

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 2.75V
Data Converters	A/D 10x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf26j13t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1:	DEVICE FEATURES FOR THE PIC18F2XJ13 (28-PIN DEVICES)

Features	PIC18F26J13	PIC18F27J13	
Operating Frequency	DC – 48 MHz	DC – 48 MHz	
Program Memory (Kbytes)	64	128	
Program Memory (Instructions)	32,768	65,536	
Data Memory (Kbytes)	3.8	3.8	
Interrupt Sources	3	0	
I/O Ports	Ports /	A, B, C	
Timers	8	3	
Enhanced Capture/Compare/PWM Modules	3 ECCP a	ind 7 CCP	
Serial Communications	MSSP (2), Enha	nced USART (2)	
Parallel Communications (PMP/PSP)	N	lo	
10/12-Bit Analog-to-Digital Module	10 Input	Channels	
Resets (and Delays)	POR, BOR, RESET Instruction, Stack Full, Stack Underflow, MCI (PWRT, OST)		
Instruction Set	75 Instructions, 83 with Extended Instruction Set Enabled		
Packages	28-Pin QFN, SOIC, SSO	OP and SPDIP (300 mil)	

TABLE 1-2: DEVICE FEATURES FOR THE PIC18F4XJ13 (44-PIN DEVICES)

Features	PIC18F46J13	PIC18F47J13
Operating Frequency	DC – 48 MHz	DC – 48 MHz
Program Memory (Kbytes)	64	128
Program Memory (Instructions)	32,768	65,536
Data Memory (Kbytes)	3.8	3.8
Interrupt Sources	3	0
I/O Ports	Ports A, E	B, C, D, E
Timers	8	3
Enhanced Capture/Compare/PWM Modules	3 ECCP a	IND 7 CCP
Serial Communications	MSSP (2), Enha	nced USART (2)
Parallel Communications (PMP/PSP)	Ye	es
10/12-Bit Analog-to-Digital Module	13 Input	Channels
Resets (and Delays)		k Full, Stack Underflow, MCLR, WDT T, OST)
Instruction Set	75 Instructions, 83 with Exter	nded Instruction Set Enabled
Packages	44-Pin QFN	and TQFP

REGISTER 4-3: DSGPR0: DEEP SLEEP PERSISTENT GENERAL PURPOSE REGISTER 0 (BANKED F4Eh)

R/W-xxx	₍ (1)
Deep Sleep Persistent G	eneral Purpose bits
bit 7	bit 0
Legend:	

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 Deep Sleep Persistent General Purpose bits Contents are retained even in Deep Sleep mode.

Note 1: All register bits are maintained unless VDDCORE drops below the normal BOR threshold outside of Deep Sleep, or the device is in Deep Sleep and the dedicated DSBOR is enabled and VDD drops below the DSBOR threshold, or DSBOR is enabled or disabled, but VDD is hard cycled to near VSS.

REGISTER 4-4: DSGPR1: DEEP SLEEP PERSISTENT GENERAL PURPOSE REGISTER 1 (BANKED F4Fh)

R/W-xxxx ⁽¹⁾	
Deep Sleep Persistent General Purpose bits	
bit 7	bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 Deep Sleep Persistent General Purpose bits

Contents are retained even in Deep Sleep mode.

Note 1: All register bits are maintained unless VDDCORE drops below the normal BOR threshold outside of Deep Sleep, or the device is in Deep Sleep and the dedicated DSBOR is enabled and VDD drops below the DSBOR threshold, or DSBOR is enabled or disabled, but VDD is hard cycled to near Vss.

REGISTER 4-5: DSWAKEH: DEEP SLEEP WAKE HIGH BYTE REGISTER (BANKED F4Bh)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	DSINT0
bit 7	•				•	-	bit 0
Legend:							
R = Readable b	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 7-1 Unimplemented: Read as '0'

