

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 2.75V
Data Converters	A/D 10x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf26j13t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.6.9 DEEP SLEEP MODE REGISTERS

Deep Sleep mode registers are provided in Register 4-1 through Register 4-6.

REGISTER 4-1: DSCONH: DEEP SLEEP CONTROL HIGH BYTE REGISTER (BANKED F4Dh)

R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
DSEN ⁽¹⁾	—	_	—	—	r	DSULPEN	RTCWDIS
bit 7							bit 0

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	DSEN: Deep Sleep Enable bit ⁽¹⁾
	1 = Deep Sleep mode is entered on a SLEEP command0 = Sleep mode is entered on a SLEEP command
bit 6-3	Unimplemented: Read as '0'
bit 2	Reserved: Maintain as '0'
bit 1	DSULPEN: Ultra Low-Power Wake-up Module Enable bit
	1 = ULPWU module is enabled in Deep Sleep
	0 = ULPWU module is disabled in Deep Sleep
bit 0	RTCWDIS: RTCC Wake-up Disable bit
	1 = Wake-up from RTCC is disabled0 = Wake-up from RTCC is enabled

Note 1: In order to enter Deep Sleep, Sleep must be executed within 2 instruction cycles after setting DSEN.

REGISTER 4-2: DSCONL: DEEP SLEEP LOW BYTE CONTROL REGISTER (BANKED F4Ch)

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾
—	—	—	—	—	ULPWDIS	DSBOR	RELEASE
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-3	Unimplemented: Read as '0'
bit 2	ULPWDIS: Ultra Low-Power Wake-up Disable bit
	 1 = ULPWU wake-up source is disabled 0 = ULPWU wake-up source is enabled (must also set DSULPEN = 1)
bit 1	DSBOR: Deep Sleep BOR Event Status bit
	 1 = DSBOREN was enabled and VDD dropped below the DSBOR arming voltage during Deep Sleep, but did not fall below VDSBOR 0 = DSBOREN was disabled or VDD did not drop below the DSBOR arming voltage during Deep Sleep
bit 0	RELEASE: I/O Pin State Release bit
	Upon waking from Deep Sleep, the I/O pins maintain their previous states. Clearing this bit will release the I/O pins and allow their respective TRIS and LAT bits to control their states.

Note 1: This is the value when VDD is initially applied.

Addr.	File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	
F07h	CCPR8L	Capture/Comp	pare/PWM Re	/PWM Register 8 Low Byte						XXXX XXXX	
F06h	CCP8CON		_	DC8B1	DC8B0	CCP8M3	CCP8M2	CCP8M1	CCP8M0	00 0000	
F05h	CCPR9H	Capture/Com	pare/PWM Re	gister 9 High I	Byte					XXXX XXXX	
F04h	CCPR9L	Capture/Com	pare/PWM Re	gister 9 Low E	Byte					XXXX XXXX	
F03h	CCP9CON		- 1	— DC9B1 DC9B0 CCP9M3 CCP9M2 CCP9M1 CCP9M0							
F02h	CCPR10H	Capture/Comp	Capture/Compare/PWM Register 10 High Byte								
F01h	CCPR10L	Capture/Comp	pare/PWM Re	gister 10 Low	Byte					XXXX XXXX	
F00h	CCP10CON	_	_	DC10B1	DC10B0	CCP10M3	CCP10M2	CCP10M1	CCP10M0	00 0000	
EFFh	RPINR24	_	_	—	PWM Fault Ir	nput (FLT0) to	Input Pin Mapp	oing bits		1 1111	
EFEh	RPINR23	_	_	_	SPI2 Slave S	elect Input (S	S2) to Input Pin	Mapping bits		1 1111	
EFDh	RPINR22	_	_	_	SPI2 Clock Ir	nput (SCK2) to	Input Pin Map	ping bits		1 1111	
EFCh	RPINR21	_	_	_	SPI2 Data In	put (SDI2) to I	nput Pin Mappi	ng bits		1 1111	
EFBh	—	_	_	_	_	_	_	_	_	(3)	
EFAh	_	_	_	_	_	_	_	_	_	(3)	
EF9h	_	_	_	_	_	_	_	_	_	(3)	
EF8h	RPINR17	_	_	_	EUSART2 C	lock Input (CK	2) to Input Pin I	Mapping bits		1 1111	
EF7h	RPINR16	_	_	—	EUSART2 R	X2/DT2 to Inp	ut Pin Mapping	bits		1 1111	
EF6h	_	_	_	_	_	—	_	_	—	(3)	
EF5h	_	_	_	_	_	_	_	_	—	(3)	
EF4h	RPINR14	_	_	_	Timer5 Gate	Input (T5G) to	Input Pin Map	ping bits	•	1 1111	
EF3h	RPINR13	_	_	—	Timer3 Gate Input (T3G) to Input Pin Mapping bits						
EF2h	RPINR12	_	_	—	Timer1 Gate Input (T1G) to Input Pin Mapping bits			1 1111			
EF1h	—	-	-	—	_	—	—	—	—	(3)	
EF0h	—	_	—	—	_	—	—	—	—	(3)	
EEFh	—	_	—	—	_	—	—	—	—	(3)	
EEEh	—	—	—	—	—	—	—	—	—	(3)	
EEDh	—	—	—	—	—	—	—	—	—	(3)	
EECh	_	_	—	_		—	_	—	—	(3)	
EEBh	_		—	_		—	—	—	—	(3)	
EEAh	RPINR9	—	—		ECCP3 Input Capture (IC3) to Input Pin Mapping bits				1 1111		
EE9h	RPINR8	—	—	_	ECCP2 Input Capture (IC2) to Input Pin Mapping bits					1 1111	
EE8h	RPINR7	—	—		ECCP1 Input	Capture (IC1) to Input Pin M	apping bits		1 1111	
EE7h	RPINR15	_		_	Timer5 Exter	nal Clock Inpu	t (T5CKI) to Inp	out Pin Mapping	g bits	1 1111	
EE6h	RPINR6	_	_	_	Timer3 Exter	nal Clock Inpu	t (T3CKI) to Inp	out Pin Mapping	g bits	1 1111	
EE5h	_	—	—	—		—	—	—	—	(3)	
EE4h	RPINR4	—	—	—	Timer0 Exter	nal Clock Inpu	t (T0CKI) to Inp	out Pin Mapping	g bits	1 1111	
EE3h	RPINR3	—	—	—	External Inter	rrupt (INT3) to	Input Pin Mapp	ping bits		1 1111	
EE2h	RPINR2	—	—	_	External Interrupt (INT2) to Input Pin Mapping bits				1 1111		
EE1h	RPINR1	_	_	_	External Inter	rrupt (INT1) to	Input Pin Mapp	ping bits		1 1111	
EE0h	—	—	-	—		—	—	—	—	(3)	
EDFh	—	_		—		—	_	—	—	(3)	
EDEh	—	_		—		—	_	—	—	(3)	
EDDh	—	_		_		_	_	_	_	(3)	
EDCh		—	—	—	-	—	_	—	—	(3)	
EDBh		-	—	—	-	—	—	—	—	(3)	
EDAh		—	—	—	-	—	_	—	—	(3)	
ED9h	-	-	—	—	-	—	—	—	—	(3)	
ED8h	RPOR24 ⁽²⁾	-	—	—	Remappable	Pin RP24 Out	tput Signal Sele	ect bits		0 0000	
ED7h	RPOR23 ⁽²⁾	—	—	—	Remappable Pin RP23 Output Signal Select bits						

