Microchip Technology - PIC18LF26)13-1/SS Datasheet

Details

Product Status

Core Processor

Core Size

Speed

Connectivity

Peripherals

Number of I/O

Program Memory Size
Program Memory Type
EEPROM Size

RAM Size

Voltage - Supply (Vcc/Vdd)
Data Converters
Oscillator Type
Operating Temperature
Mounting Type

Package / Case

Supplier Device Package

Purchase URL

Email: info@E-XFL.COM

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Active

PIC

8-Bit

48MHz

12C, LINbus, SPI, UART/USART
Brown-out Detect/Reset, POR, PWM, WDT
22

64KB (32K x 16)

FLASH

3.8Kx 8

2V ~ 2.75V

A/D 10x10b/12b

Internal

-40°C ~ 85°C (TA)

Surface Mount

28-SSOP (0.209", 5.30mm Width)
28-SSOP

https://www.e-xfl.com/product-detail/microchip-technology/pic181f26j13-i-ss

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic18lf26j13-i-ss-4384831
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC18F47J13 FAMILY

REGISTER 5-1: RCON: RESET CONTROL REGISTER (ACCESS FDOh)

R/W-0 uU-0 R/W-1 R/W-1 R-1 R-1 R/W-0 R/W-0
IPEN — CM RI | TO \ PD \ POR BOR
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 7 IPEN: Interrupt Priority Enable bit

1 = Enable priority levels on interrupts
0 = Disable priority levels on interrupts (PIC16CXXX Compatibility mode)
bit 6 Unimplemented: Read as ‘0’
bit 5 CM: Configuration Mismatch Flag bit
1 = A Configuration Mismatch Reset has not occurred
0 = A Configuration Mismatch Reset has occurred (must be set in software after a Configuration
Mismatch Reset occurs)
bit 4 RI: RESET Instruction Flag bit
1 = The RESET instruction was not executed (set by firmware only)
0 = The RESET instruction was executed causing a device Reset (must be set in software after a
Brown-out Reset occurs)
bit 3 TO: Watchdog Time-out Flag bit
1 = Set by power-up, CLRWDT instruction or SLEEP instruction
0 = AWDT time-out occurred
bit 2 PD: Power-Down Detection Flag bit
1 = Set by power-up or by the CLRWDT instruction
0 = Set by execution of the SLEEP instruction
bit 1 POR: Power-on Reset Status bit
1 = A Power-on Reset has not occurred (set by firmware only)
0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)
bit 0 BOR: Brown-out Reset Status bit

1 = A Brown-out Reset has not occurred (set by firmware only)
0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)

Note 1: Itis recommended that the POR bit be set after a Power-on Reset has been detected, so that subsequent
Power-on Resets may be detected.

2: If the on-chip voltage regulator is disabled, BOR remains ‘0’ at all times. See Section 5.4.1 “Detecting
BOR?” for more information.

3: Brown-out Reset is said to have occurred when BOR is ‘0’ and POR is ‘1’ (assuming that POR was set to
‘1’ by software immediately after a Power-on Reset).

© 2010-2017 Microchip Technology Inc. DS30009974C-page 61

PIC18F47J13 FAMILY

6.4 Data Addressing Modes

Note: The execution of some instructions in the
core PIC18 instruction set are changed
when the PIC18 extended instruction set is
enabled. See Section 6.6 “Data Memory
and the Extended Instruction Set” for
more information.

While the program memory can be addressed in only
one way through the PC, information in the data mem-
ory space can be addressed in several ways. For most
instructions, the addressing mode is fixed. Other
instructions may use up to three modes, depending on
which operands are used and whether or not the
extended instruction set is enabled.

The addressing modes are:

* Inherent
o Literal
* Direct
 Indirect

An additional addressing mode, Indexed Literal Offset,
is available when the extended instruction set is
enabled (XINST Configuration bit = 1). Its operation is
discussed in more detail in Section 6.6.1 “Indexed
Addressing with Literal Offset”.

6.4.1 INHERENT AND LITERAL
ADDRESSING

Many PIC18 control instructions do not need any
argument at all; they either perform an operation that
globally affects the device, or they operate implicitly on
one register. This addressing mode is known as
Inherent Addressing. Examples include SLEEP, RESET
and DAW.

Other instructions work in a similar way, but require an
additional explicit argument in the opcode. This is
known as Literal Addressing mode, because they
require some literal value as an argument. Examples
include ADDLW and MOVLW, which respectively, add or
move a literal value to the W register. Other examples
include CALL and GOTO, which include a 20-bit
program memory address.

6.4.2 DIRECT ADDRESSING

Direct Addressing specifies all or part of the source
and/or destination address of the operation within the
opcode itself. The options are specified by the
arguments accompanying the instruction.

In the core PIC18 instruction set, bit-oriented and
byte-oriented instructions use some version of Direct
Addressing by default. All of these instructions include
some 8-bit literal address as their LSB. This address
specifies either a register address in one of the banks
of data RAM (Section 6.3.3 “General Purpose

Register File”) or a location in the Access Bank
(Section 6.3.2 “Access Bank”) as the data source for
the instruction.

The Access RAM bit, ‘a’, determines how the address
is interpreted. When ‘a’ is ‘1’, the contents of the BSR
(Section 6.3.1 “Bank Select Register”) are used with
the address to determine the complete 12-bit address
of the register. When ‘a’ is ‘0’, the address is interpreted
as being a register in the Access Bank. Addressing that
uses the Access RAM is sometimes also known as
Direct Forced Addressing mode.

A few instructions, such as MOVFF, include the entire
12-bit address (either source or destination) in their
opcodes. In these cases, the BSR is ignored entirely.

The destination of the operation’s results is determined
by the destination bit, ‘d’. When ‘d’ is ‘1’, the results are
stored back in the source register, overwriting its
original contents. When ‘d’ is ‘0’, the results are stored
in the W register. Instructions without the ‘d” argument
have a destination that is implicit in the instruction; their
destination is either the target register being operated
on or the W register.