DSINT0: Interrupt-on-Change bit

1 = Interrupt-on-change was asserted during Deep Sleep

0 = Interrupt-on-change was not asserted during Deep Sleep

bit 0

Register	Applicable Devices		Sleep) Wake-up via WDT or Interrupt	
CM3CON	PIC18F2XJ13	PIC18F4XJ13	0001 1111	0001 1111	นนนน นนนน	
TMR5H	PIC18F2XJ13	PIC18F4XJ13	XXXX XXXX	นนนน นนนน	սսսս սսսս	
TMR5L	PIC18F2XJ13	PIC18F4XJ13	XXXX XXXX	սսսս սսսս	սսսս սսսս	
T5CON	PIC18F2XJ13	PIC18F4XJ13	0000 0000	սսսս սսսս	uuuu uuuu	
T5GCON	PIC18F2XJ13	PIC18F4XJ13	0000 0x00	uuuu uquu	uuuu uquu	
TMR6	PIC18F2XJ13	PIC18F4XJ13	0000 0000	0000 0000	uuuu uuuu	
PR6	PIC18F2XJ13	PIC18F4XJ13	1111 1111	1111 1111	นนนน นนนน	
T6CON	PIC18F2XJ13	PIC18F4XJ13	-000 0000	-000 0000	-uuu uuuu	
TMR8	PIC18F2XJ13	PIC18F4XJ13	0000 0000	0000 0000	սսսս սսսս	
PR8	PIC18F2XJ13	PIC18F4XJ13	1111 1111	1111 1111	uuuu uuuu	
T8CON	PIC18F2XJ13	PIC18F4XJ13	-000 0000	-000 0000	-uuu uuuu	
PSTR3CON	PIC18F2XJ13	PIC18F4XJ13	00-0 0001	00-0 0001	uu-u uuuu	
ECCP3AS	PIC18F2XJ13	PIC18F4XJ13	0000 0000	0000 0000	uuuu uuuu	
ECCP3DEL	PIC18F2XJ13	PIC18F4XJ13	0000 0000	0000 0000	uuuu uuuu	
CCPR3H	PIC18F2XJ13	PIC18F4XJ13	XXXX XXXX	uuuu uuuu	uuuu uuuu	
CCPR3L	PIC18F2XJ13	PIC18F4XJ13	XXXX XXXX	սսսս սսսս	uuuu uuuu	
CCP3CON	PIC18F2XJ13	PIC18F4XJ13	0000 0000	0000 0000	uuuu uuuu	
CCPR4H	PIC18F2XJ13	PIC18F4XJ13	XXXX XXXX	սսսս սսսս	uuuu uuuu	
CCPR4L	PIC18F2XJ13	PIC18F4XJ13	XXXX XXXX	սսսս սսսս	uuuu uuuu	
CCP4CON	PIC18F2XJ13	PIC18F4XJ13	00 0000	00 0000	uu uuuu	
CCPR5H	PIC18F2XJ13	PIC18F4XJ13	XXXX XXXX	սսսս սսսս	uuuu uuuu	
CCPR5L	PIC18F2XJ13	PIC18F4XJ13	XXXX XXXX	սսսս սսսս	սսսս սսսս	
CCP5CON	PIC18F2XJ13	PIC18F4XJ13	00 0000	00 0000	uu uuuu	
CCPR6H	PIC18F2XJ13	PIC18F4XJ13	XXXX XXXX	սսսս սսսս	uuuu uuuu	
CCPR6L	PIC18F2XJ13	PIC18F4XJ13	XXXX XXXX	uuuu uuuu	uuuu uuuu	
CCP6CON	PIC18F2XJ13	PIC18F4XJ13	00 0000	00 0000	uu uuuu	
CCPR7H	PIC18F2XJ13	PIC18F4XJ13	XXXX XXXX	սսսս սսսս	սսսս սսսս	
CCPR7L	PIC18F2XJ13	PIC18F4XJ13	XXXX XXXX	սսսս սսսս	սսսս սսսս	
CCP7CON	PIC18F2XJ13	PIC18F4XJ13	00 0000	00 0000	00 0000	
CCPR8H	PIC18F2XJ13	PIC18F4XJ13	XXXX XXXX	սսսս սսսս	սսսս սսսս	
CCPR8L	PIC18F2XJ13	PIC18F4XJ13	XXXX XXXX	սսսս սսսս	սսսս սսսս	
CCP8CON	PIC18F2XJ13	PIC18F4XJ13	00 0000	00 0000	uu uuuu	

TABLE 5-2: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

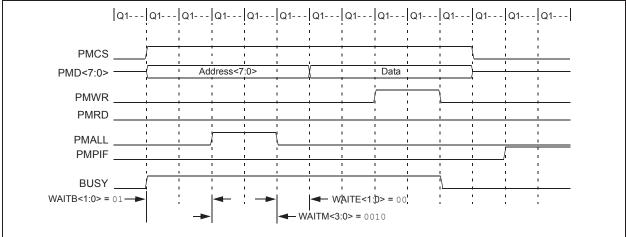
Legend: u = unchanged, x = unknown, – = unimplemented bit, read as '0', q = value depends on condition.

Note 1: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

- 2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).
- 3: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).
- 4: See Table 5-1 for the Reset value for a specific condition.
- 5: Not implemented on PIC18F2XJ13 devices.
- 6: Not implemented on "LF" devices.

PIC18F47J13 FAMILY

Pin	Function	TRIS Setting	I/O	I/O Type	Description
RA0/AN0/C1INA/	RA0	1	I	TTL	PORTA<0> data input; disabled when analog input is enabled.
ULPWU/PMA6/		0	0	DIG	LATA<0> data output; not affected by analog input.
RP0	AN0	1	I	ANA	A/D Input Channel 0 and Comparator C1- input. Default input configuration on POR; does not affect digital output.
	C1INA	1	Ι	ANA	Comparator 1 Input A.
	ULPWU	1	Ι	ANA	Ultra low-power wake-up input.
	PMA6 ⁽¹⁾	х	I/O	ST/TTL/ DIG	Parallel Master Port digital I/O.
	RP0	1	Ι	ST	Remappable Peripheral Pin 0 input.
		0	0	DIG	Remappable Peripheral Pin 0 output.
RA1/AN1/C2INA/	RA1	1	Ι	TTL	PORTA<1> data input; disabled when analog input is enabled.
VBG/CTDIN/		0	0	DIG	LATA<1> data output; not affected by analog input.
PMA7/RP1	AN1	1	Ι	ANA	A/D Input Channel 1 and Comparator C2- input. Default input configuration on POR; does not affect digital output.
	C2INA	1	Ι	ANA	Comparator 1 Input A.
	Vbg	х	0	ANA	Band Gap Voltage Reference output. (Enabled by setting the VBGOE bit (WDTCON<4>.)
	CTDIN	1	Ι	ST	CTMU pulse delay input.
	PMA7 ⁽¹⁾	1	Ι	ST/TTL	Parallel Master Port (io_addr_in[7]).
		0	0	DIG	Parallel Master Port address.
	RP1	1	Ι	ST	Remappable Peripheral Pin 1 input.
		0	0	DIG	Remappable Peripheral Pin 1 output
RA2/AN2/C2INB/ C1IND/C3INB/	RA2	0	0	DIG	LATA<2> data output; not affected by analog input. Disabled when CVREF output is enabled.
VREF-/CVREF		1	I	TTL	PORTA<2> data input. Disabled when analog functions are enabled; disabled when CVREF output is enabled.
	AN2	1	Ι	ANA	A/D Input Channel 2 and Comparator C2+ input. Default input configuration on POR; not affected by analog output.
	C2INB	1	Ι	ANA	Comparator 2 Input B.
		0	0	ANA	CTMU pulse generator charger for the C2INB comparator input.
	C1IND	1	Ι	ANA	Comparator 1 Input D.
	C3INB	1	Ι	ANA	Comparator 3 Input B.
	VREF-	1	Ι	ANA	A/D and comparator voltage reference low input.
	CVREF	х	0	ANA	Comparator voltage reference output. Enabling this feature disables digital I/O.
RA3/AN3/C1INB/	RA3	0	0	DIG	LATA<3> data output; not affected by analog input.
VREF+		1	Ι	TTL	PORTA<3> data input; disabled when analog input is enabled.
	AN3	1	I	ANA	A/D Input Channel 3 and Comparator C1+ input. Default input configuration on POR.
	C1INB	1	Ι	ANA	Comparator 1 Input B
	VREF+	1	Ι	ANA	A/D and comparator voltage reference high input.