Note 1: Applicable for 28-pin devices (PIC18F26J13, PIC18F27J13, PIC18LF26J13 and PIC18LF27J13).

2: Applicable for 44-pin devices (PIC18F46J13, PIC18F47J13, PIC18LF46J13 and PIC18LF47J13).

3: Value on POR, BOR.

7.5.2 FLASH PROGRAM MEMORY WRITE SEQUENCE (WORD PROGRAMMING)

The PIC18F47J13 Family of devices has a feature that allows programming a single word (two bytes). This feature is enabled when the WPROG bit is set. If the memory location is already erased, the following sequence is required to enable this feature:

- 1. Load the Table Pointer register with the address of the data to be written. (It must be an even address.)
- 2. Write the 2 bytes into the holding registers by performing table writes. (Do not post-increment

on the second table write.)

- Set the WREN bit (EECON1<2>) to enable writes and the WPROG bit (EECON1<5>) to select Word Write mode.
- 4. Disable interrupts.
- 5. Write 55h to EECON2.
- 6. Write 0AAh to EECON2.
- 7. Set the WR bit; this will begin the write cycle.
- The CPU will stall for the duration of the write for TIW (see parameter D133A).
- 9. Re-enable interrupts.

	MOVIW	CODE ADDE IIDDED		Load TRIPTP with the base address
	MOVINE		,	Load Ibbill with the base address
	MOTITE	IBLFIKU		
	MOVLW	CODE_ADDR_HIGH		
	MOVWE	TBLPTRH		
	MOVLW	CODE_ADDR_LOW	;	The table pointer must be loaded with an even
				address
	MOVWF	TBLPTRL		
	MOVLW	DATA0	;	LSB of word to be written
	MOVWF	TABLAT		
	TBLWT*+			
	MOVLW	DATA1	;	MSB of word to be written
	MOVWF	TABLAT		
	TBLWT*		;	The last table write must not increment the table
				pointer! The table pointer needs to point to the
				MSB before starting the write operation
				Nob before Starting the write operation.
DDOCDAM MEMODY				
PROGRAM_MEMORI	DOD	FEGOVI MDDOG		
	BSF	EECONI, WPROG	;	enable single word write
	BSF	EECONI, WREN	;	enable write to memory
	BCF	INTCON, GIE	;	disable interrupts
	MOVLW	0x55		
Required	MOVWF	EECON2	;	write 55h
Sequence	MOVLW	0xAA		
	MOVWF	EECON2	;	write AAh
	BSF	EECON1, WR	;	start program (CPU stall)
	BSF	INTCON, GIE	;	re-enable interrupts
	BCF	EECON1, WPROG	;	disable single word write
	BCF	EECON1, WREN	;	disable write to memory
		·		-

EXAMPLE 7-4: SINGLE-WORD WRITE TO FLASH PROGRAM MEMORY

9.0 INTERRUPTS

Devices of the PIC18F47J13 Family have multiple interrupt sources and an interrupt priority feature that allows most interrupt sources to be assigned a high-priority level or a low-priority level. The high-priority interrupt vector is at 0008h and the low-priority interrupt vector is at 0018h. High-priority interrupt events will interrupt any low-priority interrupts that may be in progress.