6.4.3 INDIRECT ADDRESSING

Indirect Addressing allows the user to access a location
in data memory without giving a fixed address in the
instruction. This is done by using File Select Registers
(FSRs) as pointers to the locations to be read or written
to. Since the FSRs are themselves located in RAM as
SFRs, they can also be directly manipulated under
program control. This makes FSRs very useful in
implementing data structures such as tables and arrays
in data memory.

The registers for Indirect Addressing are also
implemented with Indirect File Operands (INDFs) that
permit automatic manipulation of the pointer value with
auto-incrementing, auto-decrementing or offsetting
with another value. This allows for efficient code using
loops, such as the example of clearing an entire RAM
bank in Example 6-5. It also enables users to perform
Indexed Addressing and other Stack Pointer
operations for program memory in data memory.

EXAMPLE 6-5: HOW TO CLEAR RAM
(BANK 1) USING INDIRECT
ADDRESSING
LFSR FSRO, 0x100;
NEXT CLRF POSTINCO ; Clear INDF

; register then
; inc pointer

BTFSS FSROH, 1 ; All done with

; Bankl?
BRA NEXT ; NO, clear next
CONTINUE ; YES, continue

© 2010-2017 Microchip Technology Inc.

DS30009974C-page 95

PIC18F47J13 FAMILY

8.0
8.1

All PIC18 devices include an 8 x 8 hardware multiplier
as part of the ALU. The multiplier performs an unsigned
operation and yields a 16-bit result that is stored in the
product register pair, PRODH:PRODL. The multiplier’s
operation does not affect any flags in the STATUS
register.

8 x 8 HARDWARE MULTIPLIER

Introduction

Making multiplication a hardware operation allows it to
be completed in a single instruction cycle. This has the
advantages of higher computational throughput and
reduced code size for multiplication algorithms and
allows the PIC18 devices to be used in many applica-
tions previously reserved for digital signal processors.
Table 8-1 provides a comparison of various hardware
and software multiply operations, along with the
savings in memory and execution time.

8.2

Example 8-1 provides the instruction sequence for an
8 x 8 unsigned multiplication. Only one instruction is
required when one of the arguments is already loaded
in the WREG register.

Example 8-2 provides the instruction sequence for an
8 x 8 signed multiplication. To account for the sign bits
of the arguments, each argument’s Most Significant bit
(MSb) is tested and the appropriate subtractions are
done.

Operation

EXAMPLE 8-1: 8 x 8 UNSIGNED MULTIPLY
ROUTINE
MOVF ARGl, W ;
MULWE ARG2 ; ARGl * ARG2 ->
; PRODH:PRODL
EXAMPLE 8-2: 8 x 8 SIGNED MULTIPLY
ROUTINE
MOVF ARG1l, W
MULWE ARG2 ; ARGl * ARG2 ->
; PRODH:PRODL
BTFSC ARG2, SB ; Test Sign Bit
SUBWE PRODH, F ; PRODH = PRODH
- ARGl
MOVF ARG2, W
BTFSC ARG1l, SB ; Test Sign Bit
SUBWE PRODH, F ; PRODH = PRODH
- ARG2

TABLE 8-1: PERFORMANCE COMPARISON FOR VARIOUS MULTIPLY OPERATIONS
Program Cvcles Time
Routine Multiply Method Memory I¥II
Words) | M3X) | @48 MHz | @ 10 MHz | @ 4 MHz
. Without hardware multiply 13 69 5.7 us 27.6 us 69 us
8 x 8 unsigned -
Hardware multiply 1 1 83.3ns 400 ns 1us
. Without hardware multiply 33 91 7.5 us 36.4 us 91 us
8 x 8 signed -
Hardware multiply 6 6 500 ns 2.4 us 6 us
. Without hardware multiply 21 242 20.1 us 96.8 us 242 pus
16 x 16 unsigned -
Hardware multiply 28 28 23 s 11.2 us 28 us
. Without hardware multiply 52 254 21.6 us 102.6 us 254 pus
16 x 16 signed -
Hardware multiply 35 40 3.3 us 16.0 us 40 ps
© 2010-2017 Microchip Technology Inc. DS30009974C-page 111

PIC18F47J13 FAMILY

9.6 INTx Pin Interrupts

External interrupts on the INTO, INT1, INT2 and INT3
pins are edge-triggered. If the corresponding INTEDGx
bit in the INTCONZ2 register is set (= 1), the interrupt is
triggered by a rising edge; if the bit is clear, the trigger
is on the falling edge. When a valid edge appears on
the INTx pin, the corresponding flag bit and INTxIF are
set. This interrupt can be disabled by clearing the
corresponding enable bit, INTxIE. Flag bit, INTxIF,
must be cleared in software in the Interrupt Service
Routine before re-enabling the interrupt.

All external interrupts (INTO, INT1, INT2 and INT3) can
wake up the processor from the Sleep and Idle modes
if bit, INTxIE, was set prior to going into the
power-managed modes. Deep Sleep mode can wake
up from INTO, but the processor will start execution
from the Power-on Reset vector rather than branch to
the interrupt vector.

Interrupt priority for INT1, INT2 and INT3 is determined
by the value contained in the Interrupt Priority bits,
INT1IP (INTCON3<6>), INT2IP (INTCON3<7>) and
INT3IP (INTCON2<1>). There is no priority bit
associated with INTO; It is always a high-priority
interrupt source.

9.7 TMRO Interrupt

In 8-bit mode (which is the default), an overflow in the
TMRO register (FFh — 00h) will set flag bit, TMROIF. In
16-bit mode, an overflow in the TMROH:TMROL register

pair (FFFFh — 0000h) will set TMROIF. The interrupt
can be enabled/disabled by setting/clearing enable bit,
TMROIE (INTCON<5>). Interrupt priority for TimerO is
determined by the value contained in the interrupt
priority bit, TMROIP (INTCON2<2>). See Section 12.0
“Timer0 Module” for further details on the Timer0
module.