TABLE 10-3: PORTA I/O SUMMARY

Legend: DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; ANA = Analog level input/output; x = Don't care (TRISx bit does not affect port direction or is overridden for this option)

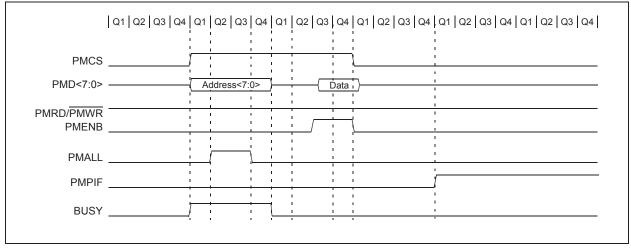

Note 1: This bit is only available on 44-pin devices (PIC18F46J13, PIC18F47J13, PIC18LF46J13 and PIC18LF47J13).

FIGURE 11-16: WRITE TIMING, 8-BIT DATA, WAIT STATES ENABLED, PARTIALLY MULTIPLEXED ADDRESS

FIGURE 11-17: READ TIMING, 8-BIT DATA, PARTIALLY MULTIPLEXED ADDRESS, ENABLE STROBE

13.8.2 TIMER1 GATE SOURCE SELECTION

The Timer1 gate source can be selected from one of four different sources. Source selection is controlled by the T1GSSx bits of the T1GCON register. The polarity for each available source is also selectable. Polarity selection is controlled by the T1GPOL bit of the T1GCON register.

	TABLE 13-4 :	TIMER1 GATE SOURCES	3
--	---------------------	---------------------	---

T1GSS<1:0>	Timer1 Gate Source
00	Timer1 Gate Pin
01	TMR2 matches PR2
10	Comparator 1 output
11	Comparator 2 output

13.8.2.1 T1G Pin Gate Operation

The T1G pin is one source for Timer1 gate control. It can be used to supply an external source to the Timer1 gate circuitry.

13.8.2.2 Timer2 Match Gate Operation

The TMR2 register will increment until it matches the value in the PR2 register. On the very next increment cycle, TMR2 will be reset to 00h. When this Reset

occurs, a low-to-high pulse will automatically be generated and internally supplied to the Timer1 gate circuitry. The pulse remains high for one instruction cycle and returns to low until the next match.

When T1GPOL = 1, Timer1 increments for a single instruction cycle following TMR2 matching PR2. With T1GPOL = 0, Timer1 increments except during the cycle following the match.

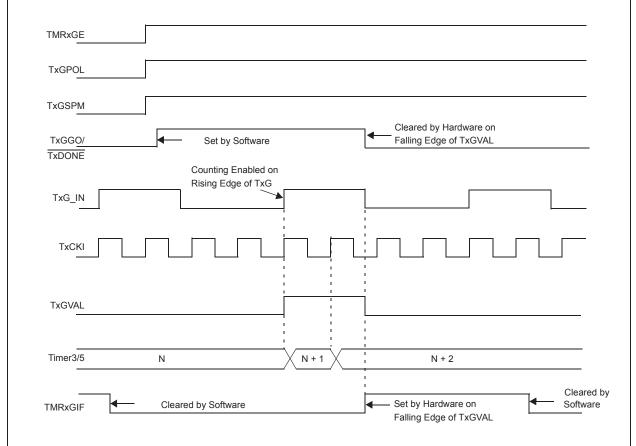
13.8.3 TIMER1 GATE TOGGLE MODE

When Timer1 Gate Toggle mode is enabled, it is possible to measure the full cycle length of a Timer1 gate signal, as opposed to the duration of a single level pulse.

The Timer1 gate source is routed through a flip-flop that changes state on every incrementing edge of the signal. See Figure 13-5 for timing details.

The T1GVAL bit will indicate when the Toggled mode is active and the timer is counting.

The Timer1 Gate Toggle mode is enabled by setting the T1GTM bit of the T1GCON register. When the T1GTM bit is cleared, the flip-flop is cleared and held clear. This is necessary in order to control which edge is measured.


15.5.4 TIMER3/5 GATE SINGLE PULSE MODE

When Timer3/5 Gate Single Pulse mode is enabled, it is possible to capture a single pulse gate event. Timer3/5 Gate Single Pulse mode is first enabled by setting the TxGSPM bit (TxGCON<4>). Next, the TxGGO/TxDONE bit (TxGCON<3>) must be set.

The Timer3/5 will be fully enabled on the next incrementing edge. On the next trailing edge of the pulse, the TxGGO/TxDONE bit will automatically be cleared. No other gate events will be allowed to increment Timer3/5 until the TxGGO/TxDONE bit is once again set in software.

Clearing the TxGSPM bit will also clear the TxGGO/TxDONE bit. (For timing details, see Figure 15-4.)