There are 19 registers, which are used to control interrupt operation. These registers are:

- RCON
- INTCON
- INTCON2
- INTCON3
- PIR1, PIR2, PIR3, PIR4, PIR5
- PIE1, PIE2, PIE3, PIE4, PIE5
- IPR1, IPR2, IPR3, IPR4, IPR5

It is recommended that the Microchip header files supplied with MPLAB[®] IDE be used for the symbolic bit names in these registers. This allows the assembler/compiler to automatically take care of the placement of these bits within the specified register.

In general, interrupt sources have three bits to control their operation. They are:

- Flag bit to indicate that an interrupt event occurred
- Enable bit that allows program execution to branch to the interrupt vector address when the flag bit is set
- **Priority bit** to select high priority or low priority

The interrupt priority feature is enabled by setting the IPEN bit (RCON<7>). When interrupt priority is enabled, there are two bits which enable interrupts globally. Setting the GIEH bit (INTCON<7>) enables all interrupts that have the priority bit set (high priority). Setting the GIEL bit (INTCON<6>) enables all interrupts that have the priority bit cleared (low priority). When the interrupt flag, enable bit and appropriate global interrupt enable bit are set, the interrupt will vector immediately to address, 0008h or 0018h, depending on the priority bit setting. Individual interrupts can be disabled through their corresponding enable bits.

When the IPEN bit is cleared (default state), the interrupt priority feature is disabled and interrupts are compatible with PIC[®] mid-range devices. In Compatibility mode, the interrupt priority bits for each source have no effect. INTCON<6> is the PEIE bit, which enables/disables all peripheral interrupt sources. INTCON<7> is the GIE bit, which enables/disables all interrupt sources. All interrupts branch to address 0008h in Compatibility mode.

When an interrupt is responded to, the global interrupt enable bit is cleared to disable further interrupts. If the IPEN bit is cleared, this is the GIE bit. If interrupt priority levels are used, this will be either the GIEH or GIEL bit. High-priority interrupt sources can interrupt a low-priority interrupt. Low-priority interrupts are not processed while high-priority interrupts are in progress.

The return address is pushed onto the stack and the PC is loaded with the interrupt vector address (0008h or 0018h). Once in the Interrupt Service Routine (ISR), the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bits must be cleared in software before re-enabling interrupts to avoid recursive interrupts.

The "return from interrupt" instruction, RETFIE, exits the interrupt routine and sets the GIE bit (GIEH or GIEL if priority levels are used), which re-enables interrupts.

For external interrupt events, such as the INTx pins or the PORTB input change interrupt, the interrupt latency will be three to four instruction cycles. The exact latency is the same for one or two-cycle instructions. Individual interrupt flag bits are set regardless of the status of their corresponding enable bit or the GIE bit.

Note: Do not use the MOVFF instruction to modify any of the Interrupt Control registers while **any** interrupt is enabled. Doing so may cause erratic microcontroller behavior.

10.0 I/O PORTS

Depending on the device selected and features enabled, there are up to five ports available. Some pins of the I/O ports are multiplexed with an alternate function from the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

Each port has three registers for its operation. These registers are:

- TRIS register (Data Direction register)
- PORT register (reads the levels on the pins of the device)
- · LAT register (Data Latch)

The Data Latch (LAT register) is useful for read-modifywrite operations on the value that the I/O pins are driving.

Figure 10-1 displays a simplified model of a generic I/O port, without the interfaces to other peripherals.

FIGURE 10-1: GENERIC I/O PORT OPERATION

10.1 I/O Port Pin Capabilities

When developing an application, the capabilities of the port pins must be considered. Outputs on some pins have higher output drive strength than others. Similarly, some pins can tolerate higher than VDD input levels.

10.1.1 PIN OUTPUT DRIVE

The output pin drive strengths vary for groups of pins intended to meet the needs for a variety of applications. PORTB and PORTC are designed to drive higher loads, such as LEDs. All other ports are designed for small loads, typically indication only. Table 10-1 summarizes the output capabilities. Refer to Section 30.0 "Electrical Characteristics" for more details.

TABLE 10-1: OUTPUT DRIVE LEVELS

Port	Drive	Description		
PORTA				
PORTD	Minimum	Intended for indication.		
PORTE				
PORTB	High	Suitable for direct LED drive		
PORTC	nign	levels.		

10.1.2 INPUT PINS AND VOLTAGE CONSIDERATIONS

The voltage tolerance of pins used as device inputs is dependent on the pin's input function. Pins that are used as digital only inputs are able to handle DC voltages up to 5.5V; a level typical for digital logic circuits. In contrast, pins that also have analog input functions of any kind can only tolerate voltages up to VDD. Voltage excursions beyond VDD on these pins should be avoided. Table 10-2 summarizes the input capabilities. Refer to **Section 30.0 "Electrical Characteristics"** for more details.

TABLE 10-2: INPUT VOLTAGE LEVELS

Port or Pin Tolerated Input		Description		
PORTA<7:0>				
PORTB<3:0>	Vpp	Only VDD input levels		
PORTC<2:0>	VDD	are tolerated.		
PORTE<2:0>				
PORTB<7:4>		Tolerates input levels		
PORTC<7:3>	5.5V	above VDD, useful for		
PORTD<7:0>		most standard logic.		

10.7.6 PERIPHERAL PIN SELECT REGISTERS

The PIC18F47J13 Family of devices implements a total of 37 registers for remappable peripheral configuration of 44-pin devices. The 28-pin devices have 31 registers for remappable peripheral configuration.

Note: Input and output register values can only be changed if IOLOCK (PPSCON<0>) = 0. See Example 10-7 for a specific command sequence.