9.8 PORTB Interrupt-on-Change

An input change on PORTB<7:4> sets flag bit, RBIF
(INTCON<0>). The interrupt can be enabled/disabled
by setting/clearing enable bit, RBIE (INTCON<3>).
Interrupt priority for PORTB interrupt-on-change is
determined by the value contained in the interrupt
priority bit, RBIP (INTCON2<0>).

9.9 Context Saving During Interrupts

During interrupts, the return PC address is saved on
the stack. Additionally, the WREG, STATUS and BSR
registers are saved on the Fast Return Stack. If a fast
return from interrupt is not used (see Section 6.3
“Data Memory Organization”), the user may need to
save the WREG, STATUS and BSR registers on entry
to the Interrupt Service Routine. Depending on the
user’s application, other registers may also need to be
saved. Example 9-1 saves and restores the WREG,
STATUS and BSR registers during an Interrupt Service
Routine (ISR).

EXAMPLE 9-1: SAVING STATUS, WREG AND BSR REGISTERS IN RAM

MOVWE W_TEMP ; W _TEMP is in virtual bank
MOVFEF STATUS, STATUS TEMP ; STATUS TEMP located anywhere
MOVFF BSR, BSR_TEMP ; BSR_TMEP located anywhere

; USER ISR CODE

MOVEF BSR_TEMP, BSR
MOVF W_TEMP, W
MOVEF STATUS_TEMP, STATUS

; Restore BSR
; Restore WREG
; Restore STATUS

© 2010-2017 Microchip Technology Inc. DS30009974C-page 132

PIC18F47J13 FAMILY

REGISTER 10-8: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3 (BANKED EE3h)

u-0 U-0 u-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1

— — — INTR3R4 INTR3R3 INTR3R2 ‘ INTR3R1 | INTR3RO
bit 7 bit 0
Legend: R/W = Readable bit, Writable bit if IOLOCK = 0
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1" = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 7-5 Unimplemented: Read as ‘0’
bit 4-0 INTR3R<4:0>: Assign External Interrupt 3 (INT3) to the Corresponding RPn Pin bits

REGISTER 10-9: RPINR4: PERIPHERAL PIN SELECT INPUT REGISTER 4 (BANKED EE4h)

u-0 u-0 u-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1

— — — TOCKR4 | TOCKR3 | TOCKR2 | TOCKR1 | TOCKRO
bit 7 bit 0
Legend: R/W = Readable bit, Writable bit if IOLOCK = 0
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 7-5 Unimplemented: Read as ‘0’
bit 4-0 TOCKR<4:0>: Timer0 External Clock Input (TOCKI) to the Corresponding RPn Pin bits

REGISTER 10-10: RPINR6: PERIPHERAL PIN SELECT INPUT REGISTER 6 (BANKED EE6h)

u-0 U-0 u-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1

— — — T3CKR4 T3CKR3 T3CKR2 ‘ T3CKR1 | T3CKRO
bit 7 bit 0
Legend: R/W = Readable bit, Writable bit if IOLOCK = 0
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1" = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 7-5 Unimplemented: Read as ‘0’
bit 4-0 T3CKR<4:0>: Timer3 External Clock Input (T3CKI) to the Corresponding RPn Pin bits

© 2010-2017 Microchip Technology Inc. DS30009974C-page 158

PIC18F47J13 FAMILY

11.4 Application Examples

This section introduces some potential applications for
the PMP module.

MULTIPLEXED MEMORY OR
PERIPHERAL

Figure 11-27 demonstrates the hookup of a memory or
another addressable peripheral in Full Multiplex mode.
Consequently, this mode achieves the best pin saving
from the microcontroller perspective. However, for this
configuration, there needs to be some external latches
to maintain the address.

11.4.1

FIGURE 11-27: MULTIPLEXED ADDRESSING APPLICATION EXAMPLE
PIC18F
PMD<7:0> |4 P 373 LATO P A<13:0>
PMALL D<7:0>
< - | D<7:0>
CE
A<15:8>
PMALH A Iy
PMCS Address Bus ——
PMRD Data Bus —
PMWR Control Lines e

PARTIALLY MULTIPLEXED
MEMORY OR PERIPHERAL

Partial multiplexing implies using more pins; however,
for a few extra pins, some extra performance can be
achieved. Figure 11-28 provides an example of a
memory or peripheral that is partially multiplexed with

11.4.2

an external latch. If the peripheral has internal latches,
as displayed in Figure 11-29, then no extra circuitry is
required except for the peripheral itself.

FIGURE 11-28: EXAMPLE OF A PARTIALLY MULTIPLEXED ADDRESSING APPLICATION
PIC18F
PMD<7:0> | Y P 373 LASTO> P A<7:0>
PMALL i D<7:05
: | D<7:0>
e
PMCS OE WR| Address Bus —
PMRD b b patsus ——
PMWR Control Lines —_—
FIGURE 11-29: EXAMPLE OF AN 8-BIT MULTIPLEXED ADDRESS AND DATA APPLICATION
PIC18F Parallel Peripheral
PMD<7:0> |l | AD<7:0>
PMALL | ALE
PMCS > CS Address Bus —
PMRD > R__D Data Bus —
PMWR > WR Control Lines

© 2010-2017 Microchip Technology Inc.

DS30009974C-page 195

PIC18F47J13 FAMILY

15.5.4 TIMER3/5 GATE SINGLE PULSE
MODE

When Timer3/5 Gate Single Pulse mode is enabled, it
is possible to capture a single pulse gate event. Tim-
er3/5 Gate Single Pulse mode is first enabled by setting
the TxGSPM bit (TxGCON<4>). Next, the
TxGGO/TxDONE bit (TxGCON<3>) must be set.