Simultaneously, enabling the Toggle mode and the Single Pulse mode will permit both sections to work together. This allows the cycle times on the Timer3/5 gate source to be measured. (For timing details, see Figure 15-5.)

FIGURE 15-4: TIMER3/5 GATE SINGLE PULSE MODE

17.6 Register Maps

Table 17-5, Table 17-6 and Table 17-7 summarize the registers associated with the RTCC module.

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RTCCFG	RTCEN	—	RTCWREN	RTCSYNC	HALFSEC	RTCOE	RTCPTR1	RTCPTR0	0000
RTCCAL	CAL7	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	0000
PADCFG1	_	—	_	—	_	RTSECSEL1	RTSECSEL0	PMPTTL	0000
ALRMCFG	ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMPTR0	0000
ALRMRPT	ARPT7	ARPT6	ARPT5	ARPT4	ARPT3	ARPT2	ARPT1	ARPT0	0000
PIR3	SSP2IF	BCL2IF	RC2IF	TX2IF	TMR4IF	CTMUIF	TMR3GIF	RTCCCIF	0000
PIE3	SSP2IE	BCL2IE	RC2IE	TX2IE	TMR4IE	CTMUIE	TMR3GIE	RTCCCIE	0000
IPR3	SSP2IP	BCL2IP	RC2IP	TX2IP	TMR4IP	CTMUIP	TMR3GIP	RTCCCIP	0000

TABLE 17-5: RTCC CONTROL REGISTERS

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal for 44-pin devices.

TABLE 17-6: RTCC VALUE REGISTERS

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RTCVALH	VALH RTCC Value Register Window High Byte, Based on RTCPTR<1:0>								XXXX
RTCVALL	RTCC Value Register Window Low Byte, Based on RTCPTR<1:0>								XXXX
RTCCFG	RTCEN	_	RTCWREN	RTCSYNC	HALFSEC	RTCOE	RTCPTR1	RTCPTR0	0000
ALRMCFG	ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMPTR0	0000
ALRMVALH	Alarm Value Register Window High Byte, Based on ALRMPTR<1:0>								XXXX
ALRMVALL	Alarm Value	Register Wi	ndow Low By	te, Based on	ALRMPTR<	:1:0>			XXXX

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal for 44-pin devices.

TABLE 17-7: ALARM VALUE REGISTERS

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ALRMRPT	ARPT7	ARPT6	ARPT5	ARPT4	ARPT3	ARPT2	ARPT1	ARPT0	0000
ALRMVALH	LH Alarm Value Register Window High Byte, Based on ALRMPTR<1:0>								
ALRMVALL	Alarm Value R	egister Windo	w Low Byte, E	Based on ALF	RMPTR<1:0>				XXXX
RTCCAL	CAL7	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	0000
RTCVALH	TCVALH RTCC Value Register Window High Byte, Based on RTCPTR<1:0>								
RTCVALL	LL RTCC Value Register Window Low Byte, Based on RTCPTR<1:0>								

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal for 44-pin devices.

TADLE 10-4.										
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF		
RCON	IPEN	_	CM	RI	TO	PD	POR	BOR		
PIR4	CCP10IF	CCP9IF	CCP8IF	CCP7IF	CCP6IF	CCP5IF	CCP4IF	CCP3IF		
PIE4	CCP10IE	CCP9IE	CCP8IE	CCP7IE	CCP6IE	CCP5IE	CCP4IE	CCP3IE		
IPR4	CCP10IP	CCP9IP	CCP8IP	CCP7IP	CCP6IP	CCP5IP	CCP4IP	CCP3IP		
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0		
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0		
TRISE	RDPU	REPU	_	_	_	TRISE2	TRISE1	TRISE0		
TMR1L	Timer1 Regi	ster Low Byte	Э							
TMR1H	Timer1 Regi	ster High Byt	е							
TMR3L	Timer3 Regi	ster Low Byte	Э							
TMR3H	Timer3 Regi	ster High Byt	е							
TMR5L	Timer5 Regi	ster Low Byte	9							
TMR5H	Timer5 Regi	ster High Byt	е							
T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	RD16	TMR10N		
T3CON	TMR3CS1	TMR3CS0	T3CKPS1	T3CKPS0	T3OSCEN	T3SYNC	RD16	TMR3ON		
T5CON	TMR5CS1	TMR5CS0	T5CKPS1	T5CKPS0	T5OSCEN	T5SYNC	RD16	TMR50N		
CCPR4L	CCPR4L7	CCPR4L6	CCPR4L5	CCPR4L4	CCPR4L3	CCPR4L2	CCPR4L1	CCPR4L0		
CCPR4H	CCPR4H7	CCPR4H6	CCPR4H5	CCPR4H4	CCPR4H3	CCPR4H2	CCPR4H1	CCPR4H0		
CCPR5L	CCPR5L7	CCPR5L6	CCPR5L5	CCPR5L4	CCPR5L3	CCPR5L2	CCPR5L1	CCPR5L0		
CCPR5H	CCPR5H7	CCPR5H6	CCPR5H5	CCPR5H4	CCPR5H3	CCPR5H2	CCPR5H1	CCPR5H0		
CCPR6L	CCPR6L7	CCPR6L6	CCPR6L5	CCPR6L4	CCPR6L3	CCPR6L2	CCPR6L1	CCPR6L0		
CCPR6H	CCPR6H7	CCPR6H6	CCPR6H5	CCPR6H4	CCPR6H3	CCPR6H2	CCPR6H1	CCPR6H0		
CCPR7L	CCPR7L7	CCPR7L6	CCPR7L5	CCPR7L4	CCPR7L3	CCPR7L2	CCPR7L1	CCPR7L0		
CCPR7H	CCPR7H7	CCPR7H6	CCPR7H5	CCPR7H4	CCPR7H3	CCPR7H2	CCPR7H1	CCPR7H0		
CCPR8L	CCPR8L7	CCPR8L6	CCPR8L5	CCPR8L4	CCPR8L3	CCPR8L2	CCPR8L1	CCPR8L0		
CCPR8H	CCPR8H7	CCPR8H6	CCPR8H5	CCPR8H4	CCPR8H3	CCPR8H2	CCPR8H1	CCPR8H0		
CCPR9L	CCPR9L7	CCPR9L6	CCPR9L5	CCPR9L4	CCPR9L3	CCPR9L2	CCPR9L1	CCPR9L0		
CCPR9H	CCPR9H7	CCPR9H6	CCPR9H5	CCPR9H4	CCPR9H3	CCPR9H2	CCPR9H1	CCPR9H0		
CCPR10L	CCPR10L7	CCPR10L6	CCPR10L5	CCPR10L4	CCPR10L3	CCPR10L2	CCPR10L1	CCPR10L0		
CCPR10H	CCPR10H7	CCPR10H6	CCPR10H5	CCPR10H4	CCPR10H3	CCPR10H2	CCPR10H1	CCPR10H0		
CCP4CON	_		DC4B1	DC4B0	CCP4M3	CCP4M2	CCP4M1	CCP4M0		
CCP5CON	_		DC5B1	DC5B0	CCP5M3	CCP5M2	CCP5M1	CCP5M0		
CCP6CON	_	_	DC6B1	DC6B0	CCP6M3	CCP6M2	CCP6M1	CCP6M0		
CCP7CON	—	_	DC7B1	DC7B0	CCP7M3	CCP7M2	CCP7M1	CCP7M0		
CCP8CON		_	DC8B1	DC8B0	CCP8M3	CCP8M2	CCP8M1	CCP8M0		
CCP9CON	_		DC9B1	DC9B0	CCP9M3	CCP9M2	CCP9M1	CCP9M0		
CCP10CON	_		DC10B1	DC10B0	CCP10M3	CCP10M2	CCP10M1	CCP10M0		
CCPTMRS1	C7TSEL1	C7TSEL0		C6TSEL0		C5TSEL0	C4TSEL1	C4TSEL0		
				C10TSEL0		C9TSEL0	C8TSEL1	C8TSEL0		

