

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 2.75V
Data Converters	A/D 10x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf26j13t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.6 External Oscillator Pins

Many microcontrollers have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 3.0 "Oscillator Configurations**" for details).

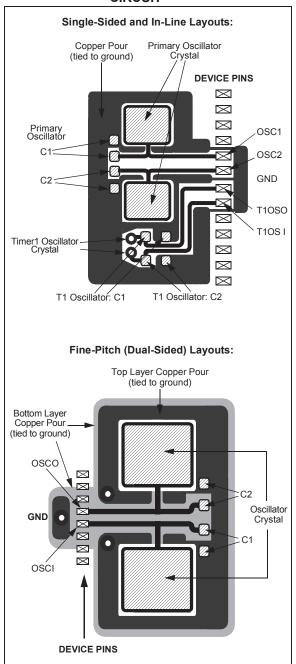
The oscillator circuit should be placed on the same side of the board as the device. Place the oscillator circuit close to the respective oscillator pins with no more than 0.5 inch (12 mm) between the circuit components and the pins. The load capacitors should be placed next to the oscillator itself, on the same side of the board.

Use a grounded copper pour around the oscillator circuit to isolate it from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed.

Layout suggestions are shown in Figure 2-4. In-line packages may be handled with a single-sided layout that completely encompasses the oscillator pins. With fine-pitch packages, it is not always possible to completely surround the pins and components. A suitable solution is to tie the broken guard sections to a mirrored ground layer. In all cases, the guard trace(s) must be returned to ground.

In planning the application's routing and I/O assignments, ensure that adjacent port pins and other signals in close proximity to the oscillator are benign (i.e., free of high frequencies, short rise and fall times, and other similar noise).

For additional information and design guidance on oscillator circuits, please refer to these Microchip Application Notes, available at the corporate website (www.microchip.com):


- AN826, Crystal Oscillator Basics and Crystal Selection for rfPIC[™] and PICmicro[®] Devices
- AN849, Basic PICmicro[®] Oscillator Design
- AN943, Practical PICmicro[®] Oscillator Analysis and Design
- AN949, Making Your Oscillator Work

2.7 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state. Alternatively, connect a 1 k Ω to 10 k Ω resistor to Vss on unused pins and drive the output to logic low.

FIGURE 2-4:

SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

REGISTER 9-3: INTCON3: INTERRUPT CONTROL REGISTER 3 (ACCESS FF0h)

R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
INT2IP	INT1IP	INT3IE	INT2IE	INT1IE	INT3IF	INT2IF	INT1IF
bit 7							bit (
Locondu							
Legend: R = Reada	ahla hit	W = Writable	hit	II = I Inimplen	nented bit, rea	nd as 'O'	
-n = Value		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown
		1 Bit io oot					
bit 7	INT2IP: INT2	External Interr	upt Priority bit				
	1 = High pric						
	0 = Low prio	rity					
bit 6		External Interr	upt Priority bit				
	1 = High pric 0 = Low prio						
bit 5	•	External Interr	unt Enable hit				
		the INT3 exteri	•				
		the INT3 exter					
bit 4	INT2IE: INT2	External Interr	upt Enable bit				
		the INT2 extern	•				
1.1.0		the INT2 exter					
bit 3		External Interr	-				
		the INT1 extern the INT1 extern					
bit 2		External Interr					
				must be cleared	d in software)		
		3 external inter		cur			
bit 1		External Interr					
		2 external interi 2 external interi		must be cleared	d in software)		
bit 0		External Interr	•	Sui			
				must be cleared	d in software)		
		1 external interi					
Note	Interrupt floor bits	oro oot when	on interrunt	ndition accura	rogardiaca of	the state of its	oorroopandin
Note:	Interrupt flag bits enable bit or the						
	are clear prior to	•					. 5

REGISTER 10-2: ODCON2: PERIPHERAL OPEN-DRAIN CONTROL REGISTER 2 (BANKED F41h)							
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	—	—	CCP10OD	CCP90D	U2OD	U10D
bit 7				-			bit 0
Legend:							
R = Readal	ble bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 3	Unimplemented: Read as '0' CCP10OD: CCP10 Open-Drain Output Enable bit 1 = Open-drain capability is enabled 0 = Open-drain capability is disabled						
bit 2	1 = Open-dra	CCP9OD: CCP9 Open-Drain Output Enable bit 1 = Open-drain capability is enabled 0 = Open-drain capability is disabled					
bit 1	bit 1 U2OD: USART2 Open-Drain Output Enable bit 1 = Open-drain capability is enabled 0 = Open-drain capability is disabled						
bit 0		T1 Open-Drain in capability is	n Output Enable enabled	e bit			

0 = Open-drain capability is disabled

REGISTER 10-3: ODCON3: PERIPHERAL OPEN-DRAIN CONTROL REGISTER 3 (BANKED F40h)

R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
CTMUDS	—	—	—	—	—	SPI2OD	SPI10D
bit 7 bit 0							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	CTMUDS: CTMU Pulse Delay Enable bit
	1 = Pulse delay input for CTMU enabled on pin, RA1
bit 6-2	Unimplemented: Read as '0'
bit 1	SPI2OD: SPI2 Open-Drain Output Enable bit
	1 = Open-drain capability is enabled0 = Open-drain capability is disabled
bit 0	SPI10D: SPI1 Open-Drain Output Enable bit
	1 = Open-drain capability is enabled0 = Open-drain capability is disabled

11.1 Module Registers

The PMP module has a total of 14 Special Function Registers (SFRs) for its operation, plus one additional register to set configuration options. Of these, eight registers are used for control and six are used for PMP data transfer.

11.1.1 CONTROL REGISTERS

The eight PMP Control registers are:

- PMCONH and PMCONL
- PMMODEH and PMMODEL
- PMSTATL and PMSTATH
- PMEH and PMEL

The PMCON registers (Register 11-1 and Register 11-2) control basic module operations, including turning the module on or off. They also configure address multiplexing and control strobe configuration.

The PMMODE registers (Register 11-3 and Register 11-4) configure the various Master and Slave modes, the data width and interrupt generation.

The PMEH and PMEL registers (Register 11-5 and Register 11-6) configure the module's operation at the hardware (I/O pin) level.