The Timer3/5 will be fully enabled on the next incre-
menting edge. On the next trailing edge of the pulse,
the TxGGO/TxDONE bit will automatically be cleared.

FIGURE 15-4:

No other gate events will be allowed to increment Tim-
er3/5 until the TXGGO/TxDONE bit is once again set in
software.

Clearing the TxGSPM bit will also clear the
TxGGO/TxDONE bit. (For timing details, see
Figure 15-4.)

Simultaneously, enabling the Toggle mode and the
Single Pulse mode will permit both sections to work
together. This allows the cycle times on the Timer3/5
gate source to be measured. (For timing details, see
Figure 15-5.)

TIMER3/5 GATE SINGLE PULSE MODE

TMRxGE

TxGPOL

TxGSPM

[[f

TxGGO/ Set by Software
TxDONE

TxG_IN

Counting Enabled on
Rising Edge of TxG

o [T L L L

Cleared by Hardware on
| ¢ Falling Edge of TxGVAL

TXGVAL :

Timer3/5 N >< N+1

TMRxGIF ¢

Cleared by Software

Cleared by

j Software

|<— Set by Hardware on

Falling Edge of TxGVAL

© 2010-2017 Microchip Technology Inc.

DS30009974C-page 221

PIC18F47J13 FAMILY

TABLE 15-5: REGISTERS ASSOCIATED WITH TIMER3/5 AS A TIMER/COUNTER
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

INTCON GIE/GIEH | PEIE/GIEL | TMROIE INTOIE RBIE TMROIF INTOIF RBIF

PIR5 — — CM3IF TMRSIF TMR6IF TMR5IF | TMR5GIF | TMR1GIF

PIE5 — — CMS3IE TMRS8IE TMRG6IE TMRSIE | TMR5GIE | TMR1GIE

PIR2 OSCFIF CM2IF CM1IF — BCL1IF HLVDIF TMR3IF CCP2IF

PIE2 OSCFIE CM2IE CM1IE — BCL1IE HLVDIE TMR3IE CCP2IE

TMR3H Timer3 Register High Byte

TMR3L Timer3 Register Low Byte

T3GCON TMR3GE | T3GPOL T3GTM T3GSPM | T3GGO/ | T3GVAL | T3GSS1 T3GSS0
T3DONE

T3CON TMR3CS1 | TMR3CSO | T3CKPS1 | T3CKPSO | T3OSCEN | T3SYNC | RD16 | TMR3ON

TMR5H Timer5 Register High Byte

TMR5L Timer5 Register Low Byte

T5GCON TMR5GE | T5GPOL T5GTM T5GSPM | T5GGO/ | T5GVAL | T5GSS1 T5GSS0
T5DONE

T5CON TMR5CS1 | TMR5CS0 | T5CKPS1 | TSCKPSO | TSOSCEN | TSSYNC | RD16 | TMR50N

OSCCON2 — SOSCRUN — SOSCDRV | SOSCGO — — —

CCPTMRSO | C3TSEL1 | C3TSELO | C2TSEL2 | C2TSEL1 | C2TSELO | C1TSEL2 | C1TSEL1 | C1TSELO

CCPTMRS1 | C7TSEL1 | C7TSELO — C6TSELO — C5TSELO | C4ATSEL1 | CATSELO

CCPTMRS1 — — — C10TSELO — CI9TSELO | C8TSEL1 | C8TSELO

CCPTMRS2 — — — C10TSELO — CI9TSELO | C8TSEL1 | C8TSELO

Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the Timer3 module.

© 2010-2017 Microchip Technology Inc.

DS30009974C-page 224

PIC18F47J13 FAMILY

REGISTER 16-1:

TxCON: TIMER4/6/8 CONTROL REGISTER (ACCESS F76h, BANKED F1Eh,
BANKED F1Bh)

U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

— TxOUTPS3 | TxOUTPS2 | TxOUTPS1 | TxOUTPSO | TMRxON TxCKPS1 TxCKPS0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bitis set ‘0’ = Bit is cleared x = Bit is unknown

bit 7
bit 6-3

Unimplemented: Read as ‘0’
TxOUTPS<3:0>: Timerx Output Postscale Select bits

0000 = 1:1 Postscale
0001 = 1:2 Postscale

1111 = 1:16 Postscale
TMRxON: Timerx On bit

1 = Timerx is on
0 = Timerx is off

bit 2

bit 1-0
00 = Prescaleris 1
01 = Prescaleris 4
1x = Prescaleris 16

16.2 Timer4/6/8 Interrupt

The Timer4/6/8 modules have 8-bit Period registers,
PRXx, that are both readable and writable. Timer4/6/8
increment from 00h until they match PR4/6/8 and then
reset to 00h on the next increment cycle. The PRx
registers are initialized to FFh upon Reset.

TxCKPS<1:0>: Timerx Clock Prescale Select bits

16.3 Output of TMRx

The outputs of TMRx (before the postscaler) are used
only as a PWM time base for the ECCP modules. They
are not used as baud rate clocks for the MSSP
modules as is the Timer2 output.

FIGURE 16-1: TIMER4 BLOCK DIAGRAM
4 1:1t0 1:16
TxOUTPS<3:0> ') ¥ Set TMRxIF
Postscaler
2 A
TxCKPS<1:0> ————~%— » TMRx Output
(to PWM)
v A TMRx/PRx
Y Reset Match
Fosc/4 1:1,1:4,1:16 4| TMRx)::>| Comparator K:‘ PRx |
Prescaler
8

%8
8
/

Internal Data Bus <

© 2010-2017 Microchip Technology Inc.

DS30009974C-page 227

PIC18F47J13 FAMILY

17.2.2 CLOCK SOURCE

As mentioned earlier, the RTCC module is intended to
be clocked by an external Real-Time Clock (RTC)
crystal oscillating at 32.768 kHz, but can also be
clocked by the INTRC. The RTCC clock selection is
decided by the RTCOSC bit (CONFIG3L<1>).