REGISTER 10-5: PPSCON: PERIPHERAL PIN SELECT INPUT REGISTER 0 (BANKED EBFh)⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—		—	—	—	—	IOLOCK
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-1 Unimplemented: Read as '0'

bit 0

IOLOCK: I/O Lock Enable bit

1 = I/O lock is active, RPORx and RPINRx registers are write-protected
 0 = I/O lock is not active, pin configurations can be changed

Note 1: Register values can only be changed if IOLOCK (PPSCON<0>) = 0.

REGISTER 10-6: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1 (BANKED EE1h)

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	INTR1R4	INTR1R3	INTR1R2	INTR1R1	INTR1R0
bit 7							bit 0

Legend:	R/\overline{W} = Readable bit, Writable bit if IOLOCK = 0		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5Unimplemented: Read as '0'bit 4-0INTR1R<4:0>: Assign External Interrupt 1 (INT1) to the Corresponding RPn Pin bits

REGISTER 10-7: RPINR2: PERIPHERAL PIN SELECT INPUT REGISTER 2 (BANKED EE2h)

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	INTR2R4	INTR2R3	INTR2R2	INTR2R1	INTR2R0
bit 7							bit 0

Legend:	R/\overline{W} = Readable bit, Writable bit if IOLOCK = 0		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5 **Unimplemented:** Read as '0'

bit 4-0 INTR2R<4:0>: Assign External Interrupt 2 (INT2) to the Corresponding RPn Pin bits

REGISTER 11-5: PMEH: PARALLEL PORT ENABLE REGISTER HIGH BYTE (BANKED F57h)⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTEN15	PTEN14	PTEN13	PTEN12	PTEN11	PTEN10	PTEN9	PTEN8
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	PTEN<15:14>: PMCS Port Enable bits
	1 = PMA<15:14> function as either PMA<15:14> or PMCS 0 = PMA<15:14> function as port I/O
bit 5-0	PTEN<13:8>: PMP Address Port Enable bits
	1 = PMA<13:8> function as PMP address lines
	0 = PMA<13:8> function as port I/O

Note 1: This register is only available on 44-pin devices.

REGISTER 11-6: PMEL: PARALLEL PORT ENABLE REGISTER LOW BYTE (BANKED F56h)⁽¹⁾

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| PTEN7 | PTEN6 | PTEN5 | PTEN4 | PTEN3 | PTEN2 | PTEN1 | PTEN0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-2	PTEN<7:2>: PMP Address Port Enable bits
	1 = PMA<7:2> function as PMP address lines
	0 = PMA<7:2> function as port I/O
bit 1-0	PTEN<1:0>: PMALH/PMALL Strobe Enable bits
	1 = PMA<1:0> function as either PMA<1:0> or PMALH and PMALL
	0 = PMA<1:0> pads functions as port I/O

Note 1: This register is only available on 44-pin devices.

Calibration of the crystal can be done through this module to yield an error of 3 seconds or less per month.

(For further details, see Section 17.2.9 "Calibration".)

17.2.2 CLOCK SOURCE

As mentioned earlier, the RTCC module is intended to be clocked by an external Real-Time Clock (RTC) crystal oscillating at 32.768 kHz, but can also be clocked by the INTRC. The RTCC clock selection is decided by the RTCOSC bit (CONFIG3L<1>).

FIGURE 17-4: CLOCK SOURCE MULTIPLEXING

17.2.2.1 Real-Time Clock Enable

The RTCC module can be clocked by an external, 32.768 kHz crystal (Timer1 oscillator or T1CKI input) or the INTRC oscillator, which can be selected in CON-FIG3L<1>.

If the Timer1 oscillator will be used as the clock source for the RTCC, make sure to enable it by setting T1CON<3> (T1OSCEN). The selected RTC clock can be brought out to the RTCC pin by the RTSECSEL<1:0> bits in the PADCFG1 register.

17.2.3 DIGIT CARRY RULES

This section explains which timer values are affected when there is a rollover.

- Time of Day: From 23:59:59 to 00:00:00 with a carry to the Day field
- Month: From 12/31 to 01/01 with a carry to the Year field
- Day of Week: From 6 to 0 with no carry (see Table 17-1)
- Year Carry: From 99 to 00; this also surpasses the use of the RTCC

For the day to month rollover schedule, see Table 17-2.

Considering that the following values are in BCD format, the carry to the upper BCD digit will occur at a count of 10 and not at 16 (SECONDS, MINUTES, HOURS, WEEKDAY, DAYS and MONTHS).

TABLE 17-1:	DAY OF WEEK SCHEDULE
ADEE 17-1.	DAT OF MELK SOULDOLL

Day of Week					
Sunday	0				
Monday	1				
Tuesday	2				
Wednesday	3				
Thursday	4				
Friday	5				
Saturday	6				

19.4 PWM (Enhanced Mode)

The Enhanced PWM mode can generate a PWM signal on up to four different output pins with up to 10 bits of resolution. It can do this through four different PWM Output modes:

- Single PWM mode
- Half-Bridge PWM mode
- Full-Bridge PWM, Forward mode
- Full-Bridge PWM, Reverse mode

To select an Enhanced PWM mode, the PxM bits of the CCPxCON register must be set appropriately.

The PWM outputs are multiplexed with I/O pins and are designated: PxA, PxB, PxC and PxD. The polarity of the PWM pins is configurable and is selected by setting the CCPxM bits in the CCPxCON register appropriately.