The PMSTAT registers (Register 11-5 and Register 11-6) provide status flags for the module's input and output buffers, depending on the operating mode.

REGISTER 11-1: PMCONH: PARALLEL PORT CONTROL REGISTER HIGH BYTE (BANKED F5Fh)⁽¹⁾

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PMPEN	—	—	ADRMUX1	ADRMUX0	PTBEEN	PTWREN	PTRDEN
bit 7 bit 0							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	PMPEN: Parallel Master Port Enable bit
	1 = PMP enabled
	0 = PMP disabled, no off-chip access performed
bit 6-5	Unimplemented: Read as '0'
bit 4-3	ADRMUX<1:0>: Address/Data Multiplexing Selection bits
	11 = Reserved
	10 = All 16 bits of address are multiplexed on PMD<7:0> pins
	01 = Lower 8 bits of address are multiplexed on PMD<7:0> pins (only eight bits of address are available in this mode)
	00 = Address and data appear on separate pins (only eight bits of address are available in this mode)
bit 2	PTBEEN: Byte Enable Port Enable bit (16-Bit Master mode)
	1 = PMBE port enabled
	0 = PMBE port disabled
bit 1	PTWREN: Write Enable Strobe Port Enable bit
	1 = PMWR/PMENB port enabled
	0 = PMWR/PMENB port disabled
bit 0	PTRDEN: Read/Write Strobe Port Enable bit
	1 = PMRD/PMWR port enabled
	0 = PMRD/PMWR port disabled

Note 1: This register is only available on 44-pin devices.

12.0 TIMER0 MODULE

The Timer0 module incorporates the following features:

- Software selectable operation as a timer or counter in both 8-bit or 16-bit modes
- · Readable and writable registers
- Dedicated 8-bit, software programmable
 prescaler
- Selectable clock source (internal or external)
- · Edge select for external clock
- Interrupt-on-overflow

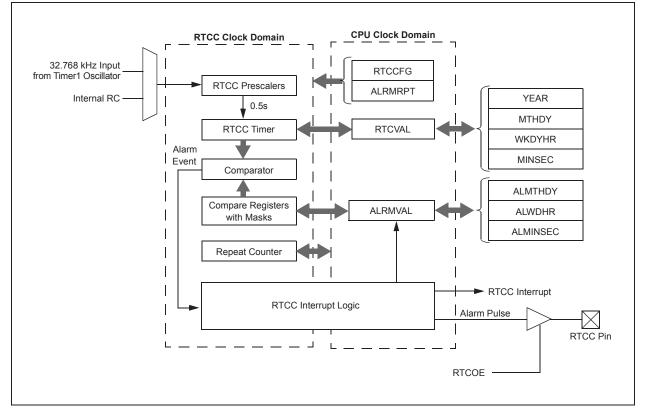
The T0CON register (Register 12-1) controls all aspects of the module's operation, including the prescale selection. It is both readable and writable.

Figure 12-1 provides a simplified block diagram of the Timer0 module in 8-bit mode. Figure 12-2 provides a simplified block diagram of the Timer0 module in 16-bit mode.

REGISTER 12-1: T0CON: TIMER0 CONTROL REGISTER (ACCESS FD5h)

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
TMR00N	T08BIT	TOCS	T0SE	PSA	T0PS2	T0PS1	T0PS0
bit 7 bit 0							

Legend:								
R = Readable bit W = Writable bit		U = Unimplemented bit	, read as '0'					
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				
bit 7		: Timer0 On/Off Control bit						
		les Timer0						
	0 = Stops	5 Timer0						
bit 6	T08BIT: 1	Timer0 8-Bit/16-Bit Control bit	t					
		0 is configured as an 8-bit tir						
	0 = Timei	0 is configured as a 16-bit tir	mer/counter					
bit 5	TOCS: Tir	TOCS: Timer0 Clock Source Select bit						
	1 = Transition on T0CKI pin input edge							
	0 = Internal clock (Fosc/4)							
bit 4	T0SE: Timer0 Source Edge Select bit							
	1 = Increment on high-to-low transition on TOCKI pin							
	0 = Increment on low-to-high transition on T0CKI pin							
bit 3	PSA: Timer0 Prescaler Assignment bit							
	1 = Timer0 prescaler is not assigned. Timer0 clock input bypasses prescaler.							
	0 = Timer0 prescaler is assigned. Timer0 clock input comes from the prescaler output.							
bit 2-0	T0PS<2:	0>: Timer0 Prescaler Select I	oits					
	111 = 1:256 Prescale value							
	110 = 1 :1	110 = 1:128 Prescale value						
		A Prescale value						
		32 Prescale value						
		6 Prescale value						
		 Prescale value Prescale value 						
	001 = 1.4 000 = 1.2							


17.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

The key features of the Real-Time Clock and Calendar (RTCC) module are:

- · Time: hours, minutes and seconds
- 24-hour format (military time)
- Calendar: weekday, date, month and year
- · Alarm configurable
- Year range: 2000 to 2099
- · Leap year correction
- BCD format for compact firmware
- · Optimized for low-power operation
- · User calibration with auto-adjust
- Calibration range: ±2.64 seconds error per month
- Requirements: external 32.768 kHz clock crystal
- Alarm pulse or seconds clock output on RTCC pin

The RTCC module is intended for applications where accurate time must be maintained for an extended period with minimum to no intervention from the CPU. The module is optimized for low-power usage in order to provide extended battery life while keeping track of time.

The module is a 100-year clock and calendar with automatic leap year detection. The range of the clock is from 00:00:00 (midnight) on January 1, 2000 to 23:59:59 on December 31, 2099. Hours are measured in 24-hour (military time) format. The clock provides a granularity of one second with half second visibility to the user.