Calibration of the crystal can be done through this
module to yield an error of 3 seconds or less per month.
(For further details, see Section 17.2.9 “Calibration”.)

FIGURE 17-4: CLOCK SOURCE MULTIPLEXING

32.768 kHz XTAL Half Second

from T10SC 1:16384 Clock 1 One Second Clock
—) Half Second("
Internal RC Clock Prescaler
CONFIG 3L<1>
Day

Second Hour:Minute Month Year

Day of Week

Note 1: Writing to the lower half of the MINSEC register resets all counters, allowing fraction of a second synchronization.
The clock prescaler is held in Reset when RTCEN = 0.

17.2.21 Real-Time Clock Enable

The RTCC module can be clocked by an external,
32.768 kHz crystal (Timer1 oscillator or T1CKI input) or
the INTRC oscillator, which can be selected in CON-
FIG3L<1>.

If the Timer1 oscillator will be used as the clock source
for the RTCC, make sure to enable it by setting
T1CON<3> (T10SCEN). The selected RTC clock can
be brought out to the RTCC pin by the
RTSECSEL<1:0> bits in the PADCFG1 register.

17.2.3 DIGIT CARRY RULES

This section explains which timer values are affected
when there is a rollover.

» Time of Day: From 23:59:59 to 00:00:00 with a
carry to the Day field

* Month: From 12/31 to 01/01 with a carry to the
Year field

» Day of Week: From 6 to 0 with no carry (see
Table 17-1)

* Year Carry: From 99 to 00; this also surpasses the
use of the RTCC

For the day to month rollover schedule, see Table 17-2.
Considering that the following values are in BCD
format, the carry to the upper BCD digit will occur at a
count of 10 and not at 16 (SECONDS, MINUTES,
HOURS, WEEKDAY, DAYS and MONTHS).

TABLE 17-1: DAY OF WEEK SCHEDULE

Day of Week

Sunday

Monday

Tuesday

Wednesday

Thursday

Friday

|| hWIN|[~|O

Saturday

© 2010-2017 Microchip Technology Inc.

DS30009974C-page 242

PIC18F47J13 FAMILY

REGISTER 18-2:

CCPTMRS1: CCP4-10 TIMER SELECT 1 REGISTER (BANKED F51h)

R/W-0 R/W-0 uU-0 R/W-0 uU-0 R/W-0 R/W-0 R/W-0
C7TSEL1 C7TSELO — C6TSELO — C5TSELO ‘ C4TSEL1 ‘ C4TSELO
bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-6 C7TSEL<1:0>: CCP7 Timer Selection bit

00 = CCP7 is based off of TMR1/TMR2
01 = CCP7 is based off of TMR5/TMR4
10 = CCP7 is based off of TMR5/TMR6
11 = CCP7 is based off of TMR5/TMR8

Unimplemented: Read as ‘0’
C6TSELO0: CCP6 Timer Selection bit

0 = CCP6 is based off of TMR1/TMR2

1 = CCP6 is based off of TMR5/TMR2
Unimplemented: Read as ‘0’
C5TSELO0: CCP5 Timer Selection bit

0 = CCP5 is based off of TMR1/TMR2

1 = CCP5 is based off of TMR5/TMR4
C4TSEL<1:0>: CCP4 Timer Selection bits
00 = CCP4 is based off of TMR1/TMR2
01 = CCP4 is based off of TMR3/TMR4

10 = CCP4 is based off of TMR3/TMR6
11 = Reserved; do not use

bit 5
bit 4

bit 3
bit 2

bit 1-0

© 2010-2017 Microchip Technology Inc.

DS30009974C-page 249

PIC18F47J13 FAMILY

18.4.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the
CCPRAL register and to the CCP4CON<5:4> bits. Up
to 10-bit resolution is available. The CCPR4L contains
the eight MSbs and the CCP4CON<5:4> contains the
two LSbs. This 10-bit value is represented by
CCPR4L:CCP4CON<5:4>. The following equation is
used to calculate the PWM duty cycle in time:

EQUATION 18-2:

PWM Duty Cycle = (CCPR4L:CCP4CON<5:4>) «
Tosc « (TMR2 Prescale Value)

CCPRA4L and CCP4CON<5:4> can be written to at any
time, but the duty cycle value is not latched into
CCPRA4H until after a match between PR2 and TMR2
occurs (that is, the period is complete). In PWM mode,
CCPR4H is a read-only register.

The CCPRA4H register and a two-bit internal latch are
used to double-buffer the PWM duty cycle. This
double-buffering is essential for glitchless PWM
operation.

When the CCPR4H and two-bit latch match TMR2,
concatenated with an internal two-bit Q clock or two
bits of the TMR2 prescaler, the CCP4 pin is cleared.

The maximum PWM resolution (bits) for a given PWM
frequency is given by the equation:

EQUATION 18-3:

PWM Resolution (max) = ————bits
0

Note: If the PWM duty cycle value is longer than
the PWM period, the CCP4 pin will not be
cleared.

TABLE 18-5: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 40 MHz
PWM Frequency 2.44 kHz 9.77 kHz 39.06 kHz | 156.25 kHz | 312.50 kHz | 416.67 kHz
Timer Prescaler (1, 4, 16) 16 4 1 1 1 1
PR2 Value FFh FFh FFh 3Fh 1Fh 17h
Maximum Resolution (bits) 10 10 10 8 7 6.58

18.4.3 SETUP FOR PWM OPERATION

To configure the CCP module for PWM operation:

1. Set the PWM period by writing to the PR2
register.

2. Set the PWM duty cycle by writing to the
CCPRAL register and CCP4CON<5:4> bits.

3. Make the CCP4 pin an output by clearing the
appropriate TRISx bit.

4. Set the TMR2 prescale value, then enable Tim-
er2 by writing to T2CON.

5. Configure the CCP4 module for PWM operation.

© 2010-2017 Microchip Technology Inc.