Table 19-1 provides the pin assignments for each Enhanced PWM mode.

Figure 19-3 provides an example of a simplified block diagram of the Enhanced PWM module.

Note: To prevent the generation of an incomplete waveform when the PWM is first enabled, the ECCP module waits until the start of a new PWM period before generating a PWM signal.

FIGURE 19-3: SIMPLIFIED BLOCK DIAGRAM OF THE ENHANCED PWM MODE EXAMPLE

Note 1: The TRIS register value for each PWM output must be configured appropriately.2: Any pin not used by an Enhanced PWM mode is available for alternate pin functions.

Note 1: Port outputs are configured as displayed when the CCPxCON register bits, PxM<1:0> = 00 and CCP1M<3:2> = 11.

2: Single PWM output requires setting at least one of the STR<D:A> bits.

19.4.7.1 Steering Synchronization

The STRSYNC bit of the PSTRxCON register gives the user two choices for when the steering event will happen. When the STRSYNC bit is '0', the steering event will happen at the end of the instruction that writes to the PSTRxCON register. In this case, the output signal at the Px<D:A> pins may be an incomplete PWM waveform. This operation is useful when the user firmware needs to immediately remove a PWM signal from the pin.

When the STRSYNC bit is '1', the effective steering update will happen at the beginning of the next PWM period. In this case, steering on/off the PWM output will always produce a complete PWM waveform.

Figure 19-17 and Figure 19-18 illustrate the timing diagrams of the PWM steering depending on the STRSYNC setting.

FIGURE 19-17: EXAMPLE OF STEERING EVENT AT END OF INSTRUCTION (STRSYNC = 0)

FIGURE 19-18: EXAMPLE OF STEERING EVENT AT BEGINNING OF INSTRUCTION (STRSYNC = 1)

REGISTER 20-2: SSPxCON1: MSSPx CONTROL REGISTER 1 (SPI MODE) (1, ACCESS FC6h; 2, F72h)

R/W-0	R/C-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
WCOL	SSPOV ⁽¹⁾	SSPEN ⁽²⁾	CKP	SSPM3 ⁽³⁾	SSPM2 ⁽³⁾	SSPM1 ⁽³⁾	SSPM0 ⁽³⁾	
bit 7				·			bit 0	
Legend:		C = Clearable	bit					
R = Reada	able bit	W = Writable I	oit	U = Unimplem	ented bit, read	d as '0'		
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	
bit 7	WCOL: Write 1 = The SSP software) 0 = No collisi	Collision Detec xBUF register i on	et bit s written while	e it is still transm	itting the previ	ous word (mus	t be cleared in	
dit 6	 bit 6 SSPOV: Receive Overflow Indicator bit⁽¹⁾ <u>SPI Slave mode:</u> 1 = A new byte is received while the SSPxBUF register is still holding the previous data. In case of over flow, the data in SSPxSR is lost. Overflow can only occur in Slave mode. The user must read th SSPxBUF, even if only transmitting data, to avoid setting overflow (must be cleared in software). 							
bit 5	SSPEN: Mas	ter Synchronou	s Serial Port E	Enable bit ⁽²⁾				
	1 = Enables s 0 = Disables s	erial port and c serial port and c	onfigures SCI configures the	<pre>Kx, SDOx, SDIx se pins as I/O p</pre>	and SSx as se ort pins	erial port pins		
bit 4	CKP: Clock F	olarity Select b	it					
	1 = Idle state 0 = Idle state	for clock is a hi for clock is a lo	gh level w level					
bit 3-0	SSPM<3:0>:	Master Synchro	onous Serial F	ort Mode Selec	t bits ⁽³⁾			
0101 = SPI Slave mode, clock = SCKx pin; <u>SSx</u> pin control disabled, <u>SSx</u> can be used as I/O pin 0100 = SPI Slave mode, clock = SCKx pin; <u>SSx</u> pin control enabled 0011 = SPI Master mode, clock = TMR2 output/2 0010 = SPI Master mode, clock = Fosc/64 0001 = SPI Master mode, clock = Fosc/16 1010 = SPI Master mode, clock = Fosc/8 0000 = SPI Master mode, clock = Fosc/4							as I/O pin	
Note 1:	In Master mode, t writing to the SSF	he overflow bit ABUF register.	is not set sinc	e each new rec	eption (and tra	insmission) is ir	nitiated by	