FIGURE 17-1: RTCC BLOCK DIAGRAM

19.2.2 TIMER1/TIMER3 MODE SELECTION

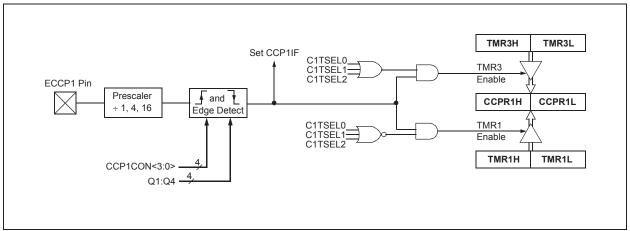
The timers that are to be used with the capture feature (Timer1 and/or Timer3) must be running in Timer mode or Synchronized Counter mode. In Asynchronous Counter mode, the capture operation may not work. The timer to be used with each ECCP module is selected in the CCPTMRS0 register (Register 19-2).

19.2.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep the CCPxIE interrupt enable bit clear to avoid false interrupts. The interrupt flag bit, CCPxIF, should also be cleared following any such change in operating mode.

19.2.4 ECCP PRESCALER

There are four prescaler settings in Capture mode; they are specified as part of the operating mode selected by the mode select bits (CCPxM<3:0>). Whenever the


ECCP module is turned off, or Capture mode is disabled, the prescaler counter is cleared. This means that any Reset will clear the prescaler counter.

Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared; therefore, the first capture may be from a non-zero prescaler. Example 19-1 provides the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

EXAMPLE 19-1: CHANGING BETWEEN CAPTURE PRESCALERS

			Turn ECCP module off
MOVLW	NEW_CAPT_PS	;	Load WREG with the
		;	new prescaler mode
		;	value and ECCP ON
MOVWF	CCP1CON	;	Load ECCP1CON with
		;	this value

19.3 Compare Mode

In Compare mode, the 16-bit CCPRx register pair value is constantly compared against either the TMR1 or TMR3 register pair value. When a match occurs, the ECCPx pin can be:

- Driven high
- Driven low
- Toggled (high-to-low or low-to-high)
- Unchanged (that is, reflecting the state of the I/O latch)

The action on the pin is based on the value of the mode select bits (CCPxM<3:0>). At the same time, the interrupt flag bit, CCPxIF, is set.

19.3.1 ECCP PIN CONFIGURATION

Users must configure the ECCPx pin as an output by clearing the appropriate TRISx bit.

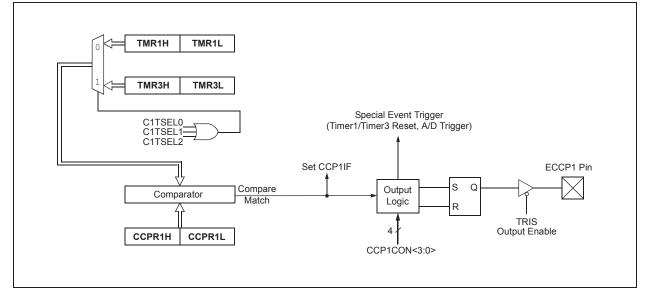
Note:	Clearing the CCPxCON register will force
	the ECCPx compare output latch
	(depending on device configuration) to the
	default low level. This is not the PORTx
	I/O data latch.

19.3.2 TIMER1/TIMER3 MODE SELECTION

Timer1 and/or Timer3 must be running in Timer mode or Synchronized Counter mode if the ECCP module is using the compare feature. In Asynchronous Counter mode, the compare operation will not work reliably.

19.3.3 SOFTWARE INTERRUPT MODE

When the Generate Software Interrupt mode is chosen (CCPxM<3:0> = 1010), the ECCPx pin is not affected; only the CCPxIF interrupt flag is affected.


19.3.4 SPECIAL EVENT TRIGGER

The ECCP module is equipped with a Special Event Trigger. This is an internal hardware signal generated in Compare mode to trigger actions by other modules. The Special Event Trigger is enabled by selecting the Compare Special Event Trigger mode (CCPxM<3:0> = 1011).

The Special Event Trigger resets the Timer register pair for whichever timer resource is currently assigned as the module's time base. This allows the CCPRx registers to serve as a Programmable Period register for either timer.

The Special Event Trigger can also start an A/D conversion. In order to do this, the A/D Converter must already be enabled.

FIGURE 19-2: COMPARE MODE OPERATION BLOCK DIAGRAM

When a shutdown event occurs, two things happen:

- The ECCPxASE bit is set to '1'. The ECCPxASE will remain set until cleared in firmware or an auto-restart occurs. (See Section 19.4.5 "Auto-Restart Mode".)
- The enabled PWM pins are asynchronously placed in their shutdown states. The PWM output pins are grouped into pairs (PxA/PxC and

PxB/PxD). The state of each pin pair is determined by the PSSxAC and PSSxBD bits (ECCPxAS<3:0>).

Each pin pair may be placed into one of three states:

- Drive logic '1'
- Drive logic '0'
- Tri-state (high-impedance)

REGISTER 19-4: ECCPxAS: ECCP1/2/3 AUTO-SHUTDOWN CONTROL REGISTER (1, ACCESS FBEh; 2, FB8h; 3, BANKED F19h)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
ECCPxASE	ECCPxAS2	ECCPxAS1	ECCPxAS0	PSSxAC1	PSSxAC0	PSSxBD1	PSSxBD0	
bit 7 bit 0								

Legend:				
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7	ECCPxASE: ECCP Auto-Shutdown Event Status bit
	 1 = A shutdown event has occurred; ECCP outputs are in a shutdown state 0 = ECCP outputs are operating
bit 6-4	ECCPxAS<2:0>: ECCP Auto-Shutdown Source Select bits
	 000 = Auto-shutdown is disabled 001 = Comparator, C1OUT, output is high 010 = Comparator, C2OUT, output is high 011 = Either comparator, C1OUT or C2OUT, is high 100 = VIL on FLT0 pin 101 = VIL on FLT0 pin or comparator, C1OUT, output is high 110 = VIL on FLT0 pin or comparator, C2OUT, output is high 111 = VIL on FLT0 pin or comparator, C1OUT, or comparator, C2OUT, is high
bit 3-2	PSSxAC<1:0>: PxA and PxC Pins Shutdown State Control bits 00 = Drive pins, PxA and PxC, to '0'
	01 = Drive pins, PxA and PxC, to '1' 1x = PxA and PxC pins tri-state
bit 1-0	PSSxBD<1:0>: PxB and PxD Pins Shutdown State Control bits 00 = Drive pins, PxB and PxD, to '0' 01 = Drive pins, PxB and PxD, to '1' 1x = PxB and PxD pins tri-state
Note 1:	The auto-shutdown condition is a level-based signal, not an edge-based signal. As long as the present, the auto-shutdown will persist.
2:	Writing to the ECCPxASE bit is disabled while an auto-shutdown condition persists.