TABLE 18-4 :	REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, TIMER1/3/5/7
---------------------	--

Legend: — = unimplemented, read as '0'. Shaded cells are not used by capture/compare or Timer1/3/5.

19.1 ECCP Outputs and Configuration

The Enhanced CCP module may have up to four PWM outputs, depending on the selected operating mode. These outputs, designated PxA through PxD, are routed through the Peripheral Pin Select (PPS) module. Therefore, individual functions can be mapped to any of the remappable I/O pins (RPn).

The outputs that are active depend on the ECCP operating mode selected. The pin assignments are summarized in Table 19-3.

To configure the I/O pins as PWM outputs, the proper PWM mode must be selected by setting the PxM<1:0> and CCPxM<3:0> bits. The appropriate TRIS direction bits for the port pins must also be set as outputs.

19.1.1 ECCP MODULE AND TIMER RESOURCES

The ECCP modules use Timer1, 2, 3, 4, 6 or 8, depending on the mode selected. These timers are available to CCP modules in Capture, Compare or PWM modes, as shown in Table 19-1.

TABLE 19-1:ECCP MODE – TIMER
RESOURCE

ECCP Mode	Timer Resource
Capture	Timer1 or Timer3
Compare	Timer1 or Timer3
PWM	Timer2, Timer4, Timer6 or Timer8

The assignment of a particular timer to a module is determined by the Timer to ECCP enable bits in the CCPTMRS0 register (Register 19-2). The interactions between the two modules are depicted in Figure 19-1. Capture operations are designed to be used when the timer is configured for Synchronous Counter mode. Capture operations may not work as expected if the associated timer is configured for Asynchronous Counter mode.

19.2 Capture Mode

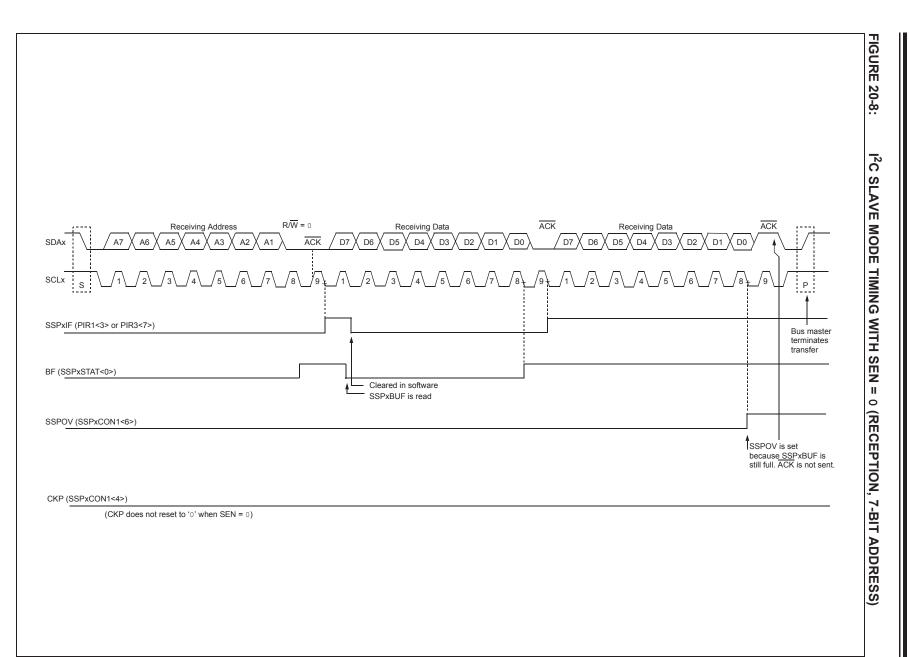
In Capture mode, the CCPRxH:CCPRxL register pair captures the 16-bit value of the TMR1 or TMR3 registers when an event occurs on the corresponding ECCPx pin. An event is defined as one of the following:

- · Every falling edge
- Every rising edge
- Every fourth rising edge
- Every 16th rising edge

The event is selected by the mode select bits, CCPxM<3:0> (CCPxCON register<3:0>). When a capture is made, the interrupt request flag bit, CCPxIF, is set (see Table 19-2). The flag must be cleared by software. If another capture occurs before the value in the CCPRxH/L register pair is read, the old captured value is overwritten by the new captured value.

TABLE 19-2:	ECCP1/2/3 INTERRUPT FLAG
	BITS

ECCP Module	Flag-Bit
1	PIR1<2>
2	PIR2<0>
3	PIR4<0>


19.2.1 ECCP PIN CONFIGURATION

In Capture mode, the appropriate ECCPx pin should be configured as an input by setting the corresponding TRISx direction bit.

Additionally, the ECCPx input function needs to be assigned to an I/O pin through the Peripheral Pin Select module. For details on setting up the remappable pins, see Section 10.7 "Peripheral Pin Select (PPS)".

Note: If the ECCPx pin is configured as an output, a write to the port can cause a capture condition.

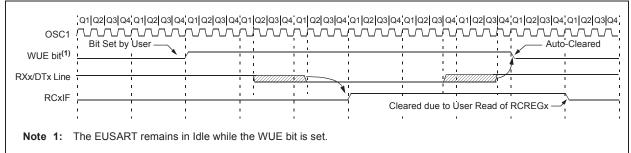
© 2010-2017 Microchip Technology Inc.

DS30009974C-page 310

The WUE bit is automatically cleared once a low-to-high transition is observed on the RXx line following the wake-up event. At this point, the EUSART module is in Idle mode and returns to normal operation. This signals to the user that the Sync Break event is over.

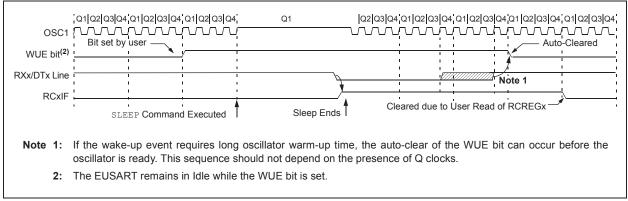
21.2.4.1 Special Considerations Using Auto-Wake-up

Since auto-wake-up functions by sensing rising edge transitions on RXx/DTx, information with any state changes before the Stop bit may signal a false End-Of-Character (EOC) and cause data or framing errors. To work properly, therefore, the initial character in the transmission must be all '0's. This can be 00h (8 bits) for standard RS-232 devices or 000h (12 bits) for LIN/J2602 bus.


Oscillator start-up time must also be considered, especially in applications using oscillators with longer start-up intervals (i.e., HS or HSPLL mode). The Sync Break (or Wake-up Signal) character must be of sufficient length and be followed by a sufficient interval to allow enough time for the selected oscillator to start and provide proper initialization of the EUSART.

21.2.4.2 Special Considerations Using the WUE Bit

The timing of WUE and RCxIF events may cause some confusion when it comes to determining the validity of received data. As noted, setting the WUE bit places the EUSART in an Idle mode. The wake-up event causes a receive interrupt by setting the RCxIF bit. The WUE bit is cleared after this when a rising edge is seen on RXx/DTx. The interrupt condition is then cleared by reading the RCREGx register. Ordinarily, the data in RCREGx will be dummy data and should be discarded.


The fact that the WUE bit has been cleared (or is still set) and the RCxIF flag is set should not be used as an indicator of the integrity of the data in RCREGx. Users should consider implementing a parallel method in firmware to verify received data integrity.

To assure that no actual data is lost, check the RCIDL bit to verify that a receive operation is not in process. If a receive operation is not occurring, the WUE bit may then be set just prior to entering Sleep mode.

FIGURE 21-8: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING NORMAL OPERATION

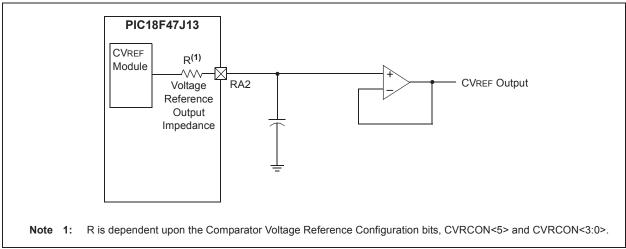
FIGURE 21-9: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP

24.2 Voltage Reference Accuracy/Error

The full range of voltage reference cannot be realized due to the construction of the module. The transistors on the top and bottom of the resistor ladder network (see Figure 24-1) keep CVREF from approaching the reference source rails. The voltage reference is derived from the reference source; therefore, the CVREF output changes with fluctuations in that source. The tested absolute accuracy of the voltage reference can be found in Section 30.0 "Electrical Characteristics".

24.3 Connection Considerations

The voltage reference module operates independently of the comparator module. The output of the reference generator may be connected to the RA2 pin if the CVROE bit is set. Enabling the voltage reference output onto RA2 when it is configured as a digital input will increase current consumption. Connecting RA2 as a digital output with CVRSS enabled will also increase current consumption. The RA2 pin can be used as a simple D/A output with limited drive capability. Due to the limited current drive capability, a buffer must be used on the voltage reference output for external connections to VREF. See Figure 24-2 for an example buffering technique.