DS30009974C-page 258

PIC18F47J13 FAMILY

19.4.6 PROGRAMMABLE DEAD-BAND
DELAY MODE

In half-bridge applications, where all power switches
are modulated at the PWM frequency, the power
switches normally require more time to turn off than to
turn on. If both the upper and lower power switches are
switched at the same time (one turned on and the other
turned off), both switches may be on for a short period
until one switch completely turns off. During this brief
interval, a very high current (shoot-through current) will
flow through both power switches, shorting the bridge
supply. To avoid this potentially destructive
shoot-through current from flowing during switching,
turning on either of the power switches is normally
delayed to allow the other switch to completely turn off.

In Half-Bridge mode, a digitally programmable,
dead-band delay is available to avoid shoot-through
current from destroying the bridge power switches. The
delay occurs at the signal transition from the non-active
state to the active state. For an illustration, see
Figure 19-14. The lower seven bits of the associated
ECCPxDEL register (Register 19-5) set the delay
period in terms of microcontroller instruction cycles
(Tcy or 4 Tosc).

FIGURE 19-14: EXAMPLE OF
HALF-BRIDGE PWM

OUTPUT
Period Period

. Pulse Width | | :
PxA®) ! ’—‘ o e N
L I I I
I [|

| td | I I
PxB® | ™ :‘_| '

' L] M-
i P ')

td = Dead-Band Delay

Note 1: At this time, the TMR2 register is equal to the
PR2 register.

2: Output signals are shown as active-high.

FIGURE 19-15: EXAMPLE OF HALF-BRIDGE APPLICATIONS

Standard Half-Bridge Circuit (“Push-Pull”)

FET
Driver

v+

™S~
PxA e

FET
Driver

]Tﬁ
||
V< +

1 s

Load

PxB I/

.|T$|_
< 4+

ER-—

7|

© 2010-2017 Microchip Technology Inc.

DS30009974C-page 276

PIC18F47J13 FAMILY

REGISTER 20-8: SSPxCON2: MSSPx CONTROL REGISTER 2 (I2C SLAVE MODE)
(1, ACCESS FC5h; 2, F71h)

R/W-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
GCEN | ACKSTAT® | ADMSK5 | ADMSK4 | ADMSK3 | ADMSK2 | ADMSK1 | SeEN®
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bitis set ‘0’ = Bit is cleared x = Bit is unknown
bit 7 GCEN: General Call Enable bit (Slave mode only)

1 = Enables interrupt when a general call address (0000h) is received in the SSPxSR
0 = General call address disabled

bit 6 ACKSTAT: Acknowledge Status bit(?)
Unused in Slave mode.
bit 5-2 ADMSK<5:2>: Slave Address Mask Select bits (5-bit address masking)

1 = Masking of the corresponding bits of SSPxADD is enabled

0 = Masking of the corresponding bits of SSPxADD is disabled
bit 1 ADMSK1: Slave Address Least Significant bit(s) Mask Select bit

In 7-Bit Addressing mode:

1 = Masking of SSPxADD<1> only is enabled

0 = Masking of SSPxADD<1> only is disabled

In 10-Bit Addressing mode:

1 = Masking of SSPxADD<1:0> is enabled

0 = Masking of SSPxADD<1:0> is disabled
bit 0 SEN: Start Condition Enable/Stretch Enable bit(")

1 = Clock stretching is enabled for both slave transmit and slave receive (stretch enabled)
0 = Clock stretching is disabled

Note 1: If the I°C module is active, these bits may not be set (no spooling) and the SSPxBUF may not be written
(or writes to the SSPxBUF are disabled).

2: This bit is unimplemented in 12C Slave mode.

REGISTER 20-9: SSPxMSK: I°C SLAVE ADDRESS MASK REGISTER (7-BIT MASKING MODE)
(1, ACCESS FC8h; 2, F74h)()

R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
MSK7 | MSK6 | MSKs | MSK4 | MSK3 MSK2 | MsK1 | Msko®
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1" = Bit is set ‘0’ = Bit is cleared X = Bit is unknown
bit 7-0 MSK<7:0>: Slave Address Mask Select bits

1 = Masking of the corresponding bit of SSPxADD is enabled
0 = Masking of the corresponding bit of SSPxADD is disabled

Note 1: This register shares the same SFR address as SSPxADD and is only addressable in select MSSP
operating modes. See Section 20.5.3.4 “7-Bit Address Masking Mode” for more details.

2: MSKO is not used as a mask bit in 7-bit addressing.

© 2010-2017 Microchip Technology Inc. DS30009974C-page 305

-ou| ABojouyoe] diyoosol £102-0L0Z ©

y1€ ebed-0%/66000€SA

Receive First Byte of Address _

: R/W =0
soax \L /1 X1 Ko o Ko XaoXaop K/ [a7 Has)as) mans)aar a0\ AK

SCLx

Clock is held low until
update of SSPXADD has

taken place taken place

Receive Second Byte of Address

Clock is held low until
update of SSPXADD has

Receive Data Byte

Receive Data Byte ACK

because SSPxBUF is

: : : : terminates
SSPxIF (PIR1<3> or PIR3<7>) ! 1 H ' | transfer
Cleared in software : : L Cleared in software : : Cleared in software : L Cleared in software :
BF (SSPXSTAT<0>) : : | :
ssPxBUF is written with 4 £ by read of SSPXBUF : : 5
contents of SSPxSR : ! to clear BF flag : : :
SSPOV (SSPXCON1<6>) ' : : :
: : : L ssPoV is set

UA (SSPXSTAT<1>)

UA is set indicating that —+
the SSPxADD needs to be
updated

CKP (SSPXxCON1<4>)