3: Once the auto-shutdown condition has been removed and the PWM restarted (either through firmware or auto-restart), the PWM signal will always restart at the beginning of the next PWM period.

level is

20.3.2 OPERATION

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits (SSPxCON1<5:0> and SSPxSTAT<7:6>). These control bits allow the following to be specified:

- Master mode (SCKx is the clock output)
- Slave mode (SCKx is the clock input)
- Clock Polarity (Idle state of SCKx)
- Data Input Sample Phase (middle or end of data output time)
- Clock Edge (output data on rising/falling edge of SCKx)
- Clock Rate (Master mode only)
- · Slave Select mode (Slave mode only)

Each MSSP module consists of a Transmit/Receive Shift register (SSPxSR) and a Buffer register (SSPxBUF). The SSPxSR shifts the data in and out of the device, MSb first. The SSPxBUF holds the data that was written to the SSPxSR until the received data is ready. Once the 8 bits of data have been received, that byte is moved to the SSPxBUF register. Then, the Buffer Full (BF) detect bit (SSPxSTAT<0>) and the interrupt flag bit, SSPxIF, are set. This double-buffering of the received data (SSPxBUF) allows the next byte to start reception before reading the data that was just received.

Any write to the SSPxBUF register during transmission or reception of data will be ignored and the Write Collision Detect bit, WCOL (SSPxCON1<7>), will be set. User software must clear the WCOL bit so that it can be determined if the following write(s) to the SSPxBUF register completed successfully.

Note:	When the application software is expecting to receive valid data, the SSPxBUF should
	be read before the next byte of transfer
	data is written to the SSPxBUF. Application
	software should follow this process even
	when the current contents of SSPxBUF
	are not important.

The Buffer Full bit, BF (SSPxSTAT<0>), indicates when SSPxBUF has been loaded with the received data (transmission is complete). When the SSPxBUF is read, the BF bit is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally, the MSSP interrupt is used to determine when the transmission/reception has completed. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur.

Example 20-1 provides the loading of the SSPxBUF (SSPxSR) for data transmission.

The SSPxSR is not directly readable or writable and can only be accessed by addressing the SSPxBUF register. Additionally, the SSPxSTAT register indicates the various status conditions.

20.3.3 OPEN-DRAIN OUTPUT OPTION

The drivers for the SDOx output and SCKx clock pins can be optionally configured as open-drain outputs. This feature allows the voltage level on the pin to be pulled to a higher level through an external pull-up resistor, provided the SDOx or SCKx pin is not multiplexed with an ANx analog function. This allows the output to communicate with external circuits without the need for additional level shifters. For more information, see Section 10.1.4 "Open-Drain Outputs".

The open-drain output option is controlled by the SPI2OD and SPI1OD bits (ODCON3<1:0>). Setting an SPIxOD bit configures both the SDOx and SCKx pins for the corresponding open-drain operation.

EXAMPLE 20-1: LOADING THE SSP1BUF (SSP1SR) REGISTER

LOOP	BTFSS BRA MOVF	LOOP	;Has data been received (transmit complete)? ;No ;WREG reg = contents of SSP1BUF
	MOVWF	RXDATA	;Save in user RAM, if data is meaningful
	MOVF MOVWF	TXDATA, W SSP1BUF	;W reg = contents of TXDATA ;New data to xmit

20.5.6.1 I²C Master Mode Operation

The master device generates all of the serial clock pulses and the Start and Stop conditions. A transfer is ended with a Stop condition or with a Repeated Start condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the I²C bus will not be released.

In Master Transmitter mode, serial data is output through SDAx while SCLx outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In this case, the R/W bit will be logic '0'. Serial data is transmitted, 8 bits at a time. After each byte is transmitted, an Acknowledge bit is received. S and P conditions are output to indicate the beginning and end of a serial transfer.

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/\overline{W} bit. In this case, the R/\overline{W} bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address, followed by a '1' to indicate the receive bit. Serial data is received via SDAx, while SCLx outputs the serial clock. Serial data is received 8 bits at a time. After each byte is received, an Acknowledge bit is transmitted. S and P conditions indicate the beginning and end of transmission.

The BRG used for the SPI mode operation is used to set the SCLx clock frequency for either 100 kHz, 400 kHz or 1 MHz I^2 C operation. See Section 20.5.7 "Baud Rate" for more details.

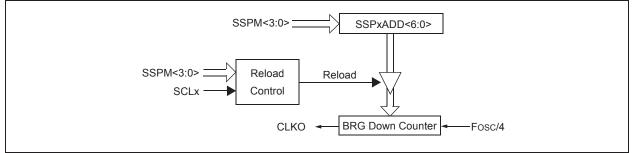
A typical transmit sequence would go as follows:

- 1. The user generates a Start condition by setting the Start Enable bit, SEN (SSPxCON2<0>).
- SSPxIF is set. The MSSP module will wait for the required start time before any other operation takes place.
- 3. The user loads the SSPxBUF with the slave address to transmit.
- 4. The address is shifted out of the SDAx pin until all 8 bits are transmitted.
- The MSSP module shifts in the ACK bit from the slave device and writes its value into the SSPx-CON2 register (SSPxCON2<6>).
- The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPxIF bit.
- 7. The user loads the SSPxBUF with 8 bits of data.
- 8. Data is shifted out of the SDAx pin until all 8 bits are transmitted.
- The MSSP module shifts in the ACK bit from the slave device and writes its value into the SSPx-CON2 register (SSPxCON2<6>).
- 10. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPxIF bit.
- 11. The user generates a Stop condition by setting the Stop Enable bit, PEN (SSPxCON2<2>).
- 12. The interrupt is generated once the Stop condition is complete.