24.4 Operation During Sleep

When the device wakes up from Sleep through an interrupt or a Watchdog Timer time-out, the contents of the CVRCON register are not affected. To minimize current consumption in Sleep mode, the voltage reference should be disabled.

24.5 Effects of a Reset

A device Reset disables the voltage reference by clearing bit, CVREN (CVRCON<7>). This Reset also disconnects the reference from the RA2 pin by clearing bit, CVROE (CVRCON<6>) and selects the high-voltage range by clearing bit, CVRR (CVRCON<5>). The CVR value select bits are also cleared.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CVRCON	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0
CM1CON	CON	COE	CPOL	EVPOL1	EVPOL0	CREF	CCH1	CCH0
CM2CON	CON	COE	CPOL	EVPOL1	EVPOL0	CREF	CCH1	CCH0
CM3CON	CON	COE	CPOL	EVPOL1	EVPOL0	CREF	CCH1	CCH0
TRISA	TRISA7	TRISA6	TRISA5	—	TRISA3	TRISA2	TRISA1	TRISA0
ANCON0	PCFG7 ⁽¹⁾	PCFG6 ⁽¹⁾	PCFG5 ⁽¹⁾	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0

Legend: — = unimplemented, read as '0', r = reserved. Shaded cells are not used with the comparator voltage reference.

Note 1: These bits are only available on 44-pin devices.

25.6 Operation During Sleep

When enabled, the HLVD circuitry continues to operate during Sleep. If the device voltage crosses the trip point, the HLVDIF bit will be set and the device will wake-up from Sleep. Device execution will continue from the interrupt vector address if interrupts have been globally enabled.

25.7 Effects of a Reset

A device Reset forces all registers to their Reset state. This forces the HLVD module to be turned off.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
HLVDCON	VDIRMAG	BGVST	IRVST	HLVDEN	HLVDL3	HLVDL2	HLVDL1	HLVDL0
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF
PIR2	OSCFIF	CM2IF	CM1IF	—	BCL1IF	HLVDIF	TMR3IF	CCP2IF
PIE2	OSCFIE	CM2IE	CM1IE	_	BCL1IE	HLVDIE	TMR3IE	CCP2IE
IPR2	OSCFIP	CM2IP	CM1IP	_	BCL1IP	HLVDIP	TMR3IP	CCP2IP

TABLE 25-1: REGISTERS ASSOCIATED WITH HIGH/LOW-VOLTAGE DETECT MODULE

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the HLVD module.

PIC18F47J13 FAMILY

		501					
BTG	Bit Toggle f	BOV	Branch if Overflow				
Syntax:	BTG f, b {,a}	Syntax:	BOV n				
Operands:	$0 \leq f \leq 255$	Operands:	$-128 \le n \le 127$				
	0 ≤ b < 7 a ∈ [0,1]	Operation:	if Overflow bit is '1', (PC) + 2 + 2n \rightarrow PC				
Operation:	$(\overline{f} < b >) \to f < b >$	Status Affected:	None				
Status Affected:	None	Encoding:	1110 0100 nnnn nnnn				
Encoding: Description:	Ĵ		If the Overflow bit is '1', then the program will branch.				
	inverted. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 28.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.	Words: Cycles: Q Cycle Activity: If Jump:	The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a 2-cycle instruction. 1 1(2)				
Words:	1	Q1	Q2 Q3 Q4				
Cycles:	1	Decode	Read literalProcessWrite to PC'n'Data				
Q Cycle Activity:		No	No No No				
Q1	Q2 Q3 Q4	operation	operation operation operation				
Decode	Read Process Write	If No Jump:					
	register 'f' Data register 'f'	Q1	Q2 Q3 Q4				
Example:	BTG PORTC, 4, 0	Decode	Read literalProcessNo'n'Dataoperation				
Before Instruct PORTC After Instructio PORTC	= 0111 0101 [75h] n:	Example: Before Instruct PC After Instructio If Overflo PC If Overflo PC	= address (HERE) on ow = 1; = address (Jump)				

PIC18F47J13 FAMILY

XORWF		Exclusive	OR W w	ith f					
Syntax:		XORWF	XORWF f {,d {,a}}						
Operan	ds:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	d ∈ [0,1]						
Operati	on:	(W) .XOR.	$(f) \rightarrow des$	st					
Status /	Affected:	N, Z	N, Z						
Encodir	ng:	0001	10da	fff	f	ffff			
Descrip	tion:	register 'f'. in W. If 'd' i	Exclusive OR the contents of W with register 'f'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in the register 'f' (default).						
		lf 'a' is '1', t	If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default).						
If 'a' is '0' and the extense set is enabled, this inst in Indexed Literal Offse mode whenever f ≤ 95 Section 28.2.3 "Byte Bit-Oriented Instructi Literal Offset Mode" f						operates essing See ed and Indexed			
Words:		1							
Cycles:		1							
Q Cycl	le Activity:								
	Q1	Q2	Q3	3		Q4			
	Decode	Read register 'f'	Proce Data			/rite to stination			
Example: XORWF REG, 1, 0 Before Instruction									
REG = AFh W = B5h									
After Instruction REG = 1Ah W = B5h									

		Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial				
Param No.	Symbol	Characteristic	Min	Мах	Units	Conditions
	VIL	Input Low Voltage				
		All I/O Ports:				
D030		with TTL Buffer	Vss	0.15 Vdd	V	VDD < 3.3V
D030A		with TTL Buffer	Vss	0.8	V	3.3V <u>≤</u> VDD <u>≤</u> 3.6V
D031		with Schmitt Trigger Buffer	Vss	0.2 Vdd	V	
D031A		SCLx/SDAx	—	0.3 Vdd	V	I ² C enabled
D031B		SCLx/SDAx	—	0.8	V	SMBus enabled
D032		MCLR	Vss	0.2 Vdd	V	
D033		OSC1	Vss	0.3 Vdd	V	HS, HSPLL modes
D033A		OSC1	Vss	0.2 Vdd	V	EC, ECPLL modes
D034		T1OSI	Vss	0.3	V	T1OSCEN = 1
	Vih	Input High Voltage I/O Ports without 5.5V Tolerance:				
D040		with TTL Buffer	0.25 VDD + 0.8V	Vdd	V	VDD < 3.3V
D040A		with TTL Buffer	2.0	Vdd	V	3.3V <u><</u> Vdd <u><</u> 3.6V
D041		with Schmitt Trigger Buffer I/O Ports with 5.5V Tolerance: ⁽⁴⁾	0.8 Vdd	Vdd	V	
Dxxx		with TTL Buffer	0.25 VDD + 0.8V	5.5	V	VDD < 3.3V
DxxxA			2.0	5.5	V	$3.3V \le V\text{DD} \le 3.6V$
Dxxx		with Schmitt Trigger Buffer	0.8 Vdd	5.5	V	
D041A		SCLx/SDAx	0.7 Vdd	_	V	I ² C enabled
D041B		SCLx/SDAx	2.1	_	V	SMBus enabled; VDD <u>></u> 3V
D042		MCLR	0.8 Vdd	5.5	V	
D043		OSC1	0.7 Vdd	Vdd	V	HS, HSPLL modes
D043A		OSC1	0.8 VDD	Vdd	V	EC, ECPLL modes
D044		T1OSI	1.6	Vdd	V	T1OSCEN = 1
	IPU	Weak Pull-up Current				
D070	IPURB	PORTB, PORTD ⁽³⁾ and PORTE ⁽³⁾ Weak Pull-up Current	80	400	μA	VDD = 3.3V, VPIN = VSS

30.3 DC Characteristics: PIC18F47J13 Family (Industrial)

Note 1: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

2: Negative current is defined as current sourced by the pin.

3: Only available in 44-pin devices.

4: Refer to Table 10-2 for pin tolerance levels.

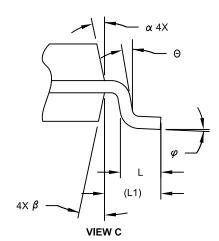
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions	
F10	Fosc	Oscillator Frequency Range	4	_	48	MHz		
F11	Fsys	On-Chip VCO System Frequency	—	96	—	MHz		
F12	t _{rc}	PLL Start-up Time (lock time)	—	_	2	ms		

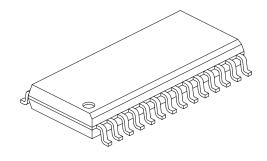
TABLE 30-10:96 MHz PLL CLOCK TIMING SPECIFICATIONS (VDDCORE = 2.35V TO 2.75V)

TABLE 30-11: 4x PLL CLOCK TIMING SPECIFICATIONS

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
F10	Fpllin	PLL Input Frequency Range	4	_	12	MHz	
F11	Fpllo	PLL Output Frequency (4x FPLLIN)	16	—	48	MHz	
F12	t _{rc}	PLL Start-up Time (lock time)	—	—	2	ms	

† Data in "Typ" column is at 3.3V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.


TABLE 30-12: INTERNAL RC ACCURACY (INTOSC AND INTRC SOURCES)


Param No.	Device	Min	Тур	Max	Units	Conditions			
	INTOSC Accuracy @ Freq = 8 MHz, 4 MHz, 2 MHz, 1 MHz, 500 kHz, 250 kHz, 125 kHz, 31 kHz ⁽¹⁾								
	All Devices	-1	<u>+</u> 0.15	+1	%	0°C to +85°C	VDD = 2.4V-3.6V, VDDCORE = 2.3V-2.7V		
		-1	<u>+</u> 0.25	+1	%	-40°C to +85°C	VDD = 2.0V-3.6V, VDDCORE = 2.0V-2.7V		
	INTRC Accuracy @ Freq = 31 kHz ⁽¹⁾								
	All Devices	20.3	_	42.2	kHz	-40°C to +85°C	VDD = 2.0V-3.6V, VDDCORE = 2.0V-2.7V		

Note 1: The accuracy specification of the 31 kHz clock is determined by which source is providing it at a given time. When INTSRC (OSCTUNE<7>) is '1', use the INTOSC accuracy specification. When INTSRC is '0', use the INTRC accuracy specification.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	N	IILLIMETER	S				
Dimension	Limits	MIN	NOM	MAX			
Number of Pins	N		28				
Pitch	е		1.27 BSC				
Overall Height	A	-	-	2.65			
Molded Package Thickness	A2	2.05	-	-			
Standoff §	A1	0.10	-	0.30			
Overall Width	E		10.30 BSC				
Molded Package Width	E1		7.50 BSC				
Overall Length	D		17.90 BSC				
Chamfer (Optional)	h	0.25	-	0.75			
Foot Length	L	0.40	-	1.27			
Footprint	L1	1.40 REF					
Lead Angle	O	0°	-	-			
Foot Angle	φ	0°	-	8°			
Lead Thickness	С	0.18	-	0.33			
Lead Width	b	0.31	-	0.51			
Mold Draft Angle Top	α	5°	-	15°			
Mold Draft Angle Bottom	β	5°	-	15°			

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway

Harbour City, Kowloon Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

Fax: 852-2401-3431

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-3326-8000 Fax: 86-21-3326-8021

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

France - Saint Cloud Tel: 33-1-30-60-70-00

Germany - Garching Tel: 49-8931-9700 **Germany - Haan** Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-67-3636

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7289-7561

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820