]

L

Cleared by hardware
when SSPxADD is updated
with low byte of address

UA is set indicating that
SSPxADD needs to be
updated

still full. ACK is not sent.

t

Cleared by hardware when
SSPxADD is updated with high
byte of address

(CKP does not reset to ‘0’ when SEN = 0)

Z1-0Z 3dNoOId

= N3S HL1IM ONINIL 3A0OIN JAVS Ol

(ss3yaav 1i1g-01 ‘NOILd3D3Y) 0

ANV €LrLv48101d

-ou| ABojouyoe] diyoosol £102-0L0Z ©

8z¢ 9bed-0%/66000£SA

Write to SSPXxCON2<0> (SEN = 1),
begin Start condition

roA
|
|

RW =1 Receiving Data from Slave l T
SDAX /A7 XneXasaaXa3XA2X A1) \ Aok /D7)(D6XD5YD4xD3XD2XD1)X Do \ AK

SCLx

SSPxIF

SEN =0

start XMIT

l*Write to SSPxBUF occurs here,

[

Transmit Address to Slave

Write to SSPxCON2<4>
to start Acknowledge sequence,
SDAx = ACKDT (SSPxCON2<5>) = 0

ACK from master,

Master configured as a receiver SDAx = ACKDT = 0

by programming SSPxCON2<3> (RCEN = 1)

RCEN = 1, start
next receive

|

RCEN cleared

ACK from Slave automatically

v

Receiving Data from Slave

Data shifted in on falling edge of CLK

H 1
ite(tar? dsgfxllgc'gitzmpt _* Set SSPxIF interrupt

at end of Acknowledge
sequence

RCEN cleared
automatically

Set ACKEN, start Acknowledge sequence,
SDAx = ACKDT =1

PEN bit=1
written here

l

Set SSPxIF at end

Bus master
terminates
transfer

L Cleared in software

L Cleared in software Cleared in software _f

| A
T | {_ Cleared in software

SDAx =0, 8CLx =1, |
while CPU |
responds to SSPxIF

1

BF

of receive Set SSPxIF interrupt
at end of Acknowledge
sequence
L S | Set P bit
Cleared in (SSPxSTAT<4>)
software and SSPxIF

i
l
!
Last bit is shifted into SSPxSR and !
(SSPxSTAT<0>) L contents are unloaded into SSPxBUF !
! !
! !
! i
! i
SSPOV : | \
. 1 .

! SSPOV is set because

: SSPxBUF is IstiII full

ACKEN |_|

¥2-0C 34N9Id

(ss3yaav Lig-2 ‘NOILdIDTY) INYO4IAVM FAOIN HIALSVIN Ol

ANV €LrLv48101d

PIC18F47J13 FAMILY

20.5.17.2 Bus Collision During a Repeated
Start Condition

During a Repeated Start condition, a bus collision
occurs if:

a) A low level is sampled on SDAx when SCLx
goes from a low level to a high level.

b) SCLx goes low before SDAx is asserted low,
indicating that another master is attempting to
transmit a data ‘1’.

When the user deasserts SDAx and the pin is allowed
to float high, the BRG is loaded with SSPxADD<6:0>
and counts down to 0. The SCLx pin is then deasserted
and when sampled high, the SDAX pin is sampled.

If SDAX is low, a bus collision has occurred (i.e., another
master is attempting to transmit a data ‘0’; see
Figure 20-31). If SDAXx is sampled high, the BRG is
reloaded and begins counting. If SDAx goes from
high-to-low before the BRG times out, no bus collision
occurs because no two masters can assert SDAx at
exactly the same time.

If SCLx goes from high-to-low before the BRG times
out and SDAXx has not already been asserted, a bus
collision occurs. In this case, another master is
attempting to transmit a data ‘1’ during the Repeated
Start condition (see Figure 20-32).

If, at the end of the BRG time-out, both SCLx and SDAx
are still high, the SDAX pin is driven low and the BRG is
reloaded and begins counting. At the end of the count,
regardless of the status of the SCLx pin, the SCLx pin is
driven low and the Repeated Start condition is complete.

FIGURE 20-31: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)
SDAX
SCLx
Sample SDAx when SCLx goes High;
If SDAX = 0, Set BCLxIF and Release SDAx and SCLx
RSEN |
BCLxIF
Cleared in Software
S ‘o’
SSPxIF ‘0’
FIGURE 20-32: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)
i i TBRG i
SDAx /7 L.
SCLx

e

SCLx goes Low Before SDAX,

BCLxIF Set BCLxIF; Release SDAx and SCLx |

Interrupt Cleared
in Software

RSEN

S

SSPxIF

© 2010-2017 Microchip Technology Inc.

DS30009974C-page 333

PIC18F47J13 FAMILY

REGISTER 27-8: CONFIG4H: CONFIGURATION REGISTER 4 HIGH (BYTE ADDRESS 300007h)

U-1 U-1 U-1 U-1 U-0 U-0 R/WO-1 R/WO-1
— — — — — | —] wpeno | wrpis
bit 7 bit 0
Legend:
R = Readable bit WO = Write-Once bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 7-4 Unimplemented: Program the corresponding Flash Configuration bit to ‘1’
bit 3-2 Unimplemented: Read as ‘0’
bit 1 WPEND: Write-Protect Disable bit

1 = Flash pages, WPFP<6:0> to (Configuration Words page), are erase/write-protected
0 = Flash pages 0 to WPFP<6:0> are erase/write-protected
bit 0 WPDIS: Write-Protect Disable bit
1 = WPFP<5:0>, WPEND and WPCFG bits are ignored; all Flash memory may be erased or written
0 = WPFP<5:0>, WPEND and WPCFG bits are enabled; erase/write-protect is active for the selected
region(s)

REGISTER 27-9: DEVID1: DEVICE ID REGISTER 1 FOR PIC18F47J13 FAMILY DEVICES
(BYTE ADDRESS 3FFFFEh)

R R R R R R R R
DEv2 | DEVI | DEVO | REV4 | REV3 REV2 REV1 REVO
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1" = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 7-5 DEV<2:0>: Device ID bits

These bits are used with DEV<10:3> bits in Device ID Register 2 to identify the part number. See
Register 27-10.

bit 4-0 REV<4:0>: Revision ID bits
These bits are used to indicate the device revision.