20.5.7 BAUD RATE

In I²C Master mode, the BRG reload value is placed in the lower seven bits of the SSPxADD register (Figure 20-19). When a write occurs to SSPxBUF, the Baud Rate Generator will automatically begin counting. The BRG counts down to 0 and stops until another reload has taken place. The BRG count is decremented twice per instruction cycle (TcY) on the Q2 and Q4 clocks. In I²C Master mode, the BRG is reloaded automatically.

Once the given operation is complete (i.e., transmission of the last data bit is followed by ACK), the internal clock will automatically stop counting and the SCLx pin will remain in its last state.


Table 20-3 demonstrates clock rates based on instruction cycles and the BRG value loaded into SSPxADD. The SSPADD BRG value of 0x00 is not supported.

20.5.7.1 Baud Rate and Module Interdependence

Because MSSP1 and MSSP2 are independent, they can operate simultaneously in I²C Master mode at different baud rates. This is done by using different BRG reload values for each module.

Because this mode derives its basic clock source from the system clock, any changes to the clock will affect both modules in the same proportion. It may be possible to change one or both baud rates back to a previous value by changing the BRG reload value.

FIGURE 20-19: BAUD RATE GENERATOR BLOCK DIAGRAM

TABLE 20-3: I²C CLOCK RATE w/BRG

Fosc	Fcy	Fcy * 2	BRG Value	FscL (2 Rollovers of BRG)
40 MHz	10 MHz	20 MHz	18h	400 kHz
40 MHz	10 MHz	20 MHz	1Fh	312.5 kHz
40 MHz	10 MHz	20 MHz	63h	100 kHz
16 MHz	4 MHz	8 MHz	09h	400 kHz
16 MHz	4 MHz	8 MHz	0Ch	308 kHz
16 MHz	4 MHz	8 MHz	27h	100 kHz
4 MHz	1 MHz	2 MHz	02h	333 kHz
4 MHz	1 MHz	2 MHz	09h	100 kHz
16 MHz	4 MHz	8 MHz	03h	1 MHz ⁽¹⁾

Note 1: The I²C interface does not conform to the 400 kHz I²C specification (which applies to rates greater than 100 kHz) in all details, but may be used with care where higher rates are required by the application.

R/W-0	R-1	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	_	WUE	ABDEN
bit 7		·	·			·	bit
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplem	ented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unki	nown
bit 7	1 = A BRG r	uto-Baud Acquis ollover has occi rollover has oc	urred during A	Status bit uto-Baud Rate I	Detect mode (must be cleare	d in software)
bit 6	RCIDL: Rece	eive Operation I	dle Status bit				
		operation is Idle operation is acti					
bit 5	RXDTP: Data	a/Receive Polar	ity Select bit				
		i <u>s mode:</u> data (RXx) is in data (RXx) is no					
		<u>s mode:</u> x) is inverted (a x) is not inverte)			
bit 4	TXCKP: Syn	chronous Clock	Polarity Selec	ct bit			
		i <u>s mode:</u> for transmit (T) for transmit (T)					
		<u>s mode:</u> s for clock (CKx) s for clock (CKx)		I			
bit 3	BRG16: 16-E	Bit Baud Rate R	egister Enable	e bit			
				Hx and SPBRGX only (Compatible		BRGHx value is	ignored
bit 2	Unimplemer	ted: Read as '	כ'				
bit 1	WUE: Wake-	up Enable bit					
	cleared		the following ri		upt is genera	ited on the falli	ng edge; bit i
	Synchronous Unused in th						
bit 0	ABDEN: Aut	o-Baud Detect I	Enable bit				
	cleared		on completion	e next characte	r; requires re	ception of a Sy	nc field (55h/
	<u>Synchronous</u> Unused in th						

21.4 EUSART Synchronous Slave Mode

Synchronous Slave mode is entered by clearing bit, CSRC (TXSTAx<7>). This mode differs from the Synchronous Master mode in that the shift clock is supplied externally at the CKx pin (instead of being supplied internally in Master mode). This allows the device to transfer or receive data while in any low-power mode.

21.4.1 EUSART SYNCHRONOUS SLAVE TRANSMISSION

The operation of the Synchronous Master and Slave modes is identical, except in the case of Sleep mode.

If two words are written to the TXREGx, and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in the TXREGx register.
- c) Flag bit, TXxIF, will not be set.
- d) When the first word has been shifted out of TSR, the TXREGx register will transfer the second word to the TSR and flag bit, TXxIF, will now be set.

e) If enable bit, TXxIE, is set, the interrupt will wake the chip from Sleep. If the global interrupt is enabled, the program will branch to the interrupt vector.

To set up a Synchronous Slave Transmission:

- Enable the synchronous slave serial port by setting bits, SYNC and SPEN, and clearing bit, CSRC.
- 2. Clear bits, CREN and SREN.
- 3. If interrupts are desired, set enable bit, TXxIE.
- 4. If 9-bit transmission is desired, set bit, TX9.
- 5. Enable the transmission by setting enable bit, TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit, TX9D.
- 7. Start transmission by loading data to the TXREGx register.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	
PIR1	PMPIF ⁽¹⁾	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	
PIE1	PMPIE ⁽¹⁾	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	
IPR1	PMPIP ⁽¹⁾	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	
PIR3	SSP2IF	BCL2IF	RC2IF	TX2IF	TMR4IF	CTMUIF	TMR3GIF	RTCCIF	
PIE3	SSP2IE	BCL2IE	RC2IE	TX2IE	TMR4IE	CTMUIE	TMR3GIE	RTCCIE	
IPR3	SSP2IP	BCL2IP	RC2IP	TX2IP	TMR4IP	CTMUIP	TMR3GIP	RTCCIP	
RCSTAx	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	
TXREGx	EUSARTx T	ransmit Regis	ter						
TXSTAx	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	
BAUDCONx	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	_	WUE	ABDEN	
SPBRGHx	EUSARTx B	EUSARTx Baud Rate Generator High Byte							
SPBRGx	EUSARTx B	EUSARTx Baud Rate Generator Low Byte							

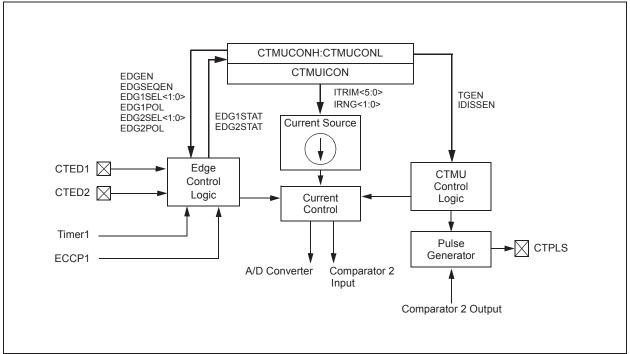
TABLE 21-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous slave transmission.

