D3 D1 D0

Receive Data Byte

Bus master
terminates
transfer

D2

6

ACK

Cleared in software Cleared in software

SSPOV (SSPxCON1<6>)

SSPOV is set
because SSPxBUF is
still full. ACK is not sent.

(CKP does not reset to ‘0’ when SEN = 0)

Clock is held low until
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Cleared in softwareCleared in software

Set SSPxIF interrupt
at end of receive
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automatically
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ACKEN
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SDAx = ACKDT = 0 

Last bit is shifted into SSPxSR and
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Cleared in
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SSPOV is set because
SSPxBUF is still full
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20.5.17.2 Bus Collision During a Repeated 

Start Condition
During a Repeated Start condition, a bus collision
occurs if: 

a) A low level is sampled on SDAx when SCLx
goes from a low level to a high level.

b) SCLx goes low before SDAx is asserted low,
indicating that another master is attempting to
transmit a data ‘1’.

When the user deasserts SDAx and the pin is allowed
to float high, the BRG is loaded with SSPxADD<6:0>
and counts down to 0. The SCLx pin is then deasserted
and when sampled high, the SDAx pin is sampled. 

If SDAx is low, a bus collision has occurred (i.e., another
master is attempting to transmit a data ‘0’; see
Figure 20-31). If SDAx is sampled high, the BRG is
reloaded and begins counting. If SDAx goes from
high-to-low before the BRG times out, no bus collision
occurs because no two masters can assert SDAx at
exactly the same time. 

If SCLx goes from high-to-low before the BRG times
out and SDAx has not already been asserted, a bus
collision occurs. In this case, another master is
attempting to transmit a data ‘1’ during the Repeated
Start condition (see Figure 20-32).

If, at the end of the BRG time-out, both SCLx and SDAx
are still high, the SDAx pin is driven low and the BRG is
reloaded and begins counting. At the end of the count,
regardless of the status of the SCLx pin, the SCLx pin is
driven low and the Repeated Start condition is complete. 

FIGURE 20-31: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1) 

FIGURE 20-32: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)

SDAx

SCLx

RSEN

BCLxIF

S

SSPxIF

Sample SDAx when SCLx goes High;
If SDAx = 0, Set BCLxIF and Release SDAx and SCLx

Cleared in Software

‘0’

‘0’

SDAx

SCLx

BCLxIF

RSEN

S

SSPxIF

Interrupt Cleared
in Software

SCLx goes Low Before SDAx,
Set BCLxIF; Release SDAx and SCLx

TBRG TBRG

‘0’
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REGISTER 27-8: CONFIG4H: CONFIGURATION REGISTER 4 HIGH (BYTE ADDRESS 300007h)

U-1 U-1 U-1 U-1 U-0 U-0 R/WO-1 R/WO-1
— — — — — — WPEND WPDIS

bit 7 bit 0

Legend:
R = Readable bit WO = Write-Once bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-4 Unimplemented: Program the corresponding Flash Configuration bit to ‘1’
bit 3-2 Unimplemented: Read as ‘0’
bit 1 WPEND: Write-Protect Disable bit

1 = Flash pages, WPFP<6:0> to (Configuration Words page), are erase/write-protected
0 = Flash pages 0 to WPFP<6:0> are erase/write-protected

bit 0 WPDIS: Write-Protect Disable bit
1 = WPFP<5:0>, WPEND and WPCFG bits are ignored; all Flash memory may be erased or written
0 = WPFP<5:0>, WPEND and WPCFG bits are enabled; erase/write-protect is active for the selected

region(s)

REGISTER 27-9: DEVID1: DEVICE ID REGISTER 1 FOR PIC18F47J13 FAMILY DEVICES 
(BYTE ADDRESS 3FFFFEh)

R R R R R R R R
DEV2 DEV1 DEV0 REV4 REV3 REV2 REV1 REV0

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-5 DEV<2:0>: Device ID bits
These bits are used with DEV<10:3> bits in Device ID Register 2 to identify the part number. See 
Register 27-10.