© 2010-2017 Microchip Technology Inc. DS30009974C-page 410

PIC18F47J13 FAMILY

TABLE 28-2: PIC18F47J13 FAMILY INSTRUCTION SET
Mnemonic, o 16-Bit Instruction Word Status
Description Cycles Notes
Operands MSb LSb Affected
BYTE-ORIENTED OPERATIONS
ADDWF f,d,a |Add WREG and f 1 0010 0lda ffff ffff|C,DC,Z OV,N|1,2
ADDWFC f,d,a |Add WREG and Carry bit to f 1 0010 00da ffff ffff|C,DC,Z OV,N|1,2
ANDWF f,d,a |[AND WREG with f 1 0001 0lda ffff ffff|Z, N 1,2
CLRF f,a Clear f 1 0110 10la ffff ffff|Z 2
COMF f,d,a |Complement f 1 0001 llda ffff ffff|Z, N 1,2
CPFSEQ f,a Compare f with WREG, Skip= |1(20r3)|0110 00la ffff ffff|None 4
CPFSGT f,a Compare f with WREG, Skip> |1(20r3)|0110 010a ffff ffff|None 4
CPFSLT f,a Compare f with WREG, Skip < |1(20r3)|0110 000a ffff ffff|None 1,2
DECF f,d,a |Decrementf 1 0000 0lda ffff ffff|C,DC,Z OV,N |1,2,3,4
DECFSZ f,d,a |Decrementf, Skipif 0 1(20r3)|0010 11da ffff f£ffff|None 1,2,3,4
DCFSNzZ f,d,a |Decrementf, Skip if Not 0 1(20r3)|0100 11da ffff f£ffff|None 1,2
INCF f,d,a |Incrementf 1 0010 10da ffff f£f£f£ff|C,DC,Z OV,N (1,2, 3,4
INCFSZ f,d,a |Incrementf, Skip if O 1(20r3)|0011 11da ffff ffff|None 4
INFSNZ f,d, a |Increment f, Skip if Not 0 1(20r3)|0100 10da ffff ffff|None 1,2
IORWF f,d,a [Inclusive OR WREG with f 1 0001 00da ffff ffff|Z, N 1,2
MOVF f,d,a [Move f 1 0101 00da ffff ffff|Z,N 1
MOVFF fs,fq |Move fg(source)to 1stword |2 1100 ff£ff ffff f£££ff|None
fq (destination) 2nd word 1111 ffff ffff £fff
MOVWF f,a Move WREG to f 1 0110 11l1a ffff £f£ff|None
MULWEF f,a Multiply WREG with f 1 0000 00la ffff ffff|None 1,2
NEGF f,a Negate f 1 0110 110a ffff ffff|C,DC,Z OV,N
RLCF f, d, a |Rotate Left f through Carry 1 0011 0lda ffff ffff|C,Z,N 1,2
RLNCF f, d, a |Rotate Left f (No Carry) 1 0100 0lda ffff ffff|Z, N
RRCF f, d, a |Rotate Right f through Carry 1 0011 00da ffff ffff|C,Z, N
RRNCF f, d, a |Rotate Right f (No Carry) 1 0100 00da ffff ffff|Z,N
SETF f,a Set f 1 0110 100a ffff ffff|None 1,2
SUBFWB f,d, a |Subtract f from WREG with 1 0101 0lda ffff ffff|C,DC,Z OV,N
Borrow
SUBWF f,d, a |Subtract WREG from f 1 0101 llda ffff ffff|C,DC,Z OV,N |1,2
SUBWFB f,d,a |Subtract WREG from f with 1 0101 10da ffff ffff|C,DC,Z 0OV,N
Borrow
SWAPF f,d,a |Swap Nibbles in f 1 0011 10da ffff ffff|None
TSTFSZ f, a Test f, Skip if 0 1(20r3)|0110 011la ffff f£ffff|None 1,2
XORWF f,d, a |Exclusive OR WREG with f 1 0001 10da ffff ffff|Z, N
Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0),the value used will be

that value present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as an input
and is driven low by an external device, the data will be written back with a ‘0.
2: If this instruction is executed on the TMRO register (and where applicable, d = 1), the prescaler will be cleared
if assigned.
3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The
second cycle is executed as a NOP.
4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP
unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all
program memory locations have a valid instruction.

© 2010-2017 Microchip Technology Inc.

DS30009974C-page 423

PIC18F47J13 FAMILY

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging

o]
N
NOTE 1 _ ——t
1\>-></////j
N
70000
YIS
Z;{é//_/ﬁ 1 @E
(DATUM B) ——
(DATUM A) ——] i
2X |
M\Jo.20]c
2X
‘MJo.20[C TOP VIEW
* //To10[C — Al
SEATING, ALY | ccaaaaaal /== -
PLANE ? 44X
A SIDE VIEW ofoos|c]
L $Jo.10@M[c][A]B]
D2
3Juuuu UUUUL; [@]o.10@[c[A]B]
D i d
D d
D ' d
-] d
\“-\ + -— E2
3\\\;{3 J
\\\\ | a _
2 g\\ AN S
AR RN
NOTE 1 — ?: | T
1 L:J L 44X b
o= 0.07M[c|A[B]
¢ 0.05(M)|C

BOTTOM VIEW
Microchip Technology Drawing C04-103D Sheet 1 of 2

© 2010-2017 Microchip Technology Inc. DS30009974C-page 527