Note 1: These pins are only available on 44-pin devices.

26.0 CHARGE TIME MEASUREMENT UNIT (CTMU)

The Charge Time Measurement Unit (CTMU) is a flexible analog module that provides accurate differential time measurement between pulse sources, as well as asynchronous pulse generation. By working with other on-chip analog modules, the CTMU can be used to precisely measure time, measure capacitance, measure relative changes in capacitance or generate output pulses with a specific time delay. The CTMU is ideal for interfacing with capacitive-based sensors.


The module includes the following key features:

- Up to 13 channels available for capacitive or time measurement input
- · On-chip precision current source
- Four-edge input trigger sources
- · Polarity control for each edge source

- · Control of edge sequence
- · Control of response to edges
- · Time measurement resolution of 1 nanosecond
- High-precision time measurement
- Time delay of external or internal signal asynchronous to system clock
- Accurate current source suitable for capacitive measurement

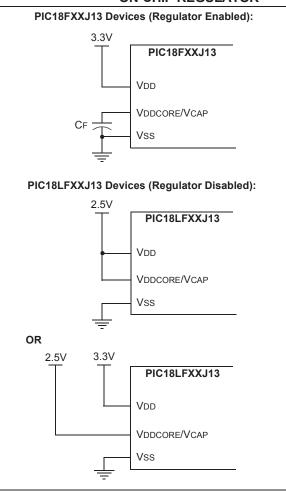

The CTMU works in conjunction with the A/D Converter to provide up to 13 channels for time or charge measurement, depending on the specific device and the number of A/D channels available. When configured for time delay, the CTMU is connected to one of the analog comparators. The level-sensitive input edge sources can be selected from four sources: two external inputs, Timer1 or Output Compare Module 1.

Figure 26-1 provides a block diagram of the CTMU.

FIGURE 26-1: CTMU BLOCK DIAGRAM

FIGURE 27-2: CONNECTIONS FOR THE ON-CHIP REGULATOR

27.3.2 ON-CHIP REGULATOR AND BOR

When the on-chip regulator is enabled, PIC18F47J13 Family devices also have a simple brown-out capability. If the voltage supplied to the regulator is inadequate to maintain a minimum output level, the regulator Reset circuitry will generate a <u>Brown</u>-out Reset (BOR). This event is captured by the <u>BOR</u> flag bit (RCON<0>).

The operation of the BOR is described in more detail in Section 5.4 "Brown-out Reset (BOR)" and Section 5.4.1 "Detecting BOR". The brown-out voltage levels are specific in Section 30.1 "DC Characteristics: Supply Voltage PIC18F47J13 Family (Industrial)".

27.3.3 POWER-UP REQUIREMENTS

The on-chip regulator is designed to meet the power-up requirements for the device. If the application does not use the regulator, then strict power-up conditions must be adhered to. While powering up, VDDCORE should not exceed VDD by 0.3 volts.

27.3.4 OPERATION IN SLEEP MODE

When enabled, the on-chip regulator always consumes a small incremental amount of current over IDD. This includes when the device is in Sleep mode, even though the core digital logic does not require much power. To provide additional savings in applications where power resources are critical, the regulator can be configured to automatically enter a lower quiescent draw Standby mode whenever the device goes into Sleep mode. This feature is controlled by the REGSLP bit (WDTCON<7>, Register 27-11). If this bit is set upon entry into Sleep mode, the regulator will transition into a lower power state. In this state, the regulator still provides a regulated output voltage necessary to maintain SRAM state information, but consumes less quiescent current.

Substantial Sleep mode power savings can be obtained by setting the REGSLP bit, but device wake-up time will increase in order to insure the regulator has enough time to stabilize.

PIC18F47J13 FAMILY

INCF	SZ	Increment	Increment f, Skip if 0					
Synta	ax:	INCFSZ f	{,d {,a}}					
Oper	ands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$	$d \in [0,1]$					
Operation:		.,	(f) + 1 \rightarrow dest, skip if result = 0					
Statu	s Affected:	None						
Enco	ding:	0011	11da ffi	ff ffff				
Desc	ription:	incremented placed in W	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f'. (default)					
		which is alre	is '0', the next eady fetched is s executed ins instruction.	s discarded				
			he Access Bar he BSR is use (default).					
		set is enable in Indexed I mode when Section 28 Bit-Oriente	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 28.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.					
Word	s:	1	1					
Cycle	es:		ycles if skip a a 2-word instr					
QC	ycle Activity:							
	Q1	Q2	Q3	Q4				
	Decode	Read	Process	Write to				
الا مار	·	register 'f'	Data	destination				
lf sk	ip: Q1	Q2	Q3	Q4				
1	No	No	No	No				
	operation	operation	operation	operation				
lf sk	ip and followe	d by 2-word ins	struction:					
	Q1	Q2	Q3	Q4				
	No	No	No	No				
	operation	operation	operation	operation				
	No operation	No operation	No operation	No operation				
ļ	operation	operation	operation	operation				
<u>Exan</u>	<u>nple:</u>	HERE I NZERO : ZERO :		T, 1, 0				
	Before Instruc PC	= Address	G (HERE)					
	After Instructic CNT	on = CNT + 1	1					
	If CNT	= 0;						
	PC If CNT	= Address ≠ 0;	(ZERO)					
	PC	= Address	(NZERO)					