bit 4-0 REV<4:0>: Revision ID bits
These bits are used to indicate the device revision.
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TABLE 28-2: PIC18F47J13 FAMILY INSTRUCTION SET  

Mnemonic,
Operands Description Cycles

16-Bit Instruction Word Status
Affected Notes

MSb LSb

BYTE-ORIENTED OPERATIONS
ADDWF
ADDWFC
ANDWF
CLRF
COMF
CPFSEQ
CPFSGT
CPFSLT
DECF
DECFSZ
DCFSNZ
INCF
INCFSZ
INFSNZ
IORWF
MOVF
MOVFF

MOVWF
MULWF
NEGF
RLCF
RLNCF
RRCF
RRNCF
SETF
SUBFWB

SUBWF
SUBWFB

SWAPF
TSTFSZ
XORWF

f, d, a
f, d, a
f, d, a
f, a
f, d, a
f, a
f, a
f, a
f, d, a
f, d, a
f, d, a
f, d, a
f, d, a
f, d, a
f, d, a
f, d, a
fs, fd

f, a
f, a
f, a
f, d, a
f, d, a
f, d, a
f, d, a
f, a
f, d, a

f, d, a
f, d, a

f, d, a
f, a
f, d, a

Add WREG and f
Add WREG and Carry bit to f
AND WREG with f
Clear f
Complement f
Compare f with WREG, Skip =
Compare f with WREG, Skip >
Compare f with WREG, Skip <
Decrement f
Decrement f, Skip if 0
Decrement f, Skip if Not 0
Increment f
Increment f, Skip if 0
Increment f, Skip if Not 0
Inclusive OR WREG with f
Move f
Move fs (source) to 1st word

fd (destination) 2nd word
Move WREG to f
Multiply WREG with f
Negate f
Rotate Left f through Carry
Rotate Left f (No Carry)
Rotate Right f through Carry
Rotate Right f (No Carry)
Set f
Subtract f from WREG with 
    Borrow 
Subtract WREG from f
Subtract WREG from f with 
    Borrow
Swap Nibbles in f
Test f, Skip if 0
Exclusive OR WREG with f

1
1
1
1
1
1 (2 or 3)
1 (2 or 3)
1 (2 or 3)
1
1 (2 or 3)
1 (2 or 3)
1
1 (2 or 3)
1 (2 or 3)
1
1
2

1
1
1
1
1
1
1
1
1

1
1

1
1 (2 or 3)
1

0010
0010
0001
0110
0001
0110
0110
0110
0000
0010
0100
0010
0011
0100
0001
0101
1100
1111
0110
0000
0110
0011
0100
0011
0100
0110
0101

0101
0101

0011
0110
0001

01da
00da
01da
101a
11da
001a
010a
000a
01da
11da
11da
10da
11da
10da
00da
00da
ffff
ffff
111a
001a
110a
01da
01da
00da
00da
100a
01da

11da
10da

10da
011a
10da

ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff

ffff
ffff

ffff
ffff
ffff

ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff

ffff
ffff

ffff
ffff
ffff

C, DC, Z, OV, N
C, DC, Z, OV, N
Z, N
Z
Z, N
None
None
None
C, DC, Z, OV, N
None
None
C, DC, Z, OV, N
None
None
Z, N
Z, N
None

None
None
C, DC, Z, OV, N
C, Z, N
Z, N
C, Z, N
Z, N
None
C, DC, Z, OV, N

C, DC, Z, OV, N
C, DC, Z, OV, N

None
None
Z, N

1, 2
1, 2
1,2
2
1, 2
4
4
1, 2
1, 2, 3, 4
1, 2, 3, 4
1, 2
1, 2, 3, 4
4
1, 2
1, 2
1

1, 2

1, 2

1, 2

1, 2

4
1, 2

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be 
that value present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as an input 
and is driven low by an external device, the data will be written back with a ‘0’.

2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared 
if assigned.

3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The 
second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP 
unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all 
program memory locations have a valid instruction.
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TOP VIEW

SIDE VIEW

BOTTOM VIEW
Microchip Technology Drawing  C04-103D Sheet 1 of 2

For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging

Note:

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]
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