- 2: When enabled, this pin must be properly configured as input or output.
- 3: Bit combinations not specifically listed here are either reserved or implemented in I²C mode only.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SSCON1	SSCON0	TXINC	RXINC	DUPLEX1	DUPLEX0	DLYINTEN	DMAEN
bit 7							bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 7-6	SSCON<1:0>	SSDMA Out	put Control bi	ts (Master mode	es only)		
	11 = SSDMA	is asserted for	the duration	of 4 bytes; DLY	INTEN is alway	ys reset low	
	01 = SSDMA	is asserted for	the duration	of 1 bytes; DLf	NTEN is alway	s reset low	
	00 = SSDMA	is not controlle	ed by the DM	A module; the D	LYINTEN bit is	software progra	ammable
bit 5	TXINC: Trans	smit Address Ir	crement Ena	ble bit			
	Allows the tra	nsmit address	to increment	as the transfer	progresses.		
	1 = The trans	mit address is	to be increme	ented from the i	nitial value of T	XADDR<11:0>	
	0 = The trans	mit address is	always set to	the initial value	of TXADDR<1	1:0>	
bit 4	RXINC: Rece	ive Address In	crement Enal	ole bit			
	Allows the red	ceive address f	to increment a	as the transfer p	orogresses.		
	1 = The recei	ved address is	to be increm	ented from the i	initial value of F	RXADDR<11:0>	
	0 = The recei	ved address is	always set to	the initial value	e of RXADDR<	11:0>	
bit 3-2	DUPLEX<1:0		eceive Operat	ing Mode Selec			¹
	10 = SPIDM	A operates in F erates in Half-I	-ull-Duplex m Duplex mode	ode; data is sim data is transmi	iultaneously tra	nsmitted and re	ceived
	00 = DMA op	erates in Half-I	Duplex mode:	data is receive	d only		
bit 1	DLYINTEN:	Delay Interrupt	Enable bit		5		
	Enables the i	nterrupt to be	invoked after	the number of	TCY cycles sp	ecified in DLYC	YC<2:0> has
	elapsed from	the latest com	pleted transfe	er.			
	1 = The interr	rupt is enabled	; SSCON<1:0	> must be set t	o '00'		
	0 = The interr	upt is disabled					
bit 0	DMAEN: DM	A Operation St	art/Stop bit				
	This bit is set engine when	: by the users' the DMA opera	software to station is compl	tart the DMA op eted or aborted	eration. It is re	eset back to zero	o by the DMA
	1 = DMA is in	session					

21.0 ENHANCED UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (EUSART)

The Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) module is one of two serial I/O modules. (Generically, the EUSART is also known as a Serial Communications Interface or SCI.) The EUSART can be configured as a full-duplex asynchronous system that can communicate with peripheral devices, such as CRT terminals and personal computers. It can also be configured as a half-duplex synchronous system that can communicate with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs and so on.

The Enhanced USART module implements additional features, including Automatic Baud Rate Detection and calibration, automatic wake-up on Sync Break reception, and 12-bit Break character transmit. These make it ideally suited for use in Local Interconnect Network bus (LIN/J2602 bus) systems.

All members of the PIC18F47J13 Family are equipped with two independent EUSART modules, referred to as EUSART1 and EUSART2. They can be configured in the following modes:

- Asynchronous (full-duplex) with:
 - Auto-wake-up on character reception
 - Auto-baud calibration
 - 12-bit Break character transmission
- Synchronous Master (half-duplex) with selectable clock polarity
- Synchronous Slave (half-duplex) with selectable clock polarity

The pins of EUSART1 and EUSART2 are multiplexed with the functions of PORTC (RC6/CCP9/PMA5/TX1/CK1/RP17 and RC7/CCP10/PMA4/RX1/DT1/RP18), and remapped (RPn1/TX2/CK2 and RPn2/RX2/DT2), respectively. In order to configure these pins as an EUSART:

- For EUSART1:
 - SPEN bit (RCSTA1<7>) must be set (= 1)
 - TRISC<7> bit must be set (= 1)
 - TRISC<6> bit must be cleared (= 0) for Asynchronous and Synchronous Master modes
 - TRISC<6> bit must be set (= 1) for Synchronous Slave mode
- For EUSART2:
 - SPEN bit (RCSTA2<7>) must be set (= 1)
 - TRIS bit for RPn2/RX2/DT2 = 1
 - TRIS bit for RPn1/TX2/CK2 = 0 for Asynchronous and Synchronous Master modes
 - TRISC<6> bit must be set (= 1) for Synchronous Slave mode

Note:	The EUSART control will automatically
	reconfigure the pin from input to output as
	needed.

The TXx/CKx I/O pins have an optional open-drain output capability. By default, when this pin is used by the EUSART as an output, it will function as a standard push-pull CMOS output. The TXx/CKx I/O pins' open-drain, output feature can be enabled by setting the corresponding UxOD bit in the ODCON2 register. For more details, see Section 20.3.3 "Open-Drain Output Option".

The operation of each Enhanced USART module is controlled through three registers:

- Transmit Status and Control (TXSTAx)
- Receive Status and Control (RCSTAx)
- Baud Rate Control (BAUDCONx)

These are covered in detail in Register 21-1, Register 21-2 and Register 21-3, respectively.

Note: Throughout this section, references to register and bit names that may be associated with a specific EUSART module are referred to generically by the use of 'x' in place of the specific module number. Thus, "RCSTAx" might refer to the Receive Status register for either EUSART1 or EUSART2.

REGISTER 21-2: RCSTAX: RECEIVE STATUS AND CONTROL REGISTER (1 ACCESS FACh: 2 FC9h)