Synta	NZ	Increment	Increment f, Skip if Not 0					
Jyrice	ax:	INFSNZ f	{,d {,a}}					
Oper	ands:	$0 \leq f \leq 255$						
		d ∈ [0,1]						
_		a ∈ [0,1]						
Oper	ation:	(f) + 1 \rightarrow de						
Statu	n Affaatad:	skip if resul None	ι≠ ∪					
	is Affected:		101 000					
	oding:		0100 10da ffff ffff					
Desc	ription:	incremente placed in W	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default).					
		instruction v discarded a	is not '0', the r which is alread nd a NOP is ex king it a 2-cyc	ly fetched is ecuted				
		, -	he Access Bar he BSR is use (default).					
		set is enabl in Indexed I mode when Section 28 Bit-Oriente	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 28.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.					
Word	ls.		1					
Cycle	es:		rcles if skip an a 2-word instru					
				ction.				
QC	ycle Activity:							
QC	Q1	Q2	Q3	Q4				
QC	• •	Read	Process	Q4 Write to				
	Q1 Decode			Q4				
Q C	Q1 Decode ip:	Read register 'f'	Process Data	Q4 Write to destination				
	Q1 Decode ip: Q1	Read register 'f' Q2	Process Data Q3	Q4 Write to destination Q4				
	Q1 Decode ip:	Read register 'f'	Process Data	Q4 Write to destination				
lf sk	Q1 Decode ip: Q1 No operation	Read register 'f' Q2 No	Process Data Q3 No operation	Q4 Write to destination Q4 No				
lf sk	Q1 Decode ip: Q1 No operation	Read register 'f' Q2 No operation	Process Data Q3 No operation	Q4 Write to destination Q4 No				
lf sk	Q1 Decode ip: Q1 No operation ip and follower	Read register 'f' Q2 No operation d by 2-word ins	Process Data Q3 No operation struction:	Q4 Write to destination Q4 No operation				
lf sk	Q1 Decode ip: Q1 No operation ip and follower Q1	Read register 'f' Q2 No operation d by 2-word ins Q2	Process Data Q3 No operation struction: Q3	Q4 Write to destination Q4 No operation Q4 No operation				
lf sk	Q1 Decode ip: Q1 No operation ip and follower Q1 No operation No	Read register 'f' Q2 No operation d by 2-word ins Q2 No operation No	Process Data Q3 No operation struction: Q3 No operation No	Q4 Write to destination Q4 No operation Q4 No operation No				
lf sk	Q1 Decode ip: Q1 No operation ip and follower Q1 No operation	Read register 'f' Q2 No operation d by 2-word ins Q2 No operation	Process Data Q3 No operation struction: Q3 No operation	Q4 Write to destination Q4 No operation Q4 No operation				
lf sk	Q1 Decode ip: Q1 No operation ip and follower Q1 No operation No operation	Read register 'f' Q2 No operation d by 2-word ins Q2 No operation No operation	Process Data Q3 No operation struction: Q3 No operation No operation	Q4 Write to destination Q4 No operation Q4 No operation No				
lf sk If sk <u>Exan</u>	Q1 Decode ip: Q1 No operation ip and follower Q1 No operation No operation nple: Before Instruct	Read register 'f' Q2 No operation d by 2-word ins Q2 No operation No operation HERE ZERO NZERO	Process Data Q3 No operation struction: Q3 No operation No operation	Q4 Write to destination Q4 No operation Q4 No operation No operation				
lf sk If sk <u>Exan</u>	Q1 Decode ip: Q1 No operation ip and follower Q1 No operation No operation	Read register 'f' Q2 No operation d by 2-word ins Q2 No operation No operation HERE ZERO NZERO tion = Address	Process Data Q3 No operation struction: Q3 No operation No operation	Q4 Write to destination Q4 No operation Q4 No operation No operation				
lf sk If sk <u>Exan</u>	Q1 Decode ip: Q1 No operation ip and follower Q1 No operation No operation nple: Before Instruction PC After Instruction REG	Read register 'f' Q2 No operation d by 2-word ins Q2 No operation No operation No operation HERE ZERO NZERO tion = Address on = REG + '	Process Data Q3 No operation struction: Q3 No operation No operation	Q4 Write to destination Q4 No operation Q4 No operation No operation				
lf sk If sk <u>Exan</u>	Q1 Decode ip: Q1 No operation ip and follower Q1 No operation No operation nple: Before Instruct PC After Instruction	Read register 'f' Q2 No operation d by 2-word ins Q2 No operation No operation HERE ZERO NZERO tion = Address	Process Data Q3 No operation struction: Q3 No operation No operation	Q4 Write to destination Q4 No operation Q4 No operation No operation				
lf sk If sk <u>Exan</u>	Q1 Decode ip: Q1 No operation ip and follower Q1 No operation No operation No operation Mo operation PC After Instruction REG If REG	Read register 'f' Q2 No operation d by 2-word ins Q2 No operation No operation No operation No operation HERE ZERO NZERO tion = Address on = REG + * 0;	Process Data Q3 No operation struction: Q3 No operation No operation INFSNZ REG (HERE) 1 (NZERO)	Q4 Write to destination Q4 No operation Q4 No operation No operation				

PIC18F47J13 FAMILY

MOV	'LW	Move Lite	Move Literal to W					
Synta	ax:	MOVLW	k					
Oper	ands:	$0 \le k \le 25$	5					
Oper	ation:	$k\toW$						
Statu	s Affected:	None						
Enco	ding:	0000	1110	kkk	k	kkkk		
Desc	ription:	The 8-bit I	The 8-bit literal 'k' is loaded into W.					
Words:		1	1					
Cycle	es:	1	1					
QC	ycle Activity:							
	Q1	Q2	Q3	3	Q4			
	Decode	Read literal 'k'	Proce Data		Write to W			
Example:		MOVLW	5Ah					
After Instruction W = 5Ah								

MOVWF	Move W to	f				
Syntax:	MOVWF	f {,a}				
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ a \in [0,1] \end{array}$					
Operation:	$(W) \to f$					
Status Affected:	None	None				
Encoding:	0110	111a	ffff	ffff		
Description:	Location 'f' of	Move data from W to register 'f'. Location 'f' can be anywhere in the 256-byte bank.				
	lf 'a' is '1', th	If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default).				
	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 28.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.					
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3		Q4		
Decode	Read register 'f'	Process Data	-	Write gister 'f'		
Example:		REG, O				
Before Instruct W REG After Instructio	= 4Fh = FFh					
W REG	= 4Fh = 4Fh					

PIC18F47J13 FAMILY

	Subtract f from W with Borrow				
Syntax:	SUBFWB f	{,d {,a}}			
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$				
Operation:	$(W) - (f) - (\overline{C})$	$\rightarrow dest$			
Status Affected:	N, OV, C, DC	,			
Encoding:		01da fff	f ffff		
Description:	(borrow) fron method). If 'c W. If 'd' is '1' register 'f' (de If 'a' is '0', the	Access Bank	ement ult is stored in stored in is selected. If		
	'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction				
	set is enabled Indexed Liter whenever f ≤ Section 28.2 Bit-Oriented	d, this instruction al Offset Addre 95 (5Fh). See 3.3 "Byte-Orie Instructions at Mode" for de	on operates in essing mode nted and in Indexed		
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q3	Q4		
Decode	Read register 'f'	Process Data	Write to destination		
European de de	-		1		
Example 1: Before Instruc	SUBFWB	REG, 1, 0			
REG	= 3 = 2				
	= 2				
С	= 1				
C After Instructic REG	= 1 on = FF				
C After Instructio	= 1 on				
C After Instructio REG W C Z	= 1 on = FF = 2 = 0 = 0		10		
C After Instructio REG W C Z N	= 1 pn = FF = 2 = 0 = 0 = 1 ;r	esult is negati			
C After Instructio REG W C Z	= 1 pn = FF = 2 = 0 = 0 = 1 ; r SUBFWB	•			
C After Instructio REG W C Z N <u>Example 2:</u>	= 1 pn = FF = 2 = 0 = 0 = 1 ; r SUBFWB	•			
C After Instructio REG W C Z N <u>Example 2:</u> Before Instruct REG W C After Instructio	= 1 pn = FF = 2 = 0 = 0 = 1; r SUBFWB tion = 2 = 5 = 1 pn	•			
C After Instruction REG W C Z N Example 2: Before Instruct REG W C After Instruction REG	= 1 pn = FF = 2 = 0 = 0 = 1; r SUBFWB tion = 2 = 5 = 1 pn	•			
C After Instructio REG W C Z N Example 2: Before Instruct REG W C After Instructio REG W C	= 1 pn = FF = 2 = 0 = 0; r SUBFWB tion = 2 = 1 pn = 2 = 3 = 1	•			
C After Instruction REG W C Z N Example 2: Before Instruct REG W C After Instruction REG W	= 1 pn = FF = 2 = 0 = 0 = 1;r SUBFWB tion = 2 = 5 = 1 pn = 2 = 3 = 1 = 0	•			
C After Instructio REG W C Z N Example 2: Before Instruct REG W C After Instructio REG W C Z N Example 3:	= 1 pn = FF = 2 = 0 = 0 = 1 ;r SUBFWB tion = 2 = 3 = 1 pn = 2 = 3 = 1 = 0 = 0;r SUBFWB	REG, 0, 0	е		
C After Instruction REG W C Z N Example 2: Before Instruction REG W C After Instruction REG W C Z N Example 3: Before Instruct	= 1 pn = FF = 2 = 0 = 0; r SUBFWB tion = 2 = 1 pn = 2 = 1 suBFWB tion = 0; r SUBFWB	REG, 0, 0	е		
C After Instructio REG W C Z N Example 2: Before Instruct REG W C After Instructio REG W C Z N Example 3:	= 1 pn = FF = 2 = 0 = 0 = 1 ;r SUBFWB tion = 2 = 3 = 1 pn = 2 = 3 = 1 = 0 = 0;r SUBFWB	REG, 0, 0	е		
C After Instruction REG W C Z N Before Instruct REG W C After Instruction REG W C Z N Example 3: Before Instruct REG W C	= 1 pn = FF = 2 = 0 = 0 = 1; r SUBFWB tion = 2 = 3 = 1 pn = 2 = 3 = 1 SUBFWB tion = 2 = 0; r SUBFWB tion = 2 = 0; r = 0; r = 2 = 0; r = 0; r = 0; r = 1; r = 0;	REG, 0, 0	е		
C After Instruction REG W C Z N Example 2: Before Instruction REG W C After Instruction REG W C Z N Example 3: Before Instruct REG W C After Instruction REG W C After Instruction	= 1 pn = FF = 2 = 0 = 0 = 1; r SUBFWB tion = 2 = 3 = 1 pn = 2 = 3 = 1 pn = 0; r SUBFWB tion = 1 = 0; r (0) = 0;	REG, 0, 0	е		
C After Instruction REG W C Z N Before Instruct REG W C After Instruction REG W C Z N Example 3: Before Instruct REG W C	= 1 pn = FF = 2 = 0 = 0 = 1; r SUBFWB tion = 2 = 3 = 1 pn = 2 = 3 = 1 pn = 0; r SUBFWB tion = 2 = 3 = 1 ; r SUBFWB = 0 = 0; r SUBFWB = 0 = 1; r SUBFWB = 0 = 1; r SUBFWB = 0; r SUBFWB	REG, 0, 0	е		

30.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings^(†)

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on any digital only I/O pin or MCLR with respect to Vss (except VDD)	
Voltage on any combined digital and analog pin with respect to Vss (except VDD)	0.3V to (VDD + 0.3V)
Voltage on VDDCORE with respect to Vss	0.3V to 2.75V
Voltage on VDD with respect to Vss	-0.3V to 4.0V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	300 mA
Maximum current into VDD pin	250 mA
Maximum output current sunk by any PORTB, PORTC and RA6 I/O pin	25 mA
Maximum output current sunk by any PORTA (except RA6), PORTD and PORTE I/O pin	8 mA
Maximum output current sourced by any PORTB, PORTC and RA6 I/O pin	25 mA
Maximum output current sourced by any PORTA (except RA6), PORTD and PORTE I/O pin	8 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports	200 mA
Note 1: Power dissipation is calculated as follows: $PDIS = VDD x \{IDD - \sum IOH\} + \sum \{(VDD - VOH) x IOH\} + \sum (VOL x IOL)$	

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.