	(1, A	CCESS FACh	; 2, FC9h)				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	IOWN
hit 7		l Dort Enchlo hi	4				
DIL 7	1 = Serial no		L				
	0 = Serial po	ort disabled (hel	d in Reset)				
bit 6	RX9: 9-Bit R	eceive Enable b	pit				
	1 = Selects	9-bit reception					
	0 = Selects	8-bit reception					
bit 5	SREN: Singl	e Receive Enab	le bit				
	Asynchronou	<u>us mode</u> :					
	Synchronous	s mode - Maste	r.				
	1 = Enables	single receive	<u>L.</u>				
	0 = Disables	s single receive					
	This bit is cle	eared after recept	otion is comple	ete.			
	<u>Synchronous</u> Don't care.	s mode – Slave:					
bit 4	CREN: Cont	inuous Receive	Enable bit				
	<u>Asynchronou</u>	<u>us mode:</u>					
	1 = Enables	receiver					
	0 = Disables	s receiver					
	1 = Enables	s continuous rec	eive until enab	le bit. CREN. is	cleared (CRE	N overrides SR	EN)
	0 = Disables	s continuous rec	eive				
bit 3	ADDEN: Add	dress Detect En	able bit				
	Asynchronou	us mode 9-Bit (F	<u>RX9 = 1)</u> :				
	1 = Enables	address detect	ion, enables ir	terrupt and load	ds the receive l	buffer when RS	R<8> is set
		is mode 8-Bit (F	2X0 = 0	are received an		an be used as	a parity bit
	Don't care.		<u>(// 9 – 0)</u> .				
bit 2	FERR: Fram	ing Error bit					
	1 = Framing	error (can be c	leared by read	ling the RCREG	Sx register and	receiving the n	ext valid byte)
	0 = No fram	ing error					
bit 1	OERR: Over	run Error bit					
	$\perp = Overrun$ 0 = No over	run error	eared by clea	ning bit, CREN)			
bit 0		t of Received D	ata				
	This can be a	an address/data	bit or a paritv	bit and must be	e calculated by	user firmware.	

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as inputs. To determine acquisition time, see Section 22.1 "A/D Acquisition Requirements". After this acquisition time has elapsed, the A/D conversion can be started. An acquisition time can be programmed to occur between setting the GO/DONE bit and the actual start of the conversion.

The following steps should be followed to do an A/D conversion:

- 1. Configure the A/D module:
 - Configure the required ADC pins as analog pins using ANCON0, ANCON1
 - Set voltage reference using ADCON0
 - Select A/D input channel (ADCON0)
 - Select A/D acquisition time (ADCON1)
 - Select A/D conversion clock (ADCON1)
 - Turn on A/D module (ADCON0)

- 2. Configure A/D interrupt (if desired):
 - Clear ADIF bit
 - Set ADIE bit
 - Set GIE bit
- 3. Wait the required acquisition time (if required).
- 4. Start conversion:
 - Set GO/DONE bit (ADCON0<1>)
- 5. Wait for A/D conversion to complete, by either:
 Polling for the GO/DONE bit to be cleared OR
 - Waiting for the A/D interrupt
- 6. Read A/D Result registers (ADRESH:ADRESL); clear bit, ADIF, if required.
- 7. For the next conversion, go to Step 1 or Step 2, as required. The A/D conversion time per bit is defined as TAD. A minimum Wait of 2 TAD is required before the next acquisition starts.

REGISTER 27-8: CONFIG4H: CONFIGURATION REGISTER 4 HIGH (BYTE ADDRESS 300007h)

U-1	U-1	U-1	U-1	U-0	U-0	R/WO-1	R/WO-1	
—	—	—	—	—	—	WPEND	WPDIS	
bit 7 bit 0								

Legend:			
R = Readable bit	WO = Write-Once bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-4	Unimplemented: Program the corresponding Flash Configuration bit to '1'
bit 3-2	Unimplemented: Read as '0'
bit 1	WPEND: Write-Protect Disable bit
	 1 = Flash pages, WPFP<6:0> to (Configuration Words page), are erase/write-protected 0 = Flash pages 0 to WPFP<6:0> are erase/write-protected
bit 0	WPDIS: Write-Protect Disable bit
	 1 = WPFP<5:0>, WPEND and WPCFG bits are ignored; all Flash memory may be erased or written 0 = WPFP<5:0>, WPEND and WPCFG bits are enabled; erase/write-protect is active for the selected region(s)

REGISTER 27-9: DEVID1: DEVICE ID REGISTER 1 FOR PIC18F47J13 FAMILY DEVICES (BYTE ADDRESS 3FFFFEh)

R	R	R	R	R	R	R	R
DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

 bit 7-5
 DEV<2:0>: Device ID bits

 These bits are used with DEV<10:3> bits in Device ID Register 2 to identify the part number. See

 Register 27-10.

 bit 4-0
 REV<4:0>: Revision ID bits

These bits are used to indicate the device revision.

PIC18F47J13 FAMILY

ANDWF	AND W wit	th f		вс		Branch if (Carry	
Syntax:	ANDWF	f {,d {,a}}		Syn	tax:	BC n		
Operands:	$0 \leq f \leq 255$	$0 \le f \le 255$			rands:	-128 ≤ n ≤ ′	127	
	d ∈ [0,1] a ∈ [0,1]		Ope	ration:	if Carry bit i (PC) + 2 + 2	s '1', 2n → PC		
Operation:	(W) .AND.	(f) \rightarrow dest		Stat	us Affected:	None		
Status Affected:	N, Z			Enc	Encoding		0010 nni	nn nnnn
Encoding:	0001	01da ff	ff ffff	Des	cription.	If the Carry	bit is '1' then	the program
Description:	The conten	its of W are Al	NDed with	200		will branch.		the program
	register 'f'. in W. If 'd' is in register '	If 'd' is '0', the s '1', the result f' (default).	result is stored is stored back			The 2's cor added to th incremente	nplement num e PC. Since th d to fetch the r	ber '2n' is e PC will have next
	If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default).				instruction, the new address will be PC + 2 + 2n. This instruction is then a 2-cycle instruction.			
	lf 'a' is ' 0' a	ind the extend	ed instruction	Wor	ds:	1		
	set is enab	led, this instru	ction operates	Сус	es:	1(2)		
	mode wher Section 28	1ever f ≤ 95 (5 3.2.3 "Byte-Or	Fh). See	Q (If J	Cycle Activity: ump:			
	Bit-Oriente	ed Instruction	is in Indexed		Q1	Q2	Q3	Q4
	Literal Offs	set Mode" for	details.		Decode	Read literal	Process	Write to
Words:	1				No	'n'	Data	PC
Cycles:	1				operation	operation	operation	operation
Q Cycle Activity:				lf N	o Jump:			
Q1	Q2	Q3	Q4	1	Q1	Q2	Q3	Q4
Decode	Read register 'f'	Process	Write to destination		Decode	Read literal	Process	No
	register i	Dutu	destinution			'n'	Data	operation
Example:	ANDWF	REG, 0, 0		<u>Exa</u>	mple:	HERE	BC 5	
Before Instruct W REG	ction = 17h = C2h				Before Instruction PC	ction = ad on	dress (HERE))
Atter Instructi W REG	on = 02h = C2h				If Carry PC If Carry PC	= 1; = ad = 0; = ad	dress (HERE dress (HERE	+ 12) + 2)

PIC18F47J13 FAMILY

BTFSC		Bit Test File, Skip if Clear			BTFS	s	Bit Test File, Skip if Set			
Syntax:		BTFSC f, b {,a}			Synta	IX:	BTFSS f, b {,a}			
Operands:		$\begin{array}{l} 0 \leq f \leq 255 \\ 0 \leq b \leq 7 \\ a \in [0,1] \end{array}$			Opera	ands:	$0 \le f \le 255$ $0 \le b < 7$ $a \in [0,1]$			
Operation:		skip if (f) = 0			Opera	peration: skip if (f) = 1				
Status Affected:		None			Statu	s Affected:	None			
Encoding:		1011 bbba ffff ffff			Enco	ding:	1010 bbba ffff fff			
Description:		If bit 'b' in reginstruction is the next instruction current instruction and a NOP is this a 2-cycle	gister 'f' is '0', t skipped. If bit ruction fetched action executio executed instruction.	hen the next 'b' is '0', then during the n is discarded ead, making	Desc	ription:	If bit 'b' in register 'f' is '1', then the next instruction is skipped. If bit 'b' is '1', then the next instruction fetched during the current instruction execution is discarded and a NOP is executed instead, making this a 2-cycle instruction.			
		If 'a' is '0', th 'a' is '1', the GPR bank (c	e Access Bank BSR is used to lefault).	is selected. If select the			If 'a' is '0', th 'a' is '1', the GPR bank (o	e Access Bank BSR is used to lefault).	is selected. If select the	
		If 'a' is '0' and is enabled, th Indexed Liter whenever f ≤ Section 28.2 Bit-Oriented Literal Offse	d the extended nis instruction of ral Offset Addre 95 (5Fh). See 2.3 "Byte-Orie I Instructions et Mode" for de	instruction set operates in essing mode nted and in Indexed etails.			If 'a' is '0' an set is enable Indexed Lite whenever f ≤ Section 28.2 Bit-Oriented Literal Offse	d the extended d, this instruction ral Offset Addre 95 (5Fh). See 2.3 "Byte-Orie I Instructions et Mode" for de	l instruction on operates in essing mode nted and in Indexed etails.	
Word	ls:	1			Word	S:	1			
Cycles:		1(2) Note: 3 cycles if skip and followed by a 2-word instruction.			Cycle	s: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction.			d followed ction.	
Q Cycle Activity:					QC	cle Activity:				
	Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4	
	Decode	Read register 'f'	Process Data	No operation		Decode	Read register 'f'	Process Data	No operation	
lf sk	ip:				lf ski	p:		_ 0.0		
	Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4	
	No	No	No	No		No	No	No	No	
	operation	operation	operation	operation		operation	operation	operation	operation	
If skip and followed		by 2-word instruction:		lf ski	p and followed	by 2-word instruction:				
	Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4	
	No	No	No	No		No	No	No	No	
	No	No	No	No		No	No	No	No	
	operation	operation	operation	operation		operation	operation	operation	operation	
Example: HERE BTFSC FLAG, 1, 0 FALSE : TRUE :		Example: HERE BTFSS FLAG, 1, 0 FALSE : TRUE :								
Before Instruction PC = address (HERE) After Instruction If FLAG<1> = 0; PC = address (TRUE) If FLAG<1> = 1; PC = address (FALSE)					Before Instruction PC = address (HERE) After Instruction If FLAG<1> = 0; PC = address (FALSE) If FLAG<1> = 1; PC = address (TRUE)					

Param No.	Symbol	Characteristic	Min	Мах	Units	Conditions		
120	TCKH2DTV	<u>Sync XMIT (Master and Slave)</u> Clock High to Data Out Valid		40	ns			
121	TCKRF	Clock Out Rise Time and Fall Time (Master mode)	—	20	ns			
122	TDTRF	Data Out Rise Time and Fall Time		20	ns			

TABLE 30-29: EUSARTx SYNCHRONOUS TRANSMISSION REQUIREMENTS

FIGURE 30-22: EUSARTx SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 30-30: EUSARTx SYNCHRONOUS RECEIVE REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Мах	Units	Conditions
125	TDTV2CKL	Sync RCV (Master and Slave) Data Hold before CKx \downarrow (DTx hold time)	10	_	ns	
126	TCKL2DTL	Data Hold after CKx \downarrow (DTx hold time)	15	—	ns	

Package Marking Information (Continued)

44-Lead QFN

Example

44-Lead TQFP

